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Abstract
Generalized perfect binary arrays (GPBAs) were used by Jedwab to construct perfect binary
arrays. A non-trivial GPBA can exist only if its energy is 2 or a multiple of 4. This paper
introduces generalized optimal binary arrays (GOBAs) with even energy not divisible by 4,
as analogs of GPBAs. We give a procedure to construct GOBAs based on a characterization
of the arrays in terms of 2-cocycles. As a further application, we determine negaperiodic
Golay pairs arising from generalized optimal binary sequences of small length.

Keywords Generalized optimal binary arrays · Autocorrelation · Cocycle ·
(Quasi)-orthogonal · Difference set · Negaperiodic Golay pair

Mathematics Subject Classification 05B10 · 05B20 · 94A55

1 Introduction

Let φ = (φ(0), . . . , φ(n−1)) ∈ {±1}n be a binary sequence of length n. Reading arguments
modulo n,

Rφ(w) :=
n−1∑

k=0

φ(k)φ(k + w)

is the periodic autocorrelation of φ at shift w. The expansion of φ, denoted φ′, is the con-
catenation of φ and −φ (in that order). A pair φ1, φ2 of binary sequences, each of length 2t ,
such that Rφ′

1
(w) + Rφ′

2
(w) = 0 for 1 ≤ w ≤ 2t − 1 (equivalently, for 1 ≤ w ≤ 4t − 1 and
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w �= 2t), is a negaperiodic Golay pair (NGP). Note that the original definition of NGP in
[4] coincides with the definition above by [8, Lemma 2].

We seek good sources of NGPs. This objective is connected to several existence problems
in algebraic design theory. For example, Egan showed that NGPs of length 2t are equivalent
to certain relative (4t, 2, 4t, 2t)-difference sets in the dicyclic group Q8t of order 8t [8,
Theorem 3]. Actually, there is a relative (4t, 2, 4t, 2t)-difference set in a central extension
E of Z2 by a group G of order 4t , relative to Z2, if and only if there is a Hadamard matrix
of order 4t whose expanded (group-divisible) design admits a special regular action by E :
a cocyclic Hadamard matrix over G [6, Theorem 2.4]. By way of [9, Theorem 3.3], Ito [13,
p. 370] conjectured that Q8t contains such relative difference sets for all t . Schmidt [16]
has verified Ito’s conjecture up to t = 46. Our recent paper [3] initiated the study of quasi-
orthogonal cocycles over groups G of even order not divisible by 4, in direct analogy with
cocyclic Hadamard matrices. The present paper builds on [3].

It is easy to see that

max
0<w<n

|Rφ(w)| ≥
⎧
⎨

⎩

0 n ≡ 0 mod 4
1 n ≡ 1 or 3 mod 4
2 n ≡ 2 mod 4.

(1)

The sequence φ is optimal if equality holds in (1). In particular, φ is perfect if Rφ(w) = 0 for
0 < w < n. No perfect binary sequence of length n > 4 is known. Attention consequently
turns to the larger class of perfect binary arrays (PBAs). Jedwab [14] introduced generalized
perfect binary arrays (GPBAs) to aid in the construction of PBAs. Hughes [11] subsequently
demonstrated the cocyclic nature of GPBAs.

A generalized perfect binary sequence (GPBS) is a 1-dimensional GPBA; such φ have
Rφ′(w) = 0 for all w. Each pair of GPBSs is obviously an NGP. However, a GPBS exists
only if n = 2 [14, Result 4.8]. So let n > 2 be even; since Rφ′(w) is divisible by 4, and not
every Rφ′(w) is 0, some |Rφ′(w)| must be at least 4. Thus, we will say that φ of length 2t is
a generalized optimal binary sequence (GOBS) if max0<w<2t |Rφ′(w)| = 4. Equivalently, φ
is a GOBS if, for 0 < w < 2t ,

|Rφ′(w)| =
{
0 w odd
4 w even

when t is odd, and

|Rφ′(w)| =
{
4 w odd
0 w even

when t is even. We propose searching for NGPs in the set of GOBs of length 2t , t odd.
Just as the notion of GPBA extends that of GPBS to dimensions greater than 1, a GOBA

(generalized optimal binary array) is a higher-dimensional version of a GOBS. Section 3
treats GPBAs andGOBAs from the perspective of [3].We prove a one-to-one correspondence
between GOBAs, quasi-orthogonal cocycles over abelian groups, and abelian relative quasi-
difference sets. In Sect. 4, we outline and apply a method to find NGPs among GOBSs that
correspond to quasi-orthogonal cocycles over cyclic groups. The concluding Sect. 5 looks at
an important question for cocyclic designs prompted by the analysis in Sect. 4.
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Generalized binary arrays from quasi-orthogonal cocycles

2 Quasi-orthogonal cocycles and related combinatorial structures

Let G andU be finite groups, withU abelian. A mapψ : G×G → U such thatψ(1, 1) = 1
and

ψ(g, h)ψ(gh, k) = ψ(g, hk)ψ(h, k) ∀g, h, k ∈ G (2)

is a (normalized) cocycle overG. If φ : G → U is anymap that is normalized (i.e., φ(1) = 1)
then ∂φ(g, h) = φ(g)φ(h)φ(gh) defines a cocycle ∂φ, called a coboundary. The set of all
cocycles overG forms an abelian group Z2(G,U ), whose quotient by the subgroup B2(G,U )

of coboundaries is the second cohomology group H2(G,U ). We display ψ ∈ Z2(G,U ) as
a cocyclic matrix Mψ = [ψ(g, h)]g,h∈G . If U = Z2 = 〈−1〉 and Mψ is Hadamard then ψ

is said to be orthogonal.
The row excess of a {±1}-matrix M = [mi j ] is

RE(M) = ∑
i≥2

∣∣∑
j≥1mi j

∣∣.

The cocycle equation (2) guarantees that ψ is orthogonal if and only if RE(Mψ) is optimal,
i.e., zero.

For the rest of this section, |G| = 4t + 2 > 2.

Proposition 1 (i) If ψ ∈ Z2(G,Z2) then RE(Mψ) ≥ 4t .
(ii) If ψ ∈ B2(G,Z2) then RE(Mψ) ≥ 8t + 2.

Proof See [3, Proposition 1]. �

In analogy with the definition of orthogonal cocycles, we say that ψ is quasi-orthogonal

if its matrix has least possible row excess: by Proposition 1, either ψ /∈ B2(G,Z2) and
RE(Mψ) = 4t , or ψ ∈ B2(G,Z2) and RE(Mψ) = 8t + 2 (coboundaries were excluded
from the notion of quasi-orthogonality in [3]).

Lemma 1 Let Xm = {g ∈ G | ∑
h∈Gψ(g, h) = m}. Then ψ is quasi-orthogonal if and only

if |X2 ∪ X−2| = 4t + 1 for ψ ∈ B2(G,Z2), or |X0| = 2t + 1 and |X2 ∪ X−2| = 2t for
ψ /∈ B2(G,Z2).

Proof See [3, Lemma 2.4]. �

It is not known whether quasi-orthogonal cocycles always exist. Indeed, we do not know

of a group G such that Z2(G,Z2) does not contain a quasi-orthogonal element (in contrast,
there are several non-existence results for orthogonal cocycles, e.g., due to Ito [12]). We have
found quasi-orthogonal coboundaries over many abelian G, but none over non-abelian G
such as dihedral groups, apart from the dihedral group of order 6. Thirdly, for all t such that
4t + 1 is a sum of two squares that we tested, we always found a quasi-orthogonal cocycle
ψ over some group of order 4t + 2 with |det(Mψ)| attaining the maximum 2(4t + 1)(4t)2t

established by Ehlich–Wojtas. All these existence questions merit deeper investigation.
Let E be a groupwith a normal subgroup N of orderm and index v. A relative (v,m, k, λ)-

difference set in E relative to N (the forbidden subgroup) is a k-subset R of a transversal for
N in E such that

|R ∩ x R| = λ ∀x ∈ E\N .

Relative (2s, 2, 2s, s)-difference sets are especially interesting. If s is even then they are
equivalent to cocyclic Hadamard matrices [6, Corollary 2.5], whereas none exist if s is
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odd [10]. In the latter case there is a natural analog of relative difference set. Suppose that
|E | = 8t + 4 and let Z ∼= Z2 be a normal (hence central) subgroup of E . A relative
(4t+2, 2, 4t+2, 2t+1)-quasi-difference set in E with forbidden subgroup Z is a transversal
R for Z in E containing a subset S ⊂ R\{1} of size 0 or 2t + 1 such that, for all x ∈ E\Z ,

|R ∩ x R| =
{
2t + 1 x ∈ SZ
2t or 2t + 2 otherwise.

We call R extremal if S = ∅. (This modifies the original definition in [3] of relative quasi-
difference set, to allow quasi-orthogonal coboundaries).

The next result is mostly Proposition 4.3 in [3]. For each ψ ∈ Z2(G,Z2) we have a
canonical central extension Eψ with element set {(±1, g) | g ∈ G} andmultiplication defined
by (u, g)(v, h) = (uvψ(g, h), gh).

Proposition 2 The cocycle ψ is quasi-orthogonal if and only if D = {(1, g) | g ∈ G} is
a relative (4t + 2, 2, 4t + 2, 2t + 1)-quasi-difference set in Eψ with forbidden subgroup
〈(−1, 1)〉, where D is extremal for ψ ∈ B2(G,Z2).

Remark 1 The requisite subset S of D corresponds to the rows of Mψ with zero sum.

