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Block designs

A 2-(v , k , λ) design is a �nite incidence structure D = (P,B, I ), where P
and B are disjoint sets and I ⊆ P × B with the following properties:

1 |P| = v ;

2 every element of B is incident with exactly k elements of P;
3 every pair of elements of P is incident with exactly λ elements of B.

An automorphism of a block design D is determined by its action on the set

of points or the set of blocks. The set of all automorphisms of D is denoted

Aut(D).
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Orbit structures

Let D = (P,B, I ) be a 2-(v , k, λ) design and G ≤ Aut(D). Denote the

G -orbits of points by P1, . . . ,Pn, the G -orbits of blocks by B1, . . . ,Bm, and
put |Pr | = ωr and |Bi | = Ωi , for 1 ≤ r ≤ n, 1 ≤ i ≤ m.

For x ∈ B and P ∈ P, let 〈x〉 = {Q ∈ P | (Q, x) ∈ I} and 〈P〉 = {y ∈
B | (P, y) ∈ I}.

Let x ∈ Bi and P ∈ Pr , and g ∈ G . Then de�ne γir = |〈x〉 ∩ Pr | =
|〈x〉g ∩ Prg | = |〈xg〉 ∩ Pr |. Similarly let Γir = |〈P〉 ∩ Br |.
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Orbit structures

The (m×n) matrix [γir ] is called the orbit structure for parameters (v , k , λ)
and orbit distribution (ω1, . . . , ωn), (Ω1, . . . ,Ωm).

The set of indices of points of the orbit Pr indicating which points of Pr are
incident with the representative of the block orbit Bi is called the index set

for the position (i , r) of the orbit structure.
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Constructing designs with presumed automorphism group

Construction of block designs admitting an action of the presumed automor-

phism group consists of two basic steps:

1 Construction of orbit structures for the given automorphism group.

2 Construction of block designs for the orbit structures obtained in this

way. This step is often called an indexing of orbit structures.
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Example

Construction of a symmetric (66, 26, 10) design D admitting the

automorphism group Z55.

The only possible orbit distribution for Z55 is (11, 55). The resulting orbit

structure is
OS 11 55

11 1 25

55 5 21

.

There are
(
55

25

)
ways to index position (1, 2). To simplify the problem, we

consider the subgroup Z11.
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OS1 11 11 11 11 11 11

11 1 5 5 5 5 5

11 5 5 5 5 5 1

11 5 5 5 5 1 5

11 5 5 5 1 5 5

11 5 5 1 5 5 5

11 5 1 5 5 5 5

.

Possible index sets are the 1-subsets and 5-subsets of {0, 1, . . . , 10}. Labeled
with the integers from 0-472, the only design up to isomorphism is

0 280 280 280 280 280

20 20 450 450 20 5

20 450 450 20 5 20

20 450 20 5 20 450

20 20 5 20 450 450

20 5 20 450 450 20

 .

Ronan Egan with D. Crnkovi¢ & A. �vob May 19, 2018 7 / 23



OS1 11 11 11 11 11 11

11 1 5 5 5 5 5

11 5 5 5 5 5 1

11 5 5 5 5 1 5

11 5 5 5 1 5 5

11 5 5 1 5 5 5

11 5 1 5 5 5 5

.

Possible index sets are the 1-subsets and 5-subsets of {0, 1, . . . , 10}. Labeled
with the integers from 0-472, the only design up to isomorphism is

0 280 280 280 280 280

20 20 450 450 20 5

20 450 450 20 5 20

20 450 20 5 20 450

20 20 5 20 450 450

20 5 20 450 450 20

 .

Ronan Egan with D. Crnkovi¢ & A. �vob May 19, 2018 7 / 23



Some outcomes

There are at least 413 symmetric (78, 22, 6) designs; Crnkovi¢,

Dumi£i¢ Danilovi¢, Rukavina.

There are exactly 4285 symmetric (45, 12, 3) designs that admit

nontrivial automorphisms; Crnkovi¢, Dumi£i¢ Danilovi¢, Rukavina.

A construction of Menon designs with parameters (784, 378, 182) and

(900, 435, 210); Crnkovi¢.
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Linear codes

A q-ary linear code C of dimension k for a prime power q, is a k-dimensional

subspace of a vector space Fnq. Elements of C are called codewords.

