Symmetric coverings and the Bruck-Ryser-Chowla theorem

Daniel Horsley (Monash University, Australia)

Joint work with

Darryn Bryant, Melinda Buchanan, Barbara Maenhaut and Victor Scharaschkin

and with

Nevena Francetić and Sara Herke

Part 1:

The Bruck-Ryser-Chowla theorem

A symmetric (7, 4, 2)-design

A (v, k, λ) -design is a set of v points and a collection of k-sets of points (blocks), such that any two points occur together in exactly λ blocks.

A (v, k, λ) -design is a set of v points and a collection of k-sets of points (blocks), such that any two points occur together in exactly λ blocks.

A (v, k, λ)-design is symmetric if it has exactly v blocks.

A (v, k, λ) -design is a set of v points and a collection of k-sets of points (blocks), such that any two points occur together in exactly λ blocks.

A (v, k, λ)-design is symmetric if it has exactly v blocks.

Famous examples include finite projective planes and Hadamard designs.

A (v, k, λ) -design is a set of v points and a collection of k-sets of points (blocks), such that any two points occur together in exactly λ blocks.

A (v, k, λ)-design is symmetric if it has exactly v blocks.

Famous examples include finite projective planes and Hadamard designs.

A symmetric (v, k, λ) -design has $v = \frac{k(k-1)}{\lambda} + 1$.

Bruck-Ryser-Chowla theorem (1950)

If a symmetric (v, k, λ) -design exists then

- if v is even, then $k \lambda$ is square; and
- if v is odd, then $x^2 = (k \lambda)y^2 + (-1)^{(v-1)/2}\lambda z^2$ has a solution for integers x, y, z, not all zero.

Bruck-Ryser-Chowla theorem (1950)

If a symmetric (v, k, λ) -design exists then

- if v is even, then $k \lambda$ is square; and
- if v is odd, then $x^2 = (k \lambda)y^2 + (-1)^{(v-1)/2}\lambda z^2$ has a solution for integers x, y, z, not all zero.

Bruck-Ryser-Chowla theorem (1950)

If a symmetric (v, k, λ) -design exists then

- if v is even, then $k \lambda$ is square; and
- if v is odd, then $x^2 = (k \lambda)y^2 + (-1)^{(v-1)/2}\lambda z^2$ has a solution for integers x, y, z, not all zero.

► This is the only general nonexistence result known for symmetric designs.

Bruck-Ryser-Chowla theorem (1950)

If a symmetric (v, k, λ) -design exists then

- if v is even, then $k \lambda$ is square; and
- ► if v is odd, then $x^2 = (k \lambda)y^2 + (-1)^{(v-1)/2}\lambda z^2$ has a solution for integers x, y, z, not all zero.

- This is the only general nonexistence result known for symmetric designs.
- But, in 1991, Lam, Thiel and Swiercz proved there is no (111, 11, 1)-design using heavy computation.

Bruck-Ryser-Chowla theorem (1950)

If a symmetric (v, k, λ) -design exists then

- if v is even, then $k \lambda$ is square; and
- ► if v is odd, then $x^2 = (k \lambda)y^2 + (-1)^{(v-1)/2}\lambda z^2$ has a solution for integers x, y, z, not all zero.

- This is the only general nonexistence result known for symmetric designs.
- But, in 1991, Lam, Thiel and Swiercz proved there is no (111, 11, 1)-design using heavy computation.

The *incidence matrix M* of a symmetric (v, k, λ) -design is a $v \times v$ matrix whose (i, j) entry is 1 if point *i* is in block *j* and 0 otherwise.

The inner product of two distinct rows is λ .

The *incidence matrix M* of a symmetric (v, k, λ) -design is a $v \times v$ matrix whose (i, j) entry is 1 if point *i* is in block *j* and 0 otherwise.

The inner product of two distinct rows is λ .

The *incidence matrix M* of a symmetric (v, k, λ) -design is a $v \times v$ matrix whose (i, j) entry is 1 if point *i* is in block *j* and 0 otherwise.

The inner product of two distinct rows is λ .

The *incidence matrix M* of a symmetric (v, k, λ) -design is a $v \times v$ matrix whose (i, j) entry is 1 if point *i* is in block *j* and 0 otherwise.

The inner product of two distinct rows is λ .

The inner product of a row with itself is $k = \frac{\lambda(v-1)}{k-1}$.

