MA500 Advanced Group Theory – Problem Sheet 1

January 25, 2016, Lecturer: Claas Röver

Throughout this problem sheet, the field with p elements, for a prime p, is denoted \mathbb{F}_p . That is $\mathbb{F}_p \cong \mathbb{Z}/p\mathbb{Z}$ as a ring.

Furthermore, for any field \mathbb{F} , the general linear group of dimension n over \mathbb{F} , $GL_n(\mathbb{F})$, is defined by

 $\operatorname{GL}_n(\mathbb{F}) = \{A \mid A \text{ is an } n \times n \text{ matrix with entries from } \mathbb{F} \text{ and } \det(A) \neq 0\}.$

TASK 1. Prove that, for any field \mathbb{F} , the determinant map

$$\begin{array}{rccc} \det\colon & \operatorname{GL}_n(\mathbb{F}) & \longrightarrow & \mathbb{F}^* \\ & A & \longmapsto & \det(A) \end{array}$$

is a group homomorphism, where \mathbb{F}^* denotes the multiplicative group of the non-zero elements of \mathbb{F} . Hence, or otherwise, show that $SL_n(\mathbb{F})$ is a normal subgroup of $GL_n(\mathbb{F})$.

TASK 2. By arguing about the possibilities of choosing a set of n linearly independent vectors

in \mathbb{F}_p^n , prove that the order of $\operatorname{GL}_n(\mathbb{F}_p)$ is $\prod_{k=0}^{n-1}(p^n-p^k)$. Then deduce that $|\operatorname{SL}_n(\mathbb{F}_p)| =$ $|\operatorname{GL}_n(\mathbb{F}_p)|/(p-1).$

- TASK 3. Show that S_4 , i.e. the symmetric group on four points, and $SL_2(\mathbb{F}_3)$ have the same order but are not isomorphic. Hint: Look at their centres. Find a composition series for $SL_2(\mathbb{F}_3)$. Is it a solvable group?
- TASK 4. Describe the non-trivial semi-direct product of two infinite cyclic groups $G = C_{\infty} \ltimes$ C_{∞} . Is G solvable? Justify your answer. What is the isomorphism type of the centre of G?
- TASK 5. Consider the matrices

$$I = \begin{pmatrix} -i & 0\\ 0 & i \end{pmatrix} \quad \text{and} \quad K = \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix}$$

over the complex numbers \mathbb{C} , where $i^2 = -1$, as usual. Determine the isomorphism type of the subgroup Q of $SL_2(\mathbb{C})$ generated by I and K. Find a composition series for Q and also the derived series of Q. Finally, determine Aut(Q).