Symmetric coverings and the Bruck-Ryser-Chowla theorem

Daniel Horsley (Monash University, Australia)

Joint work with
Darryn Bryant, Melinda Buchanan, Barbara Maenhaut and Victor Scharaschkin and with

Nevena Francetić and Sara Herke

Part 1:

The Bruck-Ryser-Chowla theorem

Symmetric designs

Symmetric designs

Symmetric designs

A (v, k, λ)-design is a set of v points and a collection of k-sets of points (blocks), such that any two points occur together in exactly λ blocks.

Symmetric designs

A (v, k, λ)-design is a set of v points and a collection of k-sets of points (blocks), such that any two points occur together in exactly λ blocks.

A (v, k, λ)-design is symmetric if it has exactly v blocks.

Symmetric designs

A (v, k, λ)-design is a set of v points and a collection of k-sets of points (blocks), such that any two points occur together in exactly λ blocks.

A (v, k, λ)-design is symmetric if it has exactly v blocks.
Famous examples include finite projective planes and Hadamard designs.

Symmetric designs

A (v, k, λ)-design is a set of v points and a collection of k-sets of points (blocks), such that any two points occur together in exactly λ blocks.

A (v, k, λ)-design is symmetric if it has exactly v blocks.
Famous examples include finite projective planes and Hadamard designs.
A symmetric (v, k, λ)-design has $v=\frac{k(k-1)}{\lambda}+1$.

The BRC theorem

The BRC theorem

Bruck-Ryser-Chowla theorem (1950)

If a symmetric (v, k, λ)-design exists then

- if v is even, then $k-\lambda$ is square; and
- if v is odd, then $x^{2}=(k-\lambda) y^{2}+(-1)^{(v-1) / 2} \lambda z^{2}$ has a solution for integers x, y, z, not all zero.

The BRC theorem

Bruck-Ryser-Chowla theorem (1950)

If a symmetric (v, k, λ)-design exists then

- if v is even, then $k-\lambda$ is square; and
- if v is odd, then $x^{2}=(k-\lambda) y^{2}+(-1)^{(v-1) / 2} \lambda z^{2}$ has a solution for integers x, y, z, not all zero.

The BRC theorem

Bruck-Ryser-Chowla theorem (1950)

If a symmetric (v, k, λ)-design exists then

- if v is even, then $k-\lambda$ is square; and
- if v is odd, then $x^{2}=(k-\lambda) y^{2}+(-1)^{(v-1) / 2} \lambda z^{2}$ has a solution for integers x, y, z, not all zero.

- This is the only general nonexistence result known for symmetric designs.

The BRC theorem

Bruck-Ryser-Chowla theorem (1950)

If a symmetric (v, k, λ)-design exists then

- if v is even, then $k-\lambda$ is square; and
- if v is odd, then $x^{2}=(k-\lambda) y^{2}+(-1)^{(v-1) / 2} \lambda z^{2}$ has a solution for integers x, y, z, not all zero.

- This is the only general nonexistence result known for symmetric designs.
- But, in 1991, Lam, Thiel and Swiercz proved there is no (111, 11, 1)-design using heavy computation.

The BRC theorem

Bruck-Ryser-Chowla theorem (1950)

If a symmetric (v, k, λ)-design exists then

- if v is even, then $k-\lambda$ is square; and
- if v is odd, then $x^{2}=(k-\lambda) y^{2}+(-1)^{(v-1) / 2} \lambda z^{2}$ has a solution for integers x, y, z, not all zero.

- This is the only general nonexistence result known for symmetric designs.
- But, in 1991, Lam, Thiel and Swiercz proved there is no (111, 11, 1)-design using heavy computation.