The *incidence matrix M* of a symmetric (v, k, λ) -design is a $v \times v$ matrix whose (i, j) entry is 1 if point *i* is in block *j* and 0 otherwise.

The inner product of two distinct rows is λ .

The inner product of a row with itself is $k = \frac{\lambda(v-1)}{k-1}$.

If *M* is the incidence matrix of a symmetric design, then MM^{T} looks like

/ k	λ	$\lambda $										
λ	k	λ										
λ	λ	k	λ									
λ	λ	λ	k	λ								
λ	λ	λ	λ	k	λ							
λ	λ	λ	λ	λ	k	λ						
λ	λ	λ	λ	λ	λ	k	λ	λ	λ	λ	λ	λ
λ	λ	λ	λ	λ	λ	λ	k	λ	λ	λ	λ	λ
λ	λ	λ	λ	λ	λ	λ	λ	k	λ	λ	λ	λ
λ	λ	λ	λ	λ	λ	λ	λ	λ	k	λ	λ	λ
λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	k	λ	λ
λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	k	λ
$\langle \lambda$	λ	λ	λ	λ	<u>k</u> /							

If *M* is the incidence matrix of a symmetric design, then MM^{T} looks like

/ k	λ	$\lambda $										
λ	k	λ										
λ	λ	k	λ									
λ	λ	λ	k	λ								
λ	λ	λ	λ	k	λ							
λ	λ	λ	λ	λ	k	λ						
λ	λ	λ	λ	λ	λ	k	λ	λ	λ	λ	λ	λ
λ	λ	λ	λ	λ	λ	λ	k	λ	λ	λ	λ	λ
λ	λ	λ	λ	λ	λ	λ	λ	k	λ	λ	λ	λ
λ	λ	λ	λ	λ	λ	λ	λ	λ	k	λ	λ	λ
λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	k	λ	λ
λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	k	λ
$\langle \lambda$	λ	λ	λ	<u>k</u> /								

The BRC theorem can be proved by observing that

If *M* is the incidence matrix of a symmetric design, then MM^T looks like

/ k	λ	$\lambda $										
λ	k	λ										
λ	λ	k	λ									
λ	λ	λ	k	λ								
λ	λ	λ	λ	k	λ							
λ	λ	λ	λ	λ	k	λ						
λ	λ	λ	λ	λ	λ	k	λ	λ	λ	λ	λ	λ
λ	λ	λ	λ	λ	λ	λ	k	λ	λ	λ	λ	λ
λ	λ	λ	λ	λ	λ	λ	λ	k	λ	λ	λ	λ
λ	λ	λ	λ	λ	λ	λ	λ	λ	k	λ	λ	λ
λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	k	λ	λ
λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	k	λ
$\langle \lambda$	λ	<u>k</u> /										

The BRC theorem can be proved by observing that

• $|MM^T| = |M|^2$ is square; and

If *M* is the incidence matrix of a symmetric design, then MM^T looks like

/ k	λ	$\lambda $										
λ	k	λ										
λ	λ	k	λ									
λ	λ	λ	k	λ								
λ	λ	λ	λ	k	λ							
λ	λ	λ	λ	λ	k	λ						
λ	λ	λ	λ	λ	λ	k	λ	λ	λ	λ	λ	λ
λ	λ	λ	λ	λ	λ	λ	k	λ	λ	λ	λ	λ
λ	λ	λ	λ	λ	λ	λ	λ	k	λ	λ	λ	λ
λ	λ	λ	λ	λ	λ	λ	λ	λ	k	λ	λ	λ
λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	k	λ	λ
λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	λ	k	λ
$\langle \lambda$	λ	<u>k</u> /										

The BRC theorem can be proved by observing that

- $|MM^T| = |M|^2$ is square; and
- $MM^T \sim I (MM^T$ is rationally congruent to I).

 $(A \sim B \text{ if } A = QBQ^T \text{ for an invertible rational matrix } Q.)$

Part 2:

Extending BRC to coverings

A symmetric (v, k, λ) -covering has v points and v blocks, each containing k points. Any two points occur together in at least λ blocks.

A symmetric (v, k, λ) -covering has v points and v blocks, each containing k points. Any two points occur together in at least λ blocks.

A symmetric (12, 4, 1)-covering with a 1-regular excess.

A *symmetric* (v, k, λ) -*covering* has v points and v blocks, each containing k points. Any two points occur together in *at least* λ blocks.