3 Generalized binary arrays with optimal autocorrelation

Jedwab [14] showed that a GPBA is equivalent to an abelian relative difference set, and
Hughes [11] identified its underlying orthogonal cocycle. In this section we carry over these
ideas into the setting of quasi-orthogonal cocycles.

We start with an adaptation of somematerial from [11] and [14]. The cyclic group of order
m will be written additively, i.e., as Zm = {0, 1, . . . ,m − 1} under addition modulo m. Let
s = (s1, . . . , sr ) be an r -tuple of positive integers greater than 1, and letG = Zs1 ×· · ·×Zsr .
A binary s-array is just a set map φ : G → {±1}; it has energy n := ∏r

i=1 si = |G|. We
view a binary sequence as an s-array with r = 1.

Given s and a type vector z = (z1, . . . , zr ) ∈ {0, 1}r , let E = Z(z1+1)s1 × · · · ×Z(zr+1)sr .
Then

H = {(h1, . . . , hr ) ∈ E | hi = 0 if zi = 0, and hi = 0 or si if zi = 1},
K = {k ∈ H | k has even weight}

are elementary abelian 2-subgroups of E . Note that E is a (central) extension of H by G.
For z �= 0 we obtain the short exact sequence

1 −→ 〈−1〉 ι−→ E/K
β−→ G −→ 0, (3)

where ι maps −1 to the generator of H/K and β(g + K ) = g mod s. This sequence
determines a cocycle fz ∈ Z2(G, 〈−1〉) after choice of a transversal map τ : G → E/K .
Specifically, set τ(x) = x + K ; then

fz(x, y) = ι−1(τ (x) + τ(y) − τ(x + y)).

We can express fz as a product of cocycles on cyclic groups. Define γm ∈ Z2(Zm, 〈−1〉) by
γm( j, k) = (−1)�( j+k)/m�, evaluating the exponent as an ordinary integer.

Proposition 3 ([11, Lemma 3.1])

(i) fz(x, y) = ∏
zi=1 γsi (xi , yi ).
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(ii) fz ∈ B2(G, 〈−1〉) if and only if si is odd for all i such that zi = 1.

Each cocycle ψ ∈ Z2(G, 〈−1〉) has an associated short exact sequence

1 −→ 〈−1〉 ι′−→ Eψ
β ′

−→ G −→ 0, (4)

where ι′(u) = (u, 0) and β ′(u, x) = x . The following is standard.

Proposition 4 Ifψ and fz are cohomologous, sayψ = fz∂φ, then (3) and (4) are equivalent
short exact sequences: the isomorphism Γ defined by (u, x) �→ ι(uφ(x)) + τ(x) makes the
diagram

1 −→ 〈−1〉 ι′−→ Eψ
β ′

−→ G −→ 0

‖ Γ

⏐� ‖
1 −→ 〈−1〉 ι−→ E/K

β−→ G −→ 0

commute.

We broaden concepts defined earlier only for sequences. The expansion of a binary s-array
φ with respect to a type vector z is the map φ′ on E given by

φ′(g) =
{

φ(a) g ∈ a + K
−φ(a) g /∈ a + K

where a denotes g modulo s. For any array ϕ : A → {±1} and x ∈ A, let Rϕ(x) =∑
a∈A ϕ(a)ϕ(a + x).

Lemma 2 If h ∈ H\K then φ′(h + g) = −φ′(g), and if h ∈ K then φ′(h + g) = φ′(g).

Corollary 1 Rφ′(g) = |H | ∑x∈T φ′(x)φ′(x + g) where T is any transversal for H in E.

Lemma 3 The isomorphism Γ in Proposition 4 maps {(1, x) | x ∈ G} ⊆ Eψ onto {g + K ∈
E/K | φ′(g) = 1}.
Proof (Cf. [11, p. 330].) Let φ′(g) = 1 and write a for g modulo s; then g + K = ι(φ(a)) +
a + K = Γ ((1, a)). Conversely, Γ ((1, x)) = h + x + K where h + K is the generator of
H/K if φ(x) = −1 and h = 0 otherwise. By Lemma 2, φ′(h + x) = 1. �


The s-array φ is a GPBA(s) of type z if

Rφ′(g) = 0 ∀g ∈ E\H .

When z = 0, this condition becomes (by Corollary 1)

Rφ(g) = 0 ∀g ∈ G\{0}.
In the latter event φ is a PBA; which is equivalent to ∂φ being orthogonal (we return to this
case later in the section). More generally, a GPBA(s) is equivalent to a relative difference set
in E/K relative to H/K , hence equivalent also to a cocyclic Hadamard matrix over G: see
[11, Theorem 5.3] and [14, Theorem 3.2]. So a GPBA can exist only if its energy n is 2 or a
multiple of 4. Theorems 1 and 2 below are analogous results for n ≡ 2 mod 4.