BRC proof

BRC proof

The incidence matrix M of a symmetric (v, k, λ)-design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

BRC proof

The incidence matrix M of a symmetric (v, k, λ)-design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.
point $x_{1}\left(\begin{array}{lllllllllllll}1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ & & & & & & & & & & & & \\ \hline\end{array}\right)$

BRC proof

The incidence matrix M of a symmetric (v, k, λ)-design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.
point $x_{1}\left(\begin{array}{lllllllllllll}b_{1} \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ & & & & & & & & & & & & \\ & \end{array}\right)$

BRC proof

The incidence matrix M of a symmetric (v, k, λ)-design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.
point $x_{1}\left(\begin{array}{lllllllllllll} & b_{2} \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ & & & & & & & & & & & & \\ & \end{array}\right)$

BRC proof

The incidence matrix M of a symmetric (v, k, λ)-design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.
point $x_{1}\left(\begin{array}{lllllllllllll}1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ & & & & & & & & & & & & \\ \hline\end{array}\right)$

BRC proof

The incidence matrix M of a symmetric (v, k, λ)-design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

The inner product of two distinct rows is λ.

BRC proof

The incidence matrix M of a symmetric (v, k, λ)-design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

$$
\text { point } x_{1}\left(\begin{array}{ccccccccccccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
\text { point } x_{2} & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

The inner product of two distinct rows is λ.

BRC proof

The incidence matrix M of a symmetric (v, k, λ)-design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

$$
\text { point } x_{1}\left(\begin{array}{ccccccccccccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
\text { point } x_{2} & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

The inner product of two distinct rows is λ.

BRC proof

The incidence matrix M of a symmetric (v, k, λ)-design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

The inner product of two distinct rows is λ.
The inner product of a row with itself is $k=\frac{\lambda(v-1)}{k-1}$.

BRC proof

The incidence matrix M of a symmetric (v, k, λ)-design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

The inner product of two distinct rows is λ.
The inner product of a row with itself is $k=\frac{\lambda(v-1)}{k-1}$.

BRC proof

BRC proof

If M is the incidence matrix of a symmetric design, then $M M^{\top}$ looks like

$$
\left(\begin{array}{lllllllllllll}
k & \lambda \\
\lambda & k & \lambda \\
\lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda & k & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda \\
\lambda & k & \lambda \\
\lambda & k
\end{array}\right)
$$

BRC proof

If M is the incidence matrix of a symmetric design, then $M M^{T}$ looks like

$$
\left(\begin{array}{lllllllllllll}
k & \lambda \\
\lambda & k & \lambda \\
\lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda & k & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda \\
\lambda & k & \lambda \\
\lambda & k
\end{array}\right)
$$

The BRC theorem can be proved by observing that

BRC proof

If M is the incidence matrix of a symmetric design, then $M M^{T}$ looks like

$$
\left(\begin{array}{lllllllllllll}
k & \lambda \\
\lambda & k & \lambda \\
\lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda & k & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda \\
\lambda & k & \lambda \\
\lambda & k
\end{array}\right)
$$

The BRC theorem can be proved by observing that

- $\left|M M^{T}\right|=|M|^{2}$ is square; and

BRC proof

If M is the incidence matrix of a symmetric design, then $M M^{T}$ looks like

$$
\left(\begin{array}{lllllllllllll}
k & \lambda \\
\lambda & k & \lambda \\
\lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & k & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda & k & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda & \lambda \\
\lambda & k & \lambda & \lambda \\
\lambda & k & \lambda \\
\lambda & k
\end{array}\right)
$$

The BRC theorem can be proved by observing that

- $\left|M M^{T}\right|=|M|^{2}$ is square; and
- $M M^{T} \sim I\left(M M^{T}\right.$ is rationally congruent to $\left.I\right)$.
($A \sim B$ if $A=Q B Q^{T}$ for an invertible rational matrix Q.)

Part 2:

Extending BRC to coverings

Pair coverings

Pair coverings

A symmetric (v, k, λ)-covering has v points and v blocks, each containing k points. Any two points occur together in at least λ blocks.

Pair coverings

A symmetric (v, k, λ)-covering has v points and v blocks, each containing k points. Any two points occur together in at least λ blocks.

A symmetric $(12,4,1)$-covering with a 1 -regular excess.

Pair coverings

A symmetric (v, k, λ)-covering has v points and v blocks, each containing k points. Any two points occur together in at least λ blocks.

A symmetric $(12,4,1)$-covering with a 1 -regular excess.
The excess is the multigraph on the point set where $\#$ of $x y$-edges in the excess $=(\#$ of blocks containing x and $y)-\lambda$.

Pair coverings

A symmetric (v, k, λ)-covering has v points and v blocks, each containing k points. Any two points occur together in at least λ blocks.

A symmetric $(12,4,1)$-covering with a 1 -regular excess.
The excess is the multigraph on the point set where $\#$ of $x y$-edges in the excess $=(\#$ of blocks containing x and $y)-\lambda$. When $v=\frac{k(k-1)-1}{\lambda}+1$, a symmetric (v, k, λ)-covering must have a 1-regular excess.

Pair coverings

A symmetric (v, k, λ)-covering has v points and v blocks, each containing k points. Any two points occur together in at least λ blocks.

A symmetric $(12,4,1)$-covering with a 1 -regular excess.
The excess is the multigraph on the point set where $\#$ of $x y$-edges in the excess $=(\#$ of blocks containing x and $y)-\lambda$. When $v=\frac{k(k-1)-1}{\lambda}+1$, a symmetric (v, k, λ)-covering must have a 1-regular excess.

BRC results for coverings

BRC results for coverings

The Bruck-Ryser-Chowla theorem establishes the non-existence of certain symmetric coverings with empty excesses.

BRC results for coverings

BRC results for coverings

Bose and Connor (1952) used similar methods to establish the non-existence of certain symmetric coverings with 1 -regular excesses.

BRC results for coverings

Bose and Connor (1952) used similar methods to establish the non-existence of certain symmetric coverings with 1 -regular excesses.

$$
M^{T}=\left(\begin{array}{cccccccccccc}
k & \lambda+1 & \lambda \\
\lambda+1 & k & \lambda \\
\lambda & \lambda & k & \lambda+1 & \lambda \\
\lambda & \lambda & \lambda+1 & k & \lambda \\
\lambda & \lambda & \lambda & \lambda & k & \lambda+1 & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda+1 & k & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda & k & \lambda+1 & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda+1 & k & \lambda & \lambda & \lambda & \lambda \\
\lambda & k & \lambda+1 & \lambda & \lambda \\
\lambda & \lambda+1 & k & \lambda & \lambda \\
\lambda & k & \lambda+1 \\
\lambda & \lambda+1 & k
\end{array}\right) .
$$

BRC results for coverings

Bose and Connor (1952) used similar methods to establish the non-existence of certain symmetric coverings with 1 -regular excesses.

BRC results for coverings

Bose and Connor (1952) used similar methods to establish the non-existence of certain symmetric coverings with 1-regular excesses.

2-regular excesses

2-regular excesses

2-regular excesses

When $v=\frac{k(k-1)-2}{\lambda}+1$, a symmetric (v, k, λ)-covering must have a 2 -regular excess.

2-regular excesses

When $v=\frac{k(k-1)-2}{\lambda}+1$, a symmetric (v, k, λ)-covering must have a 2 -regular excess.

2-regular excesses

When $v=\frac{k(k-1)-2}{\lambda}+1$, a symmetric (v, k, λ)-covering must have a 2 -regular excess.

2-regular excesses

When $v=\frac{k(k-1)-2}{\lambda}+1$, a symmetric (v, k, λ)-covering must have a 2 -regular excess.
The rest of this talk is about nonexistence of symmetric coverings with 2-regular excesses.

Degenerate coverings

Degenerate coverings

There is a $(v, v-2, v-4)$-symmetric covering with excess D for every $v \geqslant 5$ and every 2 -regular graph D on v vertices.
(It has block set $\{V \backslash\{x, y\}: x y \in E(D)\}$.)