A symmetric (12, 4, 1)-covering with a 1-regular excess.

The excess is the multigraph on the point set where # of *xy*-edges in the excess = (# of blocks containing *x* and *y*) $-\lambda$.

A *symmetric* (v, k, λ) -*covering* has v points and v blocks, each containing k points. Any two points occur together in *at least* λ blocks.

A symmetric (12, 4, 1)-covering with a 1-regular excess.

The excess is the multigraph on the point set where # of *xy*-edges in the excess = (# of blocks containing *x* and *y*) – λ . When $v = \frac{k(k-1)-1}{\lambda} + 1$, a symmetric (*v*, *k*, λ)-covering must have a 1-regular excess.

Pair coverings

A *symmetric* (v, k, λ) -*covering* has v points and v blocks, each containing k points. Any two points occur together in *at least* λ blocks.

A symmetric (12, 4, 1)-covering with a 1-regular excess.

The excess is the multigraph on the point set where # of *xy*-edges in the excess = (# of blocks containing *x* and *y*) – λ . When $v = \frac{k(k-1)-1}{\lambda} + 1$, a symmetric (*v*, *k*, λ)-covering must have a 1-regular excess.

The Bruck-Ryser-Chowla theorem establishes the non-existence of certain symmetric coverings with empty excesses.

A symmetric (11, 4, 1)-covering with excess [11].

A symmetric (11, 4, 1)-covering with excess [11].

When $v = \frac{k(k-1)-2}{\lambda} + 1$, a symmetric (v, k, λ) -covering must have a 2-regular excess.

A symmetric (11, 4, 1)-covering with excess [7, 4].

When $v = \frac{k(k-1)-2}{\lambda} + 1$, a symmetric (v, k, λ) -covering must have a 2-regular excess.

A symmetric (11, 4, 1)-covering with excess [5, 4, 2].

When $v = \frac{k(k-1)-2}{\lambda} + 1$, a symmetric (v, k, λ) -covering must have a 2-regular excess.

A symmetric (11, 4, 1)-covering with excess [5, 4, 2].

When $v = \frac{k(k-1)-2}{\lambda} + 1$, a symmetric (v, k, λ)-covering must have a 2-regular excess.

The rest of this talk is about nonexistence of symmetric coverings with 2-regular excesses.

Degenerate coverings

Degenerate coverings

There is a (v, v - 2, v - 4)-symmetric covering with excess *D* for every $v \ge 5$ and every 2-regular graph *D* on *v* vertices.

(It has block set $\{V \setminus \{x, y\} : xy \in E(D)\}$.)

If *M* is the incidence matrix of a (11, 4, 1)-covering with excess [11],

We call this matrix $X_{(11,4,1)}[11]$.

If *M* is the incidence matrix of a (11, 4, 1)-covering with excess [7, 4],

We call this matrix $X_{(11,4,1)}[7,4]$.

If *M* is the incidence matrix of a (11, 4, 1)-covering with excess [6, 3, 2],

We call this matrix $X_{(11,4,1)}[6,3,2]$.

Based around the observation that $|MM^{T}|$ is square.

Based around the observation that $|MM^{T}|$ is square.

Lemma

$$|X_{(v,k,\lambda)}[c_1,...,c_t]| = (k - \lambda + 2)^{t-1}(k - \lambda - 2)^e$$
 (up to a square),

where e is the number of even c_i .

Based around the observation that $|MM^{T}|$ is square.

Lemma

$$|X_{(v,k,\lambda)}[c_1,...,c_t]| = (k - \lambda + 2)^{t-1}(k - \lambda - 2)^e$$
 (up to a square),

where e is the number of even c_i .

Theorem

If there exists a nondegenerate symmetric (v, k, $\lambda)$ -covering with a 2-regular excess, then

- ▶ *v* is even, $k \lambda 2$ is square, and the excess has an odd number of cycles; or
- ▶ *v* is even, $k \lambda + 2$ is square, and the excess has an even number of cycles; or
- ▶ *v* is odd and the excess has an odd number of cycles.

Based around the observation that $|MM^{T}|$ is square.

Lemma

$$|X_{(v,k,\lambda)}[c_1,...,c_t]| = (k - \lambda + 2)^{t-1}(k - \lambda - 2)^e$$
 (up to a square),

where e is the number of even c_i .