Assume that |G| = 4t +2 > 2 unless stated otherwise. Let s1/2, s2, . . . , sr be odd. Thus,
if z1 = 0 then E splits over H by Proposition 3, and so Rφ′(g) �= 0 for all g ∈ E by
Corollary 1 and Lemma 2.

123

Author's personal copy



J. A. Armario, D. L. Flannery

Definition 1 A GOBA(s) of type z is a binary s-array φ such that

(i) Rφ′(g) ∈ {0,±2|H |} ∀g ∈ E\H ,

and if z1 = 1 then

(ii) |{g ∈ E | Rφ′(g) = 0}| = |E |/2.
A GOBS as defined in Sect. 1 is a GOBA(s) with r = z1 = 1. When z = 0, Definition 1

reduces to

Rφ(g) = ±2 ∀g ∈ G\{0};
we call φ satisfying this condition an optimal binary array (OBA).

Lemma 4 ([14, Lemma 3.1]) For any array ϕ : A → {±1},
Rϕ(x) = |A| + 4(dϕ(x) − |Nϕ |)

where Nϕ = {a ∈ A | ϕ(a) = −1} and dϕ(x) = |Nϕ ∩ (x + Nϕ)|.
Proof Routine counting. �

Theorem 1 Let φ be a binary s-array, z be a non-zero type vector, and D = {g+K ∈ E/K |
φ′(g) = −1}. Then φ is a GOBA(s) of type z if and only if D is a relative (4t + 2, 2, 4t +
2, 2t + 1)-quasi-difference set in E/K with forbidden subgroup H/K; furthermore, D is
extremal if z1 = 0.

Proof We continue with the notation of Lemma 4. By Lemma 3, D is a full transversal for
H/K in E/K . Also, |Nφ′ | = |E |/2 by Lemma 2; thus |D| = |Nφ′ |/|K |.

For each g /∈ H , denote |D∩(g+K +D)| by dD(g+K ): this is the number of x+K ∈ D
such that x − g + K ∈ D. Since dD(g + K ) = dφ′(g)/|K |, Lemma 4 implies that

Rφ′(g) = −2|H | ⇔ dD(g + K ) = 2t
Rφ′(g) = 0 ⇔ dD(g + K ) = 2t + 1

Rφ′(g) = 2|H | ⇔ dD(g + K ) = 2t + 2.
(5)

Let S = {g + K ∈ D | Rφ′(g) = 0}. According to (5), Definition 1 (i) holds if and only if

dD(g + K ) =
{
2t + 1 g + K ∈ S + H/K
2t or 2t + 2 otherwise.

Lemma 2 yields

|S| = |{g + K ∈ E/K | Rφ′(g) = 0}|
2

= |R−1
φ′ (0)|/2|K |.

Thus |S| = 2t + 1 for z1 = 1 if and only if Definition 1 (ii) holds. �

Remark 2 Theorem 1 remains valid when D is replaced by its complement {g+K ∈ E/K |
φ′(g) = 1}.
Theorem 2 A (normalized) binary s-array φ is a GOBA(s) of type z �= 0 if and only if fz∂φ

is quasi-orthogonal.

Proof This is a consequence of Theorem 1, Remark 2, Proposition 2, and Lemma 3. �
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We proceed to formulate ‘base’ cases of Theorems 1 and 2. Let ∂φ ∈ B2(G,Z2). Since
M∂φ is Hadamard equivalent to a group-developed matrix, and such a matrix has constant
row sum, ∂φ can be orthogonal only if |G| is square. This situation has been extensively
studied.

Theorem 3 Let |G| = 4u2, and let D be a subset of G of size 2u2 − u. Define R =
{(φ(g), g) | g ∈ G} ⊂ Z2 × G where φ : G → {±1} is the characteristic function of
D. Then the following are equivalent.

(i) ∂φ is orthogonal.
(ii) D is a Menon-Hadamard difference set in G.
(iii) R is a relative (4u2, 2, 4u2, 2u2)-difference set in Z2 × G with forbidden subgroup

Z2 × {1G}.
(iv) φ is a perfect nonlinear function.

If G is abelian then (i) – (iv) are further equivalent to

(v) φ is a PBA.

Proof See [15, Theorem 1] for (iii)⇔ (iv). The other equivalences are given by Theorem 2.6
and Lemma 2.10 of [6]. �

Remark 3 In Theorems 3 and 4 below we may assume that φ is normalized, by taking the
complement of D (and thus also of R) if necessary.

The next theorem is an analog of the previous one for |G| ≡ 2 mod 4 (recall that we have
not found quasi-orthogonal coboundaries over non-abelian G at orders greater than 6).

Theorem 4 Let G be abelian of order 4t+2, and let D be a k-subset of G with characteristic
function χ : G → GF(2). Define R = {(φ(g), g) | g ∈ G} ⊂ Z2 × G where φ(x) =
(−1)χ(x). Then the following are equivalent.