What does $M M^{T}$ look like now?

What does $M M^{T}$ look like now?

If M is the incidence matrix of a ($11,4,1$)-covering with excess [11],

$$
\boldsymbol{M}^{\top}=\left(\begin{array}{ccccccccccc}
k & \lambda+1 & \lambda & \lambda+1 \\
\lambda+1 & k & \lambda+1 & \lambda \\
\lambda & \lambda+1 & k & \lambda+1 & \lambda \\
\lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda \\
\lambda & \lambda+1 & k & \lambda+1 & \lambda \\
\lambda & \lambda+1 & k & \lambda+1 \\
\lambda+1 & \lambda & \lambda+1 & k
\end{array}\right) .
$$

We call this matrix $X_{(11,4,1)}[11]$.

What does $M M^{T}$ look like now?

If M is the incidence matrix of a $(11,4,1)$-covering with excess $[7,4]$,

$$
\boldsymbol{M}^{\top}=\left(\begin{array}{ccccccccccc}
k & \lambda+1 & \lambda & \lambda & \lambda & \lambda & \lambda+1 & \lambda & \lambda & \lambda & \lambda \\
\lambda+1 & k & \lambda+1 & \lambda \\
\lambda & \lambda+1 & k & \lambda+1 & \lambda \\
\lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda & \lambda & \lambda \\
\lambda+1 & \lambda & \lambda & \lambda & \lambda & \lambda+1 & k & \lambda & \lambda & \lambda & \lambda \\
\lambda & k & \lambda+1 & \lambda & \lambda+1 \\
\lambda & \lambda+1 & k & \lambda+1 & \lambda \\
\lambda & \lambda+1 & k & \lambda+1 \\
\lambda & \lambda+1 & \lambda & \lambda+1 & k
\end{array}\right) .
$$

We call this matrix $X_{(11,4,1)}[7,4]$.

What does $M M^{T}$ look like now?

If M is the incidence matrix of a $(11,4,1)$-covering with excess $[6,3,2]$,

$$
\boldsymbol{M}^{\boldsymbol{T}}=\left(\begin{array}{ccccccccccc}
k & \lambda+1 & \lambda & \lambda & \lambda & \lambda+1 & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda+1 & k & \lambda+1 & \lambda \\
\lambda & \lambda+1 & k & \lambda+1 & \lambda \\
\lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda+1 & \lambda & \lambda & \lambda & \lambda+1 & k & \lambda & \lambda & \lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda & k & \lambda+1 & \lambda+1 & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda+1 & k & \lambda+1 & \lambda & \lambda \\
\lambda & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda+1 & \lambda+1 & k & \lambda & \lambda \\
\lambda & k & \lambda+2 \\
\lambda & \lambda+2 & k
\end{array}\right) .
$$

We call this matrix $X_{(11,4,1)}[6,3,2]$.

Determinant results (with BBM\&S)

Determinant results (with BBM\&S)

Determinant results (with BBM\&S)

Determinant results (with BBM\&S)

Based around the observation that $\left|M M^{\top}\right|$ is square.

Determinant results (with BBM\&S)

Based around the observation that $\left|M M^{\top}\right|$ is square.
Lemma

$$
\left|X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right|=(k-\lambda+2)^{t-1}(k-\lambda-2)^{e} \quad \text { (up to a square), }
$$

where e is the number of even c_{i}.

Determinant results (with BBM\&S)

Based around the observation that $\left|M M^{\top}\right|$ is square.
Lemma

$$
\left|X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right|=(k-\lambda+2)^{t-1}(k-\lambda-2)^{e} \quad \text { (up to a square), }
$$

where e is the number of even c_{i}.

Theorem

If there exists a nondegenerate symmetric (v, k, λ)-covering with a 2 -regular excess, then

- v is even, $k-\lambda-2$ is square, and the excess has an odd number of cycles; or
- v is even, $k-\lambda+2$ is square, and the excess has an even number of cycles; or
- v is odd and the excess has an odd number of cycles.