Theorem

If there exists a nondegenerate symmetric (v, k, $\lambda)$ -covering with a 2-regular excess, then

- ▶ *v* is even, $k \lambda 2$ is square, and the excess has an odd number of cycles; or
- ▶ *v* is even, $k \lambda + 2$ is square, and the excess has an even number of cycles; or
- ▶ *v* is odd and the excess has an odd number of cycles.

Corollary

There does not exist a nondegenerate symmetric (v, k, λ)-covering with a 2-regular excess if v is even and neither $k - \lambda - 2$ nor $k - \lambda + 2$ is square.

Based around the observation that $|MM^{T}|$ is square.

Lemma

$$|X_{(v,k,\lambda)}[c_1,...,c_t]| = (k - \lambda + 2)^{t-1}(k - \lambda - 2)^e$$
 (up to a square),

where e is the number of even c_i .

Theorem

If there exists a nondegenerate symmetric (v, k, $\lambda)$ -covering with a 2-regular excess, then

- ▶ *v* is even, $k \lambda 2$ is square, and the excess has an odd number of cycles; or
- ▶ *v* is even, $k \lambda + 2$ is square, and the excess has an even number of cycles; or
- ▶ *v* is odd and the excess has an odd number of cycles.

Corollary

There does not exist a nondegenerate symmetric (v, k, λ)-covering with a 2-regular excess if v is even and neither $k - \lambda - 2$ nor $k - \lambda + 2$ is square.

Can we say more (especially for odd v)?

Based around the observation that $MM^T \sim I$.

Based around the observation that $MM^T \sim I$.

Lemma

Rational, nondegenerate $n \times n$ matrices X, Y are rationally congruent if and only if

 $C_p(X) = C_p(Y)$ for all primes *p* and for $p = \infty$,

where

- ▶ a matrix is nondegenerate if all of its principal minors are invertible, and
- $C_p(X) \in \{-1, 1\}$ is the Hasse-Minkowski invariant of X with respect to p.

Based around the observation that $MM^T \sim I$.

Lemma

Rational, nondegenerate $n \times n$ matrices X, Y are rationally congruent if and only if

$$C_p(X) = C_p(Y)$$
 for all primes *p* and for $p = \infty$,

where

- ▶ a matrix is nondegenerate if all of its principal minors are invertible, and
- $C_p(X) \in \{-1, 1\}$ is the Hasse-Minkowski invariant of X with respect to p.

 $C_{p}(X) := (-1, -|X_{n}|)_{p} \prod_{i=1}^{n-1} (|X_{i}|, -|X_{i+1}|)_{p},$ where

- ► X_i is the *i*th principal minor of X
- $(\cdot, \cdot)_p \in \{-1, 1\}$ is the *Hilbert symbol* with respect to *p*.

Based around the observation that $MM^T \sim I$.

Lemma

Rational, nondegenerate $n \times n$ matrices X, Y are rationally congruent if and only if

$$C_p(X) = C_p(Y)$$
 for all primes p and for $p = \infty$,

where

- > a matrix is nondegenerate if all of its principal minors are invertible, and
- $C_p(X) \in \{-1, 1\}$ is the Hasse-Minkowski invariant of X with respect to p.

 $C_{p}(X) := (-1, -|X_{n}|)_{p} \prod_{i=1}^{n-1} (|X_{i}|, -|X_{i+1}|)_{p}, \text{ where }$

- X_i is the *i*th principal minor of X
- $(\cdot, \cdot)_p \in \{-1, 1\}$ is the *Hilbert symbol* with respect to *p*.

tl;dr

- If $C_p(X) \neq C_p(Y)$ for some p, then $X \sim Y$.
- ► The hard part of computing C_p(X) is taking a determinant of every principal minor of X.

Lemma

If a (v, k, λ) -covering with excess $[c_1, \ldots, c_t]$ exists then, for all p,

$$C_{\rho}(X_{(\nu,k,\lambda)}[c_1,\ldots,c_t]) = C_{\rho}(I) = \begin{cases} -1, & \text{if } p \in \{2,\infty\} \\ +1, & \text{if } p \text{ is an odd prime.} \end{cases}$$

Lemma

If a (v, k, λ) -covering with excess $[c_1, \ldots, c_t]$ exists then, for all p,

$$C_{\rho}(X_{(\nu,k,\lambda)}[c_1,\ldots,c_t]) = C_{\rho}(I) = \begin{cases} -1, & \text{if } p \in \{2,\infty\} \\ +1, & \text{if } p \text{ is an odd prime.} \end{cases}$$

Computing $C_p(X_{(v,k,\lambda)}[c_1,...,c_t])$ naively involves calculating the determinant of every leading principal minor of $X_{(v,k,\lambda)}[c_1,...,c_t]$.