Let x = (x1, ..., xn) and y = (y1, ..., yn) ∈ Fnq. The Hamming distance be-

tween words x and y is the number d(x , y) = |{i : xi 6= yi}|. The minimum

distance of the code C is de�ned by d = min{d(x , y) : x , y ∈ C , x 6= y}.
The weight of a codeword x is w(x) = d(x , 0) = |{i : xi 6= 0}|. For a linear

code, d = min{w(x) : x ∈ C , x 6= 0}.

For such code we write [n, k , d ]q linear code.
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Linear codes

The dual code C⊥ is the orthogonal complement under the standard inner

product 〈· , ·〉, i.e. C⊥ = {v ∈ Fnq|〈v , c〉 = 0 for all c ∈ C}.

Analogously, the Hermitian dual code CH is the orthogonal complement

under the Hermitian inner product, 〈x , y〉H =
∑n

i=1
xiy
∗
i where a∗ = a−1

for all a ∈ Fq \ {0} and 0∗ = 0.

A code C is self-orthogonal if C ⊆ C⊥ and self-dual if C = C⊥. It is

Hermitian self-orthogonal if C ⊆ CH and Hermitian self-dual if C = CH .
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Combinatorial structures

Let W be an n × n matrix with entries in {0,±1}. If WW> = mIn over

the integers, W is a weighing matrix W(n,m). If m = n, W is a Hadamard

matrix H(n).

Let ζk = e2πi/k . An n × n matrix with entries in {0} ∪ 〈ζk〉 such that

WW ∗ = mIn where [Wij ]
∗ = [W ∗

ji ], is a complex generalized weighing matrix

CGW(n,m, k).

If W has entries in Fq and WW ∗ = mIn, then we call W a Fq-weighing
matrix W(n,m;Fq).

Ronan Egan with D. Crnkovi¢ & A. �vob May 19, 2018 11 / 23



Combinatorial structures

Let W be an n × n matrix with entries in {0,±1}. If WW> = mIn over

the integers, W is a weighing matrix W(n,m). If m = n, W is a Hadamard

matrix H(n).

Let ζk = e2πi/k . An n × n matrix with entries in {0} ∪ 〈ζk〉 such that

WW ∗ = mIn where [Wij ]
∗ = [W ∗

ji ], is a complex generalized weighing matrix

CGW(n,m, k).

If W has entries in Fq and WW ∗ = mIn, then we call W a Fq-weighing
matrix W(n,m;Fq).

Ronan Egan with D. Crnkovi¢ & A. �vob May 19, 2018 11 / 23



Combinatorial structures

Let W be an n × n matrix with entries in {0,±1}. If WW> = mIn over

the integers, W is a weighing matrix W(n,m). If m = n, W is a Hadamard

matrix H(n).

Let ζk = e2πi/k . An n × n matrix with entries in {0} ∪ 〈ζk〉 such that

WW ∗ = mIn where [Wij ]
∗ = [W ∗

ji ], is a complex generalized weighing matrix

CGW(n,m, k).

If W has entries in Fq and WW ∗ = mIn, then we call W a Fq-weighing
matrix W(n,m;Fq).

Ronan Egan with D. Crnkovi¢ & A. �vob May 19, 2018 11 / 23



Combinatorial structures

A graph G is strongly regular of type (v , k , λ, µ) if it has v vertices, each

of degree k , such that any two adjacent (non-adjacent) vertices are both

adjacent to λ (µ) common vertices.

Let A be the adjacency matrix of G.

The Seidel matrix of G is S = J − I − 2A.

The Laplacian matrix of G is L = kI − A.

The signless Laplacian matrix of G is L = kI + A.

M2

i ,j =


α, i = j

β, vi ∼ vj ,

π, vi � vj

M ∈ {S , L, |L|}.
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Orbit matrices

Let M be an n × n matrix with entries in some set X . A permutation

automorphism of M is a pair of n×n permutation matrices (P,Q) such that

PMQ> = M. The set of all such pairs form the permutation automorphism

group of M, denoted PAut(M) under the composition (P1,Q1)(P2,Q2) =
(P1P2,Q1Q2). Any permutation automorphism group G ≤ PAut(M) acts

on rows and columns of M.