Determinant results (with BBM\&S)

Based around the observation that $\left|M M^{\top}\right|$ is square.
Lemma

$$
\left|X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right|=(k-\lambda+2)^{t-1}(k-\lambda-2)^{e} \quad \text { (up to a square), }
$$

where e is the number of even c_{i}.

Theorem

If there exists a nondegenerate symmetric (v, k, λ)-covering with a 2 -regular excess, then

- v is even, $k-\lambda-2$ is square, and the excess has an odd number of cycles; or
- v is even, $k-\lambda+2$ is square, and the excess has an even number of cycles; or
- v is odd and the excess has an odd number of cycles.

Corollary

There does not exist a nondegenerate symmetric (v, k, λ)-covering with a 2 -regular excess if v is even and neither $k-\lambda-2$ nor $k-\lambda+2$ is square.

Determinant results (with BBM\&S)

Based around the observation that $\left|M M^{\top}\right|$ is square.
Lemma

$$
\left|X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right|=(k-\lambda+2)^{t-1}(k-\lambda-2)^{e} \quad \text { (up to a square), }
$$

where e is the number of even c_{i}.

Theorem

If there exists a nondegenerate symmetric (v, k, λ)-covering with a 2 -regular excess, then

- v is even, $k-\lambda-2$ is square, and the excess has an odd number of cycles; or
- v is even, $k-\lambda+2$ is square, and the excess has an even number of cycles; or
- v is odd and the excess has an odd number of cycles.

Corollary

There does not exist a nondegenerate symmetric (v, k, λ)-covering with a 2 -regular excess if v is even and neither $k-\lambda-2$ nor $k-\lambda+2$ is square.

Can we say more (especially for odd v)?

Rational congruence results (with F\&H)

Rational congruence results (with F\&H)

Rational congruence results (with F\&H)

Rational congruence results (with F\&H)

Based around the observation that $M M^{\top} \sim I$.

Rational congruence results (with F\&H)

Based around the observation that $M M^{\top} \sim I$.

Lemma

Rational, nondegenerate $n \times n$ matrices X, Y are rationally congruent if and only if

$$
C_{p}(X)=C_{p}(Y) \quad \text { for all primes } p \text { and for } p=\infty,
$$

where

- a matrix is nondegenerate if all of its principal minors are invertible, and
- $C_{p}(X) \in\{-1,1\}$ is the Hasse-Minkowski invariant of X with respect to p.

Rational congruence results (with F\&H)

Based around the observation that $M M^{\top} \sim I$.

Lemma

Rational, nondegenerate $n \times n$ matrices X, Y are rationally congruent if and only if

$$
C_{p}(X)=C_{p}(Y) \quad \text { for all primes } p \text { and for } p=\infty,
$$

where

- a matrix is nondegenerate if all of its principal minors are invertible, and
- $C_{p}(X) \in\{-1,1\}$ is the Hasse-Minkowski invariant of X with respect to p.
$C_{p}(X):=\left(-1,-\left|X_{n}\right|\right)_{p} \prod_{i=1}^{n-1}\left(\left|X_{i}\right|,-\left|X_{i+1}\right|\right)_{p}, \quad$ where
- X_{i} is the i th principal minor of X
- $(\cdot, \cdot)_{p} \in\{-1,1\}$ is the Hilbert symbol with respect to p.

Rational congruence results (with F\&H)

Based around the observation that $M M^{\top} \sim I$.

