MA500 Advanced Group Theory – Problem Sheet 2

January 25, 2016, Lecturer: Claas Röver

TASK 1. Let \mathbb{F} be a field.

(a) Show that the matrices of the form $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ x & y & 1 \end{pmatrix}$ with $x, y \in \mathbb{F}$ form a subgroup of

 $\mathrm{SL}_3(\mathbb{F})$ isomorphic to \mathbb{F}^2 , the aditive group of the 2-dimensional vector space over \mathbb{F} .

(b) Verify that

$$\phi: \operatorname{GL}_2(\mathbb{F}) \longrightarrow \operatorname{GL}_3(\mathbb{F})$$
$$A \longmapsto \begin{pmatrix} A & 0\\ 0 & 0 & 1 \end{pmatrix}$$

is an injective group homomorphism.

- (c) Use parts (a) and (b) to prove that the semi-direct product of 𝔽² with GL₂(𝔽) under its natural action on 2-dimensional vectors over 𝔽 is isomorphic to a subgroup of GL₃(𝔅).
- (d) Does the same construction work to embed GL_n(𝔅) acting on n-dimensional vectors into GL_{n+1}(𝔅)? Briefly justify your answer.
- TASK 2. Fix $n \ge 2$ and let $U = U_n(\mathbb{F})$ be the group of upper triangular $n \times n$ matrices over the field \mathbb{F} with ones on the diagonal. Find the derived series of U and hence decide whether U is solvable.
- TASK 3. In the lectures, an abstract argument was given that \mathcal{D}_4 , the dihedral group of order eight, is isomorphic to $\mathcal{C}_2 \wr \mathcal{C}_2$. Write down such an isomorphism explicitely. It is enough to specify the images of the elements of a generating set and prove that this partial map extends (uniquely) to an injective homomorphism. Why do you not have to prove surjectivity?
- TASK 4. Let G and H be groups. Show that the centre of the unrestricted standard wreath product of G with H, is isomorphic to the centre of G, i.e. $Z(G \wr H) \cong Z(G)$, but that the centre of the restricted standard wreath product of G with H is trivial if H is infinite, i.e. $Z(G \wr H) = 1$ when $|H| = \infty$. Note: If $|H| < \infty$, then $G \wr H = G \wr H$.
- TASK 5. Let \mathbb{C} denote the complex numbers and let p be a prime. Define

$$\mathcal{C}_{p^{\infty}} = \{ z \in \mathbb{C} \mid z^{p^k} = 1 \text{ for some } k \in \mathbb{N} \}.$$

In other words, $C_{p^{\infty}}$ is the set of all p^k -th roots of unity in \mathbb{C} . Prove that $C_{p^{\infty}}$ with the induced multiplication from \mathbb{C} is a group that is not finitely generated. What are the finitely generated subgroups of $C_{p^{\infty}}$? What kind of quotients does $C_{p^{\infty}}$ have?