(i) ∂φ is quasi-orthogonal.
(ii) D is a (4t + 2, k, k − (t + 1), (4t + 1)(k − t) − k(k − 1))-almost difference set in G.
(iii) R is an extremal relative (4t + 2, 2, 4t + 2, 2t + 1)-quasi-difference set in Z2 ×G with

forbidden subgroup Z2 × {1G}.
(iv) φ is an OBA.

If a difference set with parameters (n, n±√
3n−2
2 , n+2±2

√
3n−2

4 ) does not exist, then (i) – (iv)
are further equivalent to

(v) χ has optimal nonlinearity (t + 1)/(2t + 1).

Proof Put |G| = n.
(i) ⇔ (iv): Lemma 1 and the fact that φ(g)Rφ(g) is the sum of row g in M∂φ .
(i) ⇔ (ii): by Lemma 4, Rφ(g) = 2 or −2 if and only if dφ(g) = k − t − 1 or k − t ,

respectively. Identity (19) of [5] then accounts for this part.
(i) ⇔ (iii): Proposition 2 together with the isomorphism E∂φ → Z2 × G defined by

(u, g) �→ (uφ(g), g); cf. Proposition 4.
(ii) ⇔ (v): see [5, Theorem 25]. �


Remark 4 The condition attached to (v) is only needed for (v)⇒ (ii). No difference sets with
the stated parameters are known; see [5, Remark II, p. 224].
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We end this section with a discussion of calculating GOBAs. Label the elements of G
as g1 = 0, g2, . . . , g4t+2, and let δk : G → {±1} be the characteristic function of {gk}. Up
to relabeling, {∂2, . . . , ∂4t+1} is a basis of B2(G, 〈−1〉), where ∂k := ∂δk is an elementary
coboundary. Choose z �= 0. We first try to find quasi-orthogonal ψ ∈ Z2(G, 〈−1〉) such that
fzψ ∈ B2(G, 〈−1〉). Straightforward linear algebra gives the decompositionψ = fz

∏
k ∂

ik
k .

Then φ = ∏
k δ

ik
k is a GOBA(s) of type z over G.

Example 1 The maps φ1 =
[
1 −1 1
1 1 1

]
, φ2 =

[
1 1 −1
1 1 1

]
, φ3 =

[
1 1 −1
1 −1 1

]
on

Z6 = Z2 × Z3 are GOBA(2, 3)s of type z1 = (1, 0), z2 = (0, 1), z3 = (1, 1), respectively.
We display each quasi-orthogonal cocycle fzi ∂φi as a Hadamard (componentwise) product:

⎡

⎢⎢⎢⎣

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1

⎤

⎥⎥⎥⎦ ◦

⎡

⎢⎢⎢⎣

1 1 1 1 1 1
1 1 −1 −1 −1 −1
1 −1 −1 1 1 1
1 −1 1 1 −1 1
1 −1 1 −1 1 1
1 −1 1 1 1 −1

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

1 1 1 1 1 1
1 1 −1 −1 −1 −1
1 −1 −1 1 1 1
1 −1 1 −1 1 −1
1 −1 1 1 −1 −1
1 −1 1 −1 −1 1

⎤

⎥⎥⎥⎦,

⎡

⎢⎢⎢⎣

1 1 1 1 1 1
1 1 −1 1 1 −1
1 −1 −1 1 −1 −1
1 1 1 1 1 1
1 1 −1 1 1 −1
1 −1 −1 1 −1 −1

⎤

⎥⎥⎥⎦ ◦

⎡

⎢⎢⎢⎣

1 1 1 1 1 1
1 −1 −1 1 1 1
1 −1 1 −1 −1 −1
1 1 −1 1 1 −1
1 1 −1 1 −1 1
1 1 −1 −1 1 1

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

1 1 1 1 1 1
1 −1 1 1 1 −1
1 1 −1 −1 1 1
1 1 −1 1 1 −1
1 1 1 1 −1 −1
1 −1 1 −1 −1 −1

⎤

⎥⎥⎥⎦,

⎡

⎢⎢⎢⎣

1 1 1 1 1 1
1 1 −1 1 1 −1
1 −1 −1 1 −1 −1
1 1 1 −1 −1 −1
1 1 −1 −1 −1 1
1 −1 −1 −1 1 1

⎤

⎥⎥⎥⎦ ◦

⎡

⎢⎢⎢⎣

1 1 1 1 1 1
1 −1 −1 −1 −1 1
1 −1 1 −1 1 1
1 −1 −1 1 −1 −1
1 −1 1 −1 −1 −1
1 1 1 −1 −1 1

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

1 1 1 1 1 1
1 −1 1 −1 −1 −1
1 1 −1 −1 −1 −1
1 −1 −1 −1 1 1
1 −1 −1 1 1 −1
1 −1 −1 1 −1 1

⎤

⎥⎥⎥⎦.

Note that fz2∂φ2 is a quasi-orthogonal coboundary; as are all the ∂φi .

