Definitions in Group Theory

A binary operation on a set X is a map from $X \times X$ to X.

We often denote a binary relation by \cdot and write $x \cdot y$ for the image of $(x, y) \in X \times X$.

A group is a set G with a binary operation satisfying the following axioms.

Identity: There exists an element $1 \in G$, such that for all $g \in G$, $1 \cdot g = g \cdot 1 = g$ holds.

Inverse: For each $g \in G$ there exists an element $\overline{g} \in G$ such that $g \cdot \overline{g} = \overline{g} \cdot g = 1$.

Associativity: For all $g, h, k \in G$, $(g \cdot h) \cdot k = g \cdot (h \cdot k)$ holds.

The element 1 from the first axiom is called the identity of G. The element \overline{g} from the second axiom is called the inverse of g and often denoted as g^{-1} . We often write gh instead of $g \cdot h$ and call it the product of g and h.

- A subgroup of a group G is a subset H of G which is itself a group, under the binary operation induced from G.
- A generating set for a group G is a subset S such that every element of G is a product of elements of S and their inverses.
- A cyclic group is a group which can be generated by one of its elements.

For a subset S of a group G we write $\langle S \rangle$ for the subgroup of G generated by S.

An abelian group is a group in which gh = hg for all $g, h \in G$.

- A dihedral group is a group which can be generated by two distinct elements of order two.
- The symmetric group of a set X is the group of all permutations of X, written Sym(X). Fact: Every group G is a subgroup of Sym(G); map g to "right multiplication by g".
- The alternating group of a set X is the group of even permutations of X, writtem Alt(X), which is a normal subgroup of Sym(X) of index 2.
- The order of a group G is its cardinality and denoted |G|.
- The order of an element g of a group G is $|\langle g \rangle|$.

A right coset of a subgroup H of a group G is a subset of G of the form $Hg = \{hg \mid h \in H\}$.

- **Conjugate.** Let g, h be elements of a group G. Then we define the conjugate of h by g as $h^g = g^{-1}hg$.
- A normal subgroup of a group G is a subgroup N of G such that $n^g \in N$ for all $n \in N$ and all $g \in G$, i.e. $N^g = N$ for all $g \in G$.
- The normal closure of a subset S of a group G is the smallest normal subgroup of G containing S, which is $\langle S^G \rangle$, the group generated by all conjugates of S.

More Definitions and some Theorems in Group Theory

For subsets S and T of a group, define $ST = \{st \mid s \in S, t \in T\}$ and $S^T = \{s^t \mid s \in S, t \in T\}$.

Lagrange's Theorem. Let U be a subgroup of the finite group G. Then |U| divides |G|.

The index of U in G is the number of cosets of U in G, and denoted as |G:U|.

A homomorphism is a map α from a group G to a group H such that $(gg')^{\alpha} = g^{\alpha}g'^{\alpha}$ holds for all $g, g' \in G$.

An isomorphism is a surjective and injective homomorphism.

A quotient (group) of a group G is a homomorphic image of G.

- The quotient group (or factor group) of G by the normal subgroup N of G is the set $G/N = \{Ng \mid g \in G\}$ of all right cosets of N in G with product $Ng \cdot N\tilde{g} = Ng\tilde{g}$.
- The kernel of a homomorphism $\alpha: G \to H$ consists of those elements of G that get mapped to the identity of H, i.e $\ker(\alpha) = \{g \in G \mid g^{\alpha} = 1\}$. Fact: $\ker(\alpha)$ is a normal subgroup of G. Proof: $h^{\alpha} = 1 \Rightarrow (h^g)^{\alpha} = (h^{\alpha})^{g^{\alpha}} = 1$.

Isomorphism Theorems. Let $\alpha: G \to H$ be a group homomorphism and let $K = \ker(\alpha)$.

- 1. $G^{\alpha} \cong G/K$, i.e. the image of α is isomorphic to the quotient of G by ker (α) .
- 2. For a subgroup U of G, $U^{\alpha} \cong U/(U \cap K) \cong (UK)/K$.
- 3. For a normal subgroup N of G with $K \subset N \subset G$, we have that N/K is a normal subgroup of G/K and $(G/K)/(N/K) \cong G/N$.
- The centraliser of a subset S of a group G is $C_G(S) = \{g \in G \mid s^g = s \forall s \in S\}$, which is a subgroup of G.
- The normaliser of a subset S of a group G is $N_G(S) = \{g \in G \mid S^g = S\}$, which is a subgroup of G.

Fact: For any subset S of G, $C_G(S)$ is a normal subgroup of $N_G(S)$.

The centre of a group G is $Z(G) = C_G(G)$.

- An automorphism of a group G is an isomorphism from G to itself. The set of all automorphisms of G forms a group denoted $\operatorname{Aut}(G)$. For $g \in G$ define g^{ι} to be "conjugation by g", i.e. $h^{g^{\iota}} = h^g$ for $h \in G$. Then $g^{\iota} \in \operatorname{Aut}(G)$ and $\iota: g \mapsto g^{\iota}$ is a homomorphism from G to $\operatorname{Aut}(G)$ with $\ker(\iota) = Z(G)$.
- A group F is free on a set X if X is a subset of F such that (i) F is generated by X and (ii) for every group G, every map $\alpha: X \to G$ can be extended to a homomorphism $\alpha^*: F \to G$.

Theorem: For every set X there exists, up to isomorphism, a unique free group on X, denoted F(X), whose elements are the (freely) reduced words over $X \cup X^{-1}$ and multiplication is concatenation followed by free reduction.

A group presentation is a pair $\langle X | R \rangle$, where X is a set and R is a subset of F(X), which defines the group $F(X)/\langle R^{F(X)} \rangle$.