MA500 Advanced Group Theory – Revision Problems

March 28, 2017, Lecturer: Claas Röver

TASK 1. Let $G = S_3 \wr_X S_3$, the permutational wreath product of two symmetric groups of degree three, i.e. the automorphism group of the tree depicted below.

- (a) Give a presentation for G and determine the isomorphism type of G/[G,G].
- (b) Find a composition series for G. Which composition factors do occur and how often?
- (c) Using the action of G to describe an embedding of G into S_9 , the symmetric group of degree nine; you can use the generators from part (a).
- (d) Can G be a subgroup of S_k for $k \leq 8$? Justify your answer.
- TASK 2. Let G be a group and H be a subgroup of G. Recall the definitions of the *centraliser* of H in G and the *normaliser* of H in G, denoted $C_G(H)$ and $N_G(H)$, respectively:

 $C_G(H) = \{g \in G \mid [g,h] = 1 \text{ for all } h \in H\} \text{ and } N_G(H) = \{g \in G \mid H^g = H\}.$

- (a) Show that H has precisely $|G: N_H(G)|$ distinct conjugates in G.
- (b) Show that $C_G(H)$ is a normal subgroup of $N_G(H)$.
- (c) In \mathcal{D}_8 , the dihedral group of order 16, find all possible subgroups together with their centralisers and normalisers.
- (d) Show that $FC(G) = \{g \in G \mid |G : C_G(\langle g \rangle)| < \infty\}$, that is the set of elements of G whose centraliser has finite index in G, is a normal subgroup of G.
- TASK 3. Suppose G is a group and that $\alpha: G \longrightarrow A$ and $\beta: G \longrightarrow B$ are surjective homomorphisms with $\ker(\alpha) \cap \ker(\beta) = 1$.
 - (a) Prove that G is isomorphic to a subgroup of $A \times B$.
 - (b) Find an example which shows that G is not necessarily isomorphic to $A \times B$.
 - (c) Show that $G \cong A \times B$ if and only if $\ker(\alpha) \ker(\beta) = G$.
- TASK 4. Let G = Sym(X), where X is a countably infinite set. The right regular action of a group on itself shows that G contains (an isomorphic copy of) every countable group.
 - (a) Show that G is not finitely generated.
 - (b) The support of $g \in G$ is defined as $\operatorname{supp}(g) = \{x \in X \mid x^g \neq x\}$. Prove that $F = \{g \in G \mid |\operatorname{supp}(g)| < \infty\}$ is a countable subgroup of G.
 - (c) Show that every finitely generated subgroup of F is finite, and hence that F is not finitely generated.
 - (d) Prove that F is simple. *Hint:* Remember that Alt(Y) is simple for $5 \leq |Y| < \infty$.
- TASK 5. Let $G = C_2 \wr_R C_\infty$ be the standard restricted wreath product of a cyclic group of order two with an infinite cyclic group. Verify that $\langle a, t | [a, a^{t^i}] = a^2 = 1 \rangle$ is a presentation for G. Describe a normal form and a procedure transforming every word into normal form with respect to the generators a and t.