Lemma

If a (v, k, λ) -covering with excess $[c_1, \ldots, c_t]$ exists then, for all p,

$$C_{\rho}(X_{(\nu,k,\lambda)}[c_1,\ldots,c_t]) = C_{\rho}(I) = \begin{cases} -1, & \text{if } p \in \{2,\infty\} \\ +1, & \text{if } p \text{ is an odd prime.} \end{cases}$$

Computing $C_p(X_{(v,k,\lambda)}[c_1,...,c_l])$ naively involves calculating the determinant of every leading principal minor of $X_{(v,k,\lambda)}[c_1,...,c_l]$.

We gave an expression for $C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_t])$ in terms of Hilbert symbols of the first *v* terms of a recursive sequence.

Lemma

If a (v, k, λ) -covering with excess $[c_1, \ldots, c_t]$ exists then, for all p,

$$C_{\rho}(X_{(\nu,k,\lambda)}[c_1,\ldots,c_l]) = C_{\rho}(l) = \begin{cases} -1, & \text{if } p \in \{2,\infty\} \\ +1, & \text{if } p \text{ is an odd prime.} \end{cases}$$

Computing $C_p(X_{(v,k,\lambda)}[c_1,...,c_l])$ naively involves calculating the determinant of every leading principal minor of $X_{(v,k,\lambda)}[c_1,...,c_l]$.

We gave an expression for $C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_t])$ in terms of Hilbert symbols of the first *v* terms of a recursive sequence.

This let us get extensive computational results:

Lemma

If a (v, k, λ) -covering with excess $[c_1, \ldots, c_t]$ exists then, for all p,

$$C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_l]) = C_p(l) = \begin{cases} -1, & \text{if } p \in \{2,\infty\} \\ +1, & \text{if } p \text{ is an odd prime.} \end{cases}$$

Computing $C_p(X_{(v,k,\lambda)}[c_1,...,c_l])$ naively involves calculating the determinant of every leading principal minor of $X_{(v,k,\lambda)}[c_1,...,c_l]$.

We gave an expression for $C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_t])$ in terms of Hilbert symbols of the first *v* terms of a recursive sequence.

This let us get extensive computational results:

We could not rule out the existence of symmetric coverings for any more entire parameter sets.

Lemma

If a (v, k, λ) -covering with excess $[c_1, \ldots, c_t]$ exists then, for all p,

$$C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_l]) = C_p(l) = \begin{cases} -1, & \text{if } p \in \{2,\infty\} \\ +1, & \text{if } p \text{ is an odd prime.} \end{cases}$$

Computing $C_p(X_{(v,k,\lambda)}[c_1,...,c_l])$ naively involves calculating the determinant of every leading principal minor of $X_{(v,k,\lambda)}[c_1,...,c_l]$.

We gave an expression for $C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_t])$ in terms of Hilbert symbols of the first *v* terms of a recursive sequence.

This let us get extensive computational results:

- We could not rule out the existence of symmetric coverings for any more entire parameter sets.
- We ruled out the existence of many more symmetric coverings with specified excesses.

Lemma

If a (v, k, λ) -covering with excess $[c_1, \ldots, c_t]$ exists then, for all p,

$$C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_l]) = C_p(l) = \begin{cases} -1, & \text{if } p \in \{2,\infty\} \\ +1, & \text{if } p \text{ is an odd prime.} \end{cases}$$

Computing $C_p(X_{(v,k,\lambda)}[c_1,...,c_l])$ naively involves calculating the determinant of every leading principal minor of $X_{(v,k,\lambda)}[c_1,...,c_l]$.

We gave an expression for $C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_t])$ in terms of Hilbert symbols of the first *v* terms of a recursive sequence.

This let us get extensive computational results:

- We could not rule out the existence of symmetric coverings for any more entire parameter sets.
- We ruled out the existence of many more symmetric coverings with specified excesses.
- We ruled out the existence of *cyclic* symmetric coverings for some entire parameter sets.

```
Example: (v, k, \lambda) = (11, 4, 1)
```

Possible excess types:

```
Example: (v, k, \lambda) = (11, 4, 1)
```

Possible excess types:

ruled out by determinant arguments

```
Example: (v, k, \lambda) = (11, 4, 1)
```

Possible excess types:

ruled out by determinant arguments

ruled out by rational congruence arguments

```
Example: (v, k, \lambda) = (11, 4, 1)
```

Possible excess types:

ruled out by determinant arguments

ruled out by rational congruence arguments

It turns out [11] and [6,3,2] are realisable and [5,3,3] is not.