Example 2 The map

[
1 −1 1 −1 −1 1
1 1 −1 1 1 1
1 1 1 1 1 1

]�
on Z6 × Z3 = Z2 × Z3 × Z3 is a

GOBA(6, 3) of type z = (1, 0). Its quasi-orthogonal cocycle is fz∂4∂8∂10∂13.
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4 Negaperiodic Golay pairs

In this section we explore how GOBSs can be used to construct NGPs.

Proposition 5 ([8, Theorem 3]) Binary sequences φ1, φ2 of length 2t form an NGP if and
only if {xi | φ′

1(i) = 1} ∪ {xi y | φ′
2(i) = 1} is a relative (4t, 2, 4t, 2t)-difference set in the

dicyclic group Q8t = 〈x, y | x2t = y2, y4 = 1, y−1xy = x−1〉.
Remark 5 By Proposition 5 and [2, Theorems 5.6 and 5.7], NGPs of length (q + 1)/2 exist
for all prime powers q ≡ 3 mod 4.

Proposition 5 ties NGPs into the mainstream theory of cocyclic Hadamardmatrices: by [9,
Proposition 6.5], existence of a (4t, 2, 4t, 2t)-difference set in Q8t is equivalent to existence
of certain orthogonal cocycles over the dihedral group D4t of order 4t . (Incidentally, this gives
another justification of Remark 5, via Ito’s Hadamard groups of quadratic residue type [12,
pp. 986–987].) These cocycles lie in a single cohomology class, with representative labeled
(A, B, K ) = (1,−1,−1) in [9]; A, B are ‘inflation’ variables and K is the ‘transgression’
variable in a Universal Coefficients theorem decomposition of H2(D4t ,Z2).

The next theorem makes Proposition 5 more explicit. It shows how to translate directly
between cocycles and NGPs. When the latter are complementary GOBSs, this implies
existence of orthogonal cocycles if there exist quasi-orthogonal cocycles at half the order
(unfortunately, the process does not reverse).

Theorem 5 Let G = 〈a, b | an = b2 = 1, ab = a−1〉 ∼= D2n for n > 1, with elements
ordered as 1, a, . . . , an−1, b, ab, . . . , an−1b. Also let φ1, φ2 be binary sequences of length
n, and define jk,i to be 1 or 0 depending on whether φi (k) = −1 or 1, respectively. Then

(φ1, φ2) is an NGP if and only if λ
∏n

k=1 ∂
jk,1
k ∂

jk,2
n+k is an orthogonal cocycle over G, where

λ is the cohomology class representative labeled (A, B, K ) = (1,−1,−1) in [9, Sect. 6].

Proof The center of 〈x, y | xn = y2, y4 = 1, y−1xy = x−1〉 ∼= Q4n is 〈xn〉. Since G ∼=
Q4n/〈xn〉, we may define a transversal map σ : G → Q4n by

ai �→ xi+nδφ1(i),−1 , aib �→ xi+nδφ2(i),−1 y

where δ is the Kronecker delta. Assuming that φ1 and φ2 are normalized, letψ be the cocycle
for σ , i.e., ψ(g, h) = σ(g)σ (h)σ (gh)−1. By Proposition 5 and [6, Corollary 2.5], ψ is
orthogonal if and only if (φ1, φ2) is an NGP.

Set ϕ(ai ) = φ1(i) and ϕ(aib) = φ2(i). Then λ = ψ∂ϕ has matrix
[

A A

B −B

]

where A = [(−1)�(i+ j)/n�]0≤i, j≤n−1 is back negacyclic, and B is Awith rows r and n−r+1

swapped for 1 ≤ r ≤ n. Furthermore, ∂ϕ = ∏n
k=1 ∂

jk,1
k ∂

jk,2
n+k under the stipulated ordering of

G. �

We now undertake a case study of quasi-orthogonal cocycles over cyclic groups. Let G =

Z4t+2 and index matrices by 1, . . . , 4t + 2 in this order. The set B = {γ, ∂i | 2 ≤ i ≤ 4t + 2}
where γ = γ4t+2 (as defined before Proposition 3) is a basis of Z2(G,Z2). We get an
elementary coboundary matrix Mi := M∂i by normalizing the back circulant matrix whose
first row is 1s except for the i th entry. Also, Mγ is the back negacyclic matrix N of order
4t + 2.
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Lemma 5 Let ψ ∈ Z2(G,Z2)\B2(G,Z2), say Mψ = Mi1 ◦ · · · ◦ Miw ◦ N. Then

(i) up to sign, Mψ has i th row sum equal to its (4t + 4 − i)th row sum.
(ii) The (2t + 2)th row sum of Mψ is 0.
(iii) ψ is quasi-orthogonal if and only if the i th row sum of Mψ is 0 for even i and ±2 for

odd i > 1.