Let G be a permutation automorphism group of an integer matrix M = [mij ],
acting in t orbits on the set of rows and the set of columns of M. Denote

the G -orbits on rows and columns of M by R1, . . . ,Rt and C1, . . . , Ct , re-
spectively, and put |Ri | = Ωi and |Ci | = ωi , i = 1, . . . , t.

Ronan Egan with D. Crnkovi¢ & A. �vob May 19, 2018 13 / 23



Orbit matrices

Let M be an n × n matrix with entries in some set X . A permutation

automorphism of M is a pair of n×n permutation matrices (P,Q) such that

PMQ> = M. The set of all such pairs form the permutation automorphism

group of M, denoted PAut(M) under the composition (P1,Q1)(P2,Q2) =
(P1P2,Q1Q2). Any permutation automorphism group G ≤ PAut(M) acts

on rows and columns of M.

Let G be a permutation automorphism group of an integer matrix M = [mij ],
acting in t orbits on the set of rows and the set of columns of M. Denote

the G -orbits on rows and columns of M by R1, . . . ,Rt and C1, . . . , Ct , re-
spectively, and put |Ri | = Ωi and |Ci | = ωi , i = 1, . . . , t.

Ronan Egan with D. Crnkovi¢ & A. �vob May 19, 2018 13 / 23



Orbit matrices

Let Mij be the submatrix of M consisting of the rows belonging to the row

orbit Ri and the column belonging to Cj . We denote by Γij and γij the sum

of a row and column of Mij , respectively.

The t × t matrix R = [Γij ] is called a row orbit matrix of M with respect

to G . The t × t matrix C = [γij ] is called a column orbit matrix of M with

respect to G .

When M is an Fq-matrix, orbit sizes Ωi and ωi will often be associated with

their value modulo the characteristic of Fq.
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Orthogonality

Lemma

Let G be a permutation automorphism group of a weighing matrix

W = [wij ] of order n and weight m, and let R1, . . . ,Rt and C1, . . . , Ct be

the G -orbits on the rows and columns of the matrix W , respectively. Then

t∑
j=1

Γijγsj = δism,

where δis is the Kronecker delta.
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Orthogonality

Theorem

Let G be a permutation automorphism group of a weighing matrix W of

order n and weight m, and let R1, . . . ,Rt and C1, . . . , Ct be the G -orbits

on the rows and columns of the matrix W , respectively. Then

t∑
j=1

Ωs

ωj
ΓijΓsj = δism,

where δis is the Kronecker delta.
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Orthogonality for weighing matrices

Theorem
Let W be a W(n,m) and G be a permutation automorphism group of W
acting with all orbits of the same length w . Further, let R be the row orbit

matrix of W with respect to G . If p is a prime dividing m, and q = pr is a

prime power, then the linear code spanned by the matrix R over the �eld

Fq is a self-orthogonal code of length t.
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Orthogonality for weighing matrices

Theorem

Let W be a W(n,m), G be a permutation automorphism group of W , and

R the corresponding row orbit matrix. Further, let ωj , j = 1, . . . , t, be the

lengths of the G -orbits on columns of W , and w ∈ {ωj | j = 1, . . . , t}. Let

q = pr be a prime power, where p is a prime dividing m, and let the

lengths of the column G -orbits of H have a property that pωj |w if ωj < w ,

and pw |ωj if w < ωj . Then the submatrix of R corresponding to row orbits

and column orbits of length w spans a self-orthogonal code over Fq.
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Orthogonality for weighing matrices

The submatrix of an orbit matrix R corresponding to the �xed rows and �xed

columns is called the �xed part of the orbit matrix R . The submatrix of R
corresponding to the orbits of rows and columns of lengths greater than 1 is

called the non-�xed part of the orbit matrix R .

Corollary

Let W be a W(n,m), G be a permutation automorphism group of W , and

R the corresponding row orbit matrix. Further, let ωj , j = 1, . . . , t, be the

lengths of the G -orbits on columns of W , and p be a prime that divides ωj

if ωj > 1. Then the rows of the �xed part of R span a self-orthogonal code

over the �eld Fq, where q = pr .
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Codes from symmetric conference matrices

q G ≤ PAut(W ) C Dual(C) |Aut(C)|
25 Z2 [10, 6, 4]5 * [10, 4, 6]5 * 480

25 Z2 [12, 5, 6]5 * [12, 7, 4]5 * 576

25 Z3 [8, 3, 4]5 [8, 5, 2]5 1536

81 Z2 [36, 10, 16]3 * [36, 26, 6]3 * 2880

81 Z2 [40, 8, 20]3 [40, 32, 4]3 640

81 Z3 [27, 5, 15]3 [27, 22, 3]3 2592

81 Z4 [20, 4, 10]3 [20, 16, 2]3 8

81 Z4 [16, 6, 6]3 [16, 10, 4]3 * 64

81 Z4 [18, 6, 8]3 [18, 12, 4]3 * 48

81 Z6 [13, 2, 7]3 [13, 11, 2]3 * 207360

81 Z8 [10, 2, 5]3 [10, 8, 2]3 * 115200

125 Z2 [62, 14, 31]5 * [62, 48, 8]5* 1488

125 Z3 [40, 11, 20]5 * [40, 29, 6]5 480

125 Z5 [25, 4, 19]5 * [25, 21, 4]5 * 4800

125 Z10 [12, 2, 9]5 [12, 10, 2]5 * 41472

125 Z15 [8, 2, 6]5 * [8, 6, 2]5 * 512

Table: Self-orthogonal codes constructed from non-�xed parts of orbit matrices
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Codes from orbit matrices of an F4-weighing matrix

We obtain a W(72, 72;F4) from a CGW(72, 72, 3) and construct orbit ma-

trices.

G ≤ PAut(W ) C Dual(C) |Aut(C)|
Z2 [12, 3, 8]∗ [12, 9, 2] 29 · 33 · 51
Z2 [30, 6, 16] [30, 24, 3] 25 · 34 · 52
Z2 [34, 8, 8] [34, 26, 2] 2304

Z2 [24, 6, 8] [24, 18, 2] 219 · 34
Z4 [14, 3, 4] [14, 11, 2] 210 · 34 · 51
Z4 [10, 2, 8]∗ [10, 8, 2]∗ 5760

Table: Hermitian self-orthogonal codes over F4 constructed from �xed and non-�xed

parts of orbit matrices
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Codes from orbit matrices of Seidel matrices

Let G be a strongly regular graph with parameters (136,72,36,40).

G ≤ PAut(G) C Dual(C)

Z3 [8, 2, 6]3∗ [8, 6, 2]3∗
Z3 [36, 14, 12]3 [36, 22, 6]3
Z3 [28, 7, 12]3 [28, 21, 4]3∗
Z3 [10, 4, 6]3∗ [10, 6, 4]3∗
Z3 [42, 15, 12]3 [42, 27, 4]3
Z3 [45, 15, 12]3 [45, 30, 4]3

Table: Self-orthogonal codes constructed from orbit matrices of Seidel matrix of G
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Codes from orbit matrices of Laplacian matrices

Let G be a strongly regular graph with parameters (280,135,70,60).

G ≤ PAut(G) C Dual(C)

Z2 [40, 14, 8]2 [40, 26, 4]2
Z2 [14, 7, 4]2∗ [14, 7, 4]2*
Z2 [133, 27, 24]2 [133, 106, 6]2
Z2 [12, 2, 6]2 [12, 10, 2]2*
Z2 [134, 30, 24]2 [134, 104, 5]2
Z5 [56, 10, 16]2 [56, 46, 2]2
Z7 [40, 8, 8]2 [40, 32, 2]2
Z4 [16, 6, 6]2* [16, 10, 4]2*
Z4 [48, 8, 16]2 [48, 40, 4]2∗
Z4 [18, 3, 6]2 [18, 15, 2]2*
Z4 [61, 13, 16]2 [61, 48, 4]2
Z4 [18, 4, 8]2* [18, 14, 2]2*
Z7 [40, 6, 14]5 [40, 34, 2]5
Z5 [56, 8, 20]5 [56, 48, 2]5
Z5 [54, 8, 20]5 [56, 48, 2]5

Table: Self-orthogonal codes constructed from orbit matrices of Laplace matrix of G
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