Lemma

Rational, nondegenerate $n \times n$ matrices X, Y are rationally congruent if and only if

$$
C_{p}(X)=C_{p}(Y) \quad \text { for all primes } p \text { and for } p=\infty,
$$

where

- a matrix is nondegenerate if all of its principal minors are invertible, and
- $C_{p}(X) \in\{-1,1\}$ is the Hasse-Minkowski invariant of X with respect to p.
$C_{p}(X):=\left(-1,-\left|X_{n}\right|\right)_{p} \prod_{i=1}^{n-1}\left(\left|X_{i}\right|,-\left|X_{i+1}\right|\right)_{p}, \quad$ where
- X_{i} is the i th principal minor of X
- $(\cdot, \cdot)_{p} \in\{-1,1\}$ is the Hilbert symbol with respect to p.
tl;dr
- If $C_{p}(X) \neq C_{p}(Y)$ for some p, then $X \nsim Y$.
- The hard part of computing $C_{p}(X)$ is taking a determinant of every principal minor of X.

Rational congruence results (with F\&H)

Rational congruence results (with F\&H)

Lemma

If a (v, k, λ)-covering with excess $\left[c_{1}, \ldots, c_{t}\right]$ exists then, for all p,

$$
C_{p}\left(X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right)=C_{p}(I)= \begin{cases}-1, & \text { if } p \in\{2, \infty\} \\ +1, & \text { if } p \text { is an odd prime. }\end{cases}
$$

Rational congruence results (with F\&H)

Lemma

If a (v, k, λ)-covering with excess $\left[c_{1}, \ldots, c_{t}\right]$ exists then, for all p,

$$
C_{p}\left(X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right)=C_{p}(I)= \begin{cases}-1, & \text { if } p \in\{2, \infty\} \\ +1, & \text { if } p \text { is an odd prime. }\end{cases}
$$

Computing $C_{p}\left(X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right)$ naively involves calculating the determinant of every leading principal minor of $X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]$.

Rational congruence results (with F\&H)

Lemma

If a (v, k, λ)-covering with excess $\left[c_{1}, \ldots, c_{t}\right]$ exists then, for all p,

$$
C_{p}\left(X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right)=C_{p}(I)= \begin{cases}-1, & \text { if } p \in\{2, \infty\} \\ +1, & \text { if } p \text { is an odd prime } .\end{cases}
$$

Computing $C_{p}\left(X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right)$ naively involves calculating the determinant of every leading principal minor of $X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]$.
We gave an expression for $C_{p}\left(X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right)$ in terms of Hilbert symbols of the first v terms of a recursive sequence.

Rational congruence results (with F\&H)

Lemma

If a (v, k, λ)-covering with excess $\left[c_{1}, \ldots, c_{t}\right]$ exists then, for all p,

$$
C_{p}\left(X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right)=C_{p}(I)= \begin{cases}-1, & \text { if } p \in\{2, \infty\} \\ +1, & \text { if } p \text { is an odd prime. }\end{cases}
$$

Computing $C_{p}\left(X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right)$ naively involves calculating the determinant of every leading principal minor of $X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]$.
We gave an expression for $C_{p}\left(X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right)$ in terms of Hilbert symbols of the first v terms of a recursive sequence.

This let us get extensive computational results:

Rational congruence results (with F\&H)

Lemma

If a (v, k, λ)-covering with excess $\left[c_{1}, \ldots, c_{t}\right]$ exists then, for all p,

$$
C_{p}\left(X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right)=C_{p}(I)= \begin{cases}-1, & \text { if } p \in\{2, \infty\} \\ +1, & \text { if } p \text { is an odd prime. }\end{cases}
$$

Computing $C_{p}\left(X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right)$ naively involves calculating the determinant of every leading principal minor of $X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]$.
We gave an expression for $C_{p}\left(X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right)$ in terms of Hilbert symbols of the first v terms of a recursive sequence.

This let us get extensive computational results:

- We could not rule out the existence of symmetric coverings for any more entire parameter sets.

Rational congruence results (with F\&H)

Lemma

If a (v, k, λ)-covering with excess $\left[c_{1}, \ldots, c_{t}\right]$ exists then, for all p,

$$
C_{p}\left(X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right)=C_{p}(I)= \begin{cases}-1, & \text { if } p \in\{2, \infty\} \\ +1, & \text { if } p \text { is an odd prime } .\end{cases}
$$

Computing $C_{p}\left(X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right)$ naively involves calculating the determinant of every leading principal minor of $X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]$.
We gave an expression for $C_{p}\left(X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right)$ in terms of Hilbert symbols of the first v terms of a recursive sequence.

This let us get extensive computational results:

- We could not rule out the existence of symmetric coverings for any more entire parameter sets.
- We ruled out the existence of many more symmetric coverings with specified excesses.

Rational congruence results (with F\&H)

Lemma

If a (v, k, λ)-covering with excess $\left[c_{1}, \ldots, c_{t}\right]$ exists then, for all p,

$$
C_{p}\left(X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right)=C_{p}(I)= \begin{cases}-1, & \text { if } p \in\{2, \infty\} \\ +1, & \text { if } p \text { is an odd prime. }\end{cases}
$$

Computing $C_{p}\left(X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right)$ naively involves calculating the determinant of every leading principal minor of $X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]$.
We gave an expression for $C_{\rho}\left(X_{(v, k, \lambda)}\left[c_{1}, \ldots, c_{t}\right]\right)$ in terms of Hilbert symbols of the first v terms of a recursive sequence.

This let us get extensive computational results:

- We could not rule out the existence of symmetric coverings for any more entire parameter sets.
- We ruled out the existence of many more symmetric coverings with specified excesses.
- We ruled out the existence of cyclic symmetric coverings for some entire parameter sets.

Computational rational congruence results

Computational rational congruence results

Example: $(\boldsymbol{v}, \boldsymbol{k}, \boldsymbol{\lambda})=(11,4,1)$
Possible excess types:
[11],
[9,2], [8, 3], [7, 4], [6, 5],
[7,2, 2], $[6,3,2],[5,4,2],[5,3,3],[4,4,3]$,
[5, 2, 2, 2], [4, 3, 2, 2], [3, 3, 2, 2],
[5, 2, 2, 2, 2]

Computational rational congruence results

Example: $(v, k, \lambda)=(11,4,1)$
Possible excess types:

$$
\begin{aligned}
& {[11],} \\
& {[9,2],[8,3],[7,4],[6,5],} \\
& {[7,2,2],[6,3,2],[5,4,2],[5,3,3],[4,4,3],} \\
& {[5,2,2,2],[4,3,2,2],[3,3,2,2],} \\
& {[5,2,2,2,2]}
\end{aligned}
$$

ruled out by determinant arguments

Computational rational congruence results

Example: $(v, k, \lambda)=(11,4,1)$
Possible excess types:

$$
\begin{aligned}
& {[11],} \\
& {[9,2],[8,3],[7,4],[6,5],} \\
& {[7,2,2],[6,3,2],[5,4,2],[5,3,3],[4,4,3],} \\
& {[5,2,2,2],[4,3,2,2],[3,3,2,2],} \\
& {[5,2,2,2,2]}
\end{aligned}
$$

ruled out by determinant arguments
ruled out by rational congruence arguments

Computational rational congruence results

Example: $(v, k, \lambda)=(11,4,1)$
Possible excess types:
[11],
[9,2], [8, 3], [7,4], [6, 5],
[7,2, 2], [6, 3, 2], [5, 4, 2], [5, 3, 3], [4, 4, 3],
[5, 2, 2, 2], [4, 3, 2, 2], [3, 3, 2, 2],
[5, 2, 2, 2, 2]
ruled out by determinant arguments
ruled out by rational congruence arguments
It turns out [11] and [6, 3, 2] are realisable and [5,3,3] is not.

Computational rational congruence results

For $\lambda=1$

Computational rational congruence results

For $\lambda=1$
Then $v=k(k-1)-1$ is odd and again our determinant results say the excess must have an odd number of cycles.