Proof Ifψ ∈ B then row i > 2t+2 ofM or its negation is row (4t+4−i) cycled 4t+4−i−1

positions to the right. Part (i) then follows. For (ii), observe that row 2t + 2 in N is [1 2t+1· · · 1

−1
2t+1· · · −1], whereas the first half of row 2t+2 in Mi is identical to the second half. Finally,

(iii) holds because the number of −1s in any row of Mi is even; and the rows of N indexed
by an even (respectively, odd) integer have an odd (respectively, even) number of −1s. �


Weuse an approach borrowed from [1] to count the negative entries in aG-cocyclicmatrix.
Negating row i of Mi gives a generalized coboundary matrix Mi , with exactly two −1s in
each non-initial row r : these are in columns i and [i − r + 1]4t+2, where [m]n ∈ {1, . . . , n}
denotes the residue of m modulo n. (Although Mi is not cocyclic, row negation preserves
row excess.) Hence the two generalized coboundary matrices with −1 in position (r , c) are
Mc and M [r+c−1]4t+2 .

A set {Mi j : 1 ≤ j ≤ w} defines an r-walk if there is an ordering Ml1 , . . . , Mlw of

its elements such that Mli and Mli+1 both have −1 in row r and column li+1, for 1 ≤
i ≤ w. The walk is an r -path if its initial (equivalently, final) element shares a −1 in
row r with a generalized coboundary matrix not in the walk itself. Clearly, the number of
−1s in row r of Mi1 ◦ · · · ◦ Miw is 2Cr where Cr is the number of maximal r -paths in
{Mi1 , . . . , Miw }. To calculate Cr we set up a bipartite graph on vertex sets S = {i1, . . . , iw}
and T = {[i1 − r + 1]4t+2, . . . , [iw − r + 1]4t+2}. Draw an edge between i j ∈ S and l ∈ T
if i j = l or l = [i j − r + 1]4t+2 ∈ S. The number of maximal paths in this bipartite graph is
Cr .

Next, let Ir be the number of columns where N and Mi1 ◦ · · · ◦ Miw share a −1 in row
r . These column indices comprise the intersection of {4t + 4− r , . . . , 4t + 2} and the set of
endpoints of the previously calculated maximal r -paths.

Theorem 6 (cf. [1, Proposition 1]) A Z4t+2-cocyclic matrix Mi1 ◦ · · · ◦ Miw ◦ N is quasi-
orthogonal if and only if, for 2 ≤ r ≤ 2t + 1,

Cr ∈ {Ir + t + 1−r
2 , Ir + t + 3−r

2

}
r odd

Cr = Ir + t + 1 − r
2 r even.

Proof The number of −1s in row r of Mi1 ◦ · · · ◦ Miw ◦ N is 2Cr + r − 1− 2Ir , so Lemma 5
gives the result. �

Corollary 2 Letψ = γ

∏w
j=1 ∂i j with ∂i j ∈ B. Ifψ is quasi-orthogonal then t ≤ w ≤ 3t+1.

Proof We have I2 = 0, and C2 = t by Theorem 6. Thus t ≤ w. On the other hand, since the
basis of coboundaries forms a 2-path, at least t − 1 coboundaries must be removed to get t
2-paths. Hence w ≤ 4t − (t − 1). �


Corollary 2 is equivalent to

Lemma 6 If φ : Z4t+2 → {±1} is a GOBS containing w occurrences of −1 then t ≤ w ≤
3t + 1.
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Table 1 NGPs (φ1, φ2) from
quasi-orthogonal cocycles over
Z2k

k φ1 φ2

3 12, 4 2, 1, 3

5 2, 13, 5 3, 1, 2, 1, 3

7 2, 1, 5, 13, 3 2, 1, 4, 2, 12, 3

9 3, 1, 2, 13, 3, 1, 5 2, 1, 2, 3, 2, 13, 5

13 3, 3, 2, 2, 1, 2, 1, 2, 14, 6 3, 3, 1, 3, 1, 2, 1, 2, 14, 6

15 3, 2, 4, 12, 2, 2, 1, 2, 15, 7 3, 2, 3, 2, 1, 2, 2, 1, 2, 15, 7

Table 2 Enumeration of NGPs
and their equivalence classes k n(k) n̂(k) d(k) d̂(k)

3 576 576 1 1

5 11200 4800 3 2

7 90944 18816 5 1

9 1041984 62208 20 2

Proof Negating all odd index entries or all even index entries of a GOBS produces another
GOBS. So it may be assumed that φ(0) = φ(4t + 1) = 1. �


We search for NGPs in the set of quasi-orthogonal cocycles over Z4t+2, motivated by the
ubiquity of these cocycles and the optimal autocorrelation of each map in the resulting pair.
Computer-aided searches found the NGPs in Table 1.

