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Abstract
We introduce the notion of quasi-orthogonal cocycle. This

is motivated in part by the maximal determinant problem

for square {±1}-matrices of size congruent to 2 modulo 4.

Quasi-orthogonal cocycles are analogous to the orthogo-
nal cocycles of algebraic design theory. Equivalences with

new and known combinatorial objects afforded by this

analogy, such as quasi-Hadamard groups, relative quasi-

difference sets, and certain partially balanced incomplete

block designs, are proved.
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1 INTRODUCTION

In the early 1990s, de Launey and Horadam discovered cocyclic development of pairwise combinatorial
designs. Their discovery opened up a new area in design theory, emphasizing algebraic methods drawn
mainly from group theory and cohomology. See [7,12] for comprehensive expositions.

Let 𝐺 and 𝑈 be finite groups, with 𝑈 abelian. A map 𝜓 ∶ 𝐺 × 𝐺 → 𝑈 such that

𝜓(𝑔, ℎ)𝜓(𝑔ℎ, 𝑘) = 𝜓(𝑔, ℎ𝑘)𝜓(ℎ, 𝑘) ∀ 𝑔, ℎ, 𝑘 ∈ 𝐺 (1)

is a cocycle (over 𝐺, with coefficients in 𝑈 ). We may assume that 𝜓 is normalized, i.e. 𝜓(1, 1) = 1.
For any (normalized) map 𝜙 ∶ 𝐺 → 𝑈 , the cocycle 𝜕𝜙 defined by 𝜕𝜙(𝑔, ℎ) = 𝜙(𝑔)−1𝜙(ℎ)−1𝜙(𝑔ℎ) is a
coboundary. The set of cocycles 𝜓 ∶ 𝐺 × 𝐺 → 𝑈 forms an abelian group 𝑍2(𝐺,𝑈 ) under pointwise
multiplication. The quotient of 𝑍2(𝐺,𝑈 ) by the subgroup of coboundaries is the second cohomology
group of 𝐺 with coefficients in 𝑈 , denoted𝐻2(𝐺,𝑈 ).

Each cocycle 𝜓 ∈ 𝑍2(𝐺,𝑈 ) is displayed as a cocyclic matrix 𝑀𝜓 : under some indexings of the
rows and columns by 𝐺, 𝑀𝜓 has entry 𝜓(𝑔, ℎ) in position (𝑔, ℎ). Our principal focus in this paper is
the case𝑈 = ⟨−1⟩ ≅ ