MA500 Advanced Group Theory – Assignment 1

February 20, 2017, Lecturer: Claas Röver

Hand in your solution at the beginning of the lecture on Wednesday, 1 March 20167.

TASK 1. Write up your solution to Task 4 on Problem Sheet 1.

TASK 2. Write up your solution to Task 5 on Problem Sheet 1.

- TASK 3. Give an example of a group G and surjective homomorphism $\alpha \colon G \longrightarrow G$ such that α is not injective. *Hint:* Have a look at Problem Sheet 2.
- ${\rm TASK}$ 4. The Baumslag–Solitar groups are one-relator groups defined by

$$BS(n,m) = \langle a,t \mid t^{-1}a^n t = a^m \rangle,$$

where n and m are non-zero integers.

(a) Show that the map ψ define by

$$a^{\psi} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $t^{\psi} = \begin{pmatrix} rac{n}{m} & 0 \\ 0 & 1 \end{pmatrix}$

extends to a homomorphism from BS(n,m) to $GL_2(\mathbb{Q})$.

(b) Prove that the quotient of BS(n,m) by its commutator subgroup is (isomorphic to) the direct product of an infinite cyclic group with a finite cyclic group of order |m-n|.

 T_{ASK} 5. Finding finitely generated examples with the property demanded in Task 3 is much harder.

- (a) Show that the map φ with $a^{\varphi} = a^n$ and $t^{\varphi} = t$ from BS(2,3) to itself extends to a surjective homomorphism.
- (b) Now show that BS(2,3) has the property asked for in Task 3, by firstly verifying that $w = a^{-1}t^{-1}atat^{-1}a^{-1}t \ (= [a,t][a,t]^{-a^{-1}})$ is in the kernel of φ and secondly applying Britton's lemma to show that $w \neq 1$.
- (c) Verify that the element w defined in part (b) is in the kernel of the homomorphism ψ form Task 4.