Each sequence in Table 1 starts with 1 and is designated by an integer string, where i in the
string means a run of i identical entries in the sequence, and 1 j is an alternating subsequence
of length j . There are noNGPs among the sequences coming from quasi-orthogonal cocycles
over Z22 (however, as we know, NGPs of length 22 exist). This gap could be related to the
maximal determinant problem: the Ehlich–Wojtas bound is not attainable because 21 is not
a sum of two squares.

Egan [8] classified NGPs of length 2k for k ≤ 10 up to equivalence with respect to five
elementary operations as defined in [4]. The set of NGPs that come from GOBSs is invariant
under each elementary operation. Table 2 records the number n̂(k) of such NGPs of length
2k, and the number d̂(k) of their equivalence classes. To compare against [8, Table 2], we
have included the total number n(k) of NGPs of length 2k and the number d(k) of their
equivalence classes.

5 Normal cocyclic matrices

This section is essentially independent of the main thrust of the paper. Nonetheless, it
addresses a fundamental question in algebraic design theory, which we answer in special
cases that were the focus of Sect. 4.

A matrix M is normal if it commutes with its transpose (possibly up to row or column
permutations), i.e., Gr(M) = Gr(M�), where Gr(M) denotes the Grammian MM�. Many
kinds of pairwise combinatorial designs are normal matrices (the defining pairwise constraint
on rows implies the same constraint on columns; see [7, Chapter 7]). We also note that the
matrix of a quasi-orthogonal cocycle is normal [3, Remark 6]. Thus, by the following lemma
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derived from (2), a cocycle ψ is quasi-orthogonal if and only if Mψ has optimal column
excess.

Lemma 7 For any group G and ψ ∈ Z2(G,Z2),

Gr(Mψ)i j = ψ(gi g
−1
j , g j )

∑

g∈G
ψ(gi g

−1
j , g)

and

Gr(M�
ψ )i j = ψ(gi , g

−1
i g j )

∑

g∈G
ψ(g, g−1

i g j ).

We use Lemma 7 to prove that cocyclic matrices for two familiar classes of indexing
groups are normal.

Proposition 6 Let G be abelian or dihedral of order 2m, m odd, and let ψ ∈ Z2(G,Z2)

whereψ /∈ B2(G,Z2) if G is dihedral. Then Mψ is normal (under the same indexing of rows
and columns by the elements of G).

Proof We suppose that G is generated by a and b, with am = b2 = 1, and index rows
and columns by the elements of G under the ordering 1, a, . . . , am−1, b, ab, . . . , am−1b. A
representative β for the non-identity element of H2(G,Z2) has matrix

[
J J

J −J

]
.

Thus, if G is abelian then Mψ is symmetric and so trivially normal.
Henceforth G is dihedral. Let ψ = β∂φ. We collect together some basic properties of

Mψ .

(i) For each i , {∂φ(aib, a j ) | 1 ≤ j ≤ m} = {∂φ(aib, a jb) | 1 ≤ j ≤ m}; and for each j ,
{∂φ(ai , a jb) | 1 ≤ i ≤ m} = {∂φ(aib, a jb) | 1 ≤ i ≤ m}. Thus, if k > m then the kth
row sum and kth column sum of Mψ are zero.

(ii) Since {∂φ(ai , a jb) | 1 ≤ j ≤ m} = {∂φ(a jb, ai ) | 1 ≤ j ≤ m}, the kth row sum of
Mψ equals its kth column sum for k ≤ m.

Now we consider the Grammian quadrants in turn.
If 1 ≤ i ≤ m and m + 1 ≤ j ≤ 2m then

Gr(Mψ)i j = ψ(ai+ j−2b, a j−1b)
∑

g∈G
ψ(ai+ j−2b, g) = 0

by Lemma 7 and (i); Gr(M�
ψ )i j = 0 similarly.

Let 1 ≤ i ≤ m and 1 ≤ j ≤ m. Then

Gr(Mψ)i j = ∂φ(ai− j , a j−1)
∑

g∈G
∂φ(ai− j , g) = φ(a j−1)φ(ai−1)

∑

g∈G
φ(g)φ(ai− j g)

and

Gr(M�
ψ )i j = φ(a j−1)φ(ai−1)

∑

g∈G
φ(g)φ(ga j−i ).

These entries are equal by the identity
∑m

k=1 φ(ak)φ(ak+1) = ∑m
k=1 φ(ak)φ(ak−1).
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Finally, let m + 1 ≤ i, j ≤ 2m. Then

Gr(Mψ)i j = ψ(ai− j , a j−1b)
∑

g∈G
ψ(ai− j , g)

and

Gr(M�
ψ )i j = ψ(ai−1b, ai− j )

∑

g∈G
ψ(g, ai− j ).

Since ψ(ai−1b, ai− j ) = ∂φ(ai−1b, ai− j ) = ∂φ(ai− j , a j−1b) = ψ(ai− j , a j−1b), we are
done by (ii). �

Remark 6 There are plenty of examples of non-normal Mψ for ψ /∈ B2(G,Z2) and |G|
divisible by 4.
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