For $\lambda = 1$

For $\lambda = 1$

Then v = k(k - 1) - 1 is odd and again our determinant results say the excess must have an odd number of cycles.

For $\lambda = 1$

Then v = k(k - 1) - 1 is odd and again our determinant results say the excess must have an odd number of cycles.

$(\mathbf{v},\mathbf{k},\lambda)$	# of excess	# ruled out	# ruled out by RC	# which	
	types	by det results	results ($p < 10^3$)	may exist	
(11, 4, 1)	14	7	4	3	
(19, 5, 1)	105	52	43	10	
(29, 6, 1)	847	423	393	31	
(41,7,1)	7245	3621	3376	248	
(55, 8, 1)	65121	32555	30746	1820	
(71,9,1)	609237	304604	292475	12158	

A cyclic symmetric covering is one obtained by applying a cyclic permutation to a single block.

- A cyclic symmetric covering is one obtained by applying a cyclic permutation to a single block.
- A cyclic symmetric (v, k, λ)-covering with 2-regular excess is equivalent to a (v, k, λ, v − 3)-almost difference set.

- A cyclic symmetric covering is one obtained by applying a cyclic permutation to a single block.
- A cyclic symmetric (v, k, λ)-covering with 2-regular excess is equivalent to a (v, k, λ, v − 3)-almost difference set.
- ► These must have excesses consisting of cycles of uniform length.

- A cyclic symmetric covering is one obtained by applying a cyclic permutation to a single block.
- A cyclic symmetric (v, k, λ)-covering with 2-regular excess is equivalent to a (v, k, λ, v − 3)-almost difference set.
- ► These must have excesses consisting of cycles of uniform length.
- Using p < 1000 we can rule out cyclic symmetric coverings with the following parameter sets for v < 200.

V	k	λ	V	k	λ	V	k	λ	V	k	λ
153	18	2	111	32	9	95	49	25	199	98	48
37	11	3	157	38	9	53	38	27	199	101	51
169	23	3	63	30	14	81	47	27	137	87	55
23	10	4	81	34	14	123	60	29	111	79	56
53	15	4	63	33	17	123	63	32	117	86	63
27	12	5	37	26	18	135	66	32	157	119	90
23	13	7	121	47	18	135	69	35	199	134	90
161	34	7	137	50	18	171	84	41	161	127	100
27	15	8	199	65	21	171	87	44	153	135	119
117	31	8	95	46	22	121	74	45	169	146	126

- A cyclic symmetric covering is one obtained by applying a cyclic permutation to a single block.
- A cyclic symmetric (v, k, λ)-covering with 2-regular excess is equivalent to a (v, k, λ, v − 3)-almost difference set.
- ► These must have excesses consisting of cycles of uniform length.
- Using p < 1000 we can rule out cyclic symmetric coverings with the following parameter sets for v < 200.

V	k	λ	V	k	λ	V	k	λ	V	k	λ
153	18	2	111	32	9	95	49	25	199	98	48
37	11	3	157	38	9	53	38	27	199	101	51
169	23	3	63	30	14	81	47	27	137	87	55
23	10	4	81	34	14	123	60	29	111	79	56
53	15	4	63	33	17	123	63	32	117	86	63
27	12	5	37	26	18	135	66	32	157	119	90
23	13	7	121	47	18	135	69	35	199	134	90
161	34	7	137	50	18	171	84	41	161	127	100
27	15	8	199	65	21	171	87	44	153	135	119
117	31	8	95	46	22	121	74	45	169	146	126

► The red entries correspond to (v, ^{v-3}/₂, ^{v-7}/₄, v - 3)-almost difference sets which can be used to produce sequences with desirable autocorrelation properties.

Theoretical rational congruence results

Theoretical rational congruence results

Theorem

There does not exist a symmetric $(\frac{1}{2}p^{\alpha}(p^{\alpha}-1), p^{\alpha}, 2)$ -covering with Hamilton cycle excess when $p \equiv 3 \pmod{4}$ is prime, α is odd and $(p, \alpha) \neq (3, 1)$.

The end.