Computational rational congruence results

For $\lambda=1$
Then $v=k(k-1)-1$ is odd and again our determinant results say the excess must have an odd number of cycles.

(v, k, λ)	\# of excess types	\# ruled out by det results	\# ruled out by RC results $\left(p<10^{3}\right)$	\# which may exist
$(11,4,1)$	14	7	4	3
$(19,5,1)$	105	52	43	10
$(29,6,1)$	847	423	393	31
$(41,7,1)$	7245	3621	3376	248
$(55,8,1)$	65121	32555	30746	1820
$(71,9,1)$	609237	304604	292475	12158

Computational rational congruence results

- A cyclic symmetric covering is one obtained by applying a cyclic permutation to a single block.

Computational rational congruence results

- A cyclic symmetric covering is one obtained by applying a cyclic permutation to a single block.
- A cyclic symmetric (v, k, λ)-covering with 2 -regular excess is equivalent to a ($v, k, \lambda, v-3$)-almost difference set.

Computational rational congruence results

- A cyclic symmetric covering is one obtained by applying a cyclic permutation to a single block.
- A cyclic symmetric (v, k, λ)-covering with 2 -regular excess is equivalent to a ($v, k, \lambda, v-3$)-almost difference set.
- These must have excesses consisting of cycles of uniform length.

Computational rational congruence results

- A cyclic symmetric covering is one obtained by applying a cyclic permutation to a single block.
- A cyclic symmetric (v, k, λ)-covering with 2 -regular excess is equivalent to a ($v, k, \lambda, v-3$)-almost difference set.
- These must have excesses consisting of cycles of uniform length.
- Using $p<1000$ we can rule out cyclic symmetric coverings with the following parameter sets for $v<200$.

v	k	λ									
153	18	2	111	32	9	95	49	25	199	98	48
37	11	3	157	38	9	53	38	27	199	101	51
169	23	3	63	30	14	81	47	27	137	87	55
23	10	4	81	34	14	123	60	29	111	79	56
53	15	4	63	33	17	123	63	32	117	86	63
27	12	5	37	26	18	135	66	32	157	119	90
23	13	7	121	47	18	135	69	35	199	134	90
161	34	7	137	50	18	171	84	41	161	127	100
27	15	8	199	65	21	171	87	44	153	135	119
117	31	8	95	46	22	121	74	45	169	146	126

Computational rational congruence results

- A cyclic symmetric covering is one obtained by applying a cyclic permutation to a single block.
- A cyclic symmetric (v, k, λ)-covering with 2 -regular excess is equivalent to a ($v, k, \lambda, v-3$)-almost difference set.
- These must have excesses consisting of cycles of uniform length.
- Using $p<1000$ we can rule out cyclic symmetric coverings with the following parameter sets for $v<200$.

v	k	λ									
153	18	2	111	32	9	95	49	25	199	98	48
37	11	3	157	38	9	53	38	27	199	101	51
169	23	3	63	30	14	81	47	27	137	87	55
23	10	4	81	34	14	123	60	29	111	79	56
53	15	4	63	33	17	123	63	32	117	86	63
27	12	5	37	26	18	135	66	32	157	119	90
23	13	7	121	47	18	135	69	35	199	134	90
161	34	7	137	50	18	171	84	41	161	127	100
27	15	8	199	65	21	171	87	44	153	135	119
117	31	8	95	46	22	121	74	45	169	146	126

- The red entries correspond to $\left(v, \frac{v-3}{2}, \frac{v-7}{4}, v-3\right)$-almost difference sets which can be used to produce sequences with desirable autocorrelation properties.

Theoretical rational congruence results

Theoretical rational congruence results

Theorem

There does not exist a symmetric $\left(\frac{1}{2} p^{\alpha}\left(p^{\alpha}-1\right), p^{\alpha}, 2\right)$-covering with Hamilton cycle excess when $p \equiv 3(\bmod 4)$ is prime, α is odd and $(p, \alpha) \neq(3,1)$.

The end.

