MA500 Advanced Group Theory - Assignment 2

March 20, 2017, Lecturer: Claas Röver

Hand in your solution at the beginning of the lecture on Monday, 27 March 2017.
TASK 1. Recall that for subsets S and T of a group, we defined $S T=\{s t \mid s \in S, t \in T\}$.
(a) Let G be any group. Show that for a normal subgroup N and any subgroup K of G we have $\mathrm{NK}=\mathrm{KN}$ and that KN is a subgroup of G .
(b) Give an example of a group G and two subgroups H and K of G such that HK is not a subgroup of G.

TASK 2. The Klein bottle is a non-orientable closed surface obtained from a square by identifying the edges as in the figure below.

(a) Write down a presentation for the fundamental group of the Klein bottle that comes from this identifiaction.
(b) Many books claim that the fundamental group of the Klein bottle has the presentation $\left\langle x, y \mid x^{2} y^{2}=1\right\rangle$. Prove that your presentation and this one give isomorphic groups. Hint: Consider a diagonal of the square.
(c) It is a fact that every non-orientable closed surface Σ^{\prime} is the quotient of an orientable closed surface Σ such that every point of Σ^{\prime} has precisely two preimages in Σ, i.e. Σ is a two-sheeted cover of Σ.
Find the orientable closed surface that is a two-sheeted cover of the Klein bottle. Hint: Think about the fundamental domain the surface should have so that it can cover the square above.

TASK 3. Recall from the lectures, that the hyperbolic plane \mathbb{H}^{2} can be viewed as points on the hyperboloid in \mathbb{R}^{3}, that is

$$
\mathbb{H}^{2}=\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}^{2}-x_{2}^{2}-x_{3}^{2}=1, x_{1}>0\right\} .
$$

Show that $d(x, y)=\cosh ^{-1}(B(x, y))$ defines a metric on \mathbb{H}^{2}, where $B(x, y)=x_{1} y_{1}-$ $x_{2} y_{2}-x_{3} y_{3}$ and $\cosh ^{-1}(r)=\ln \left(r+\sqrt{r^{2}-1}\right)(r \geqslant 1)$ is the inverse function of the hyperbolic cosine $\cosh (r)=\frac{1}{2}\left(e^{r}+e^{-r}\right)(r \geqslant 0)$.
TASK 4. Write down the solution to Task 2 on Problem Sheet 3.
TASK 5. Prove that an element w of the free product $\mathrm{G} * \mathrm{H}$ has finite order if and only if it is conjugate to an element of finte order in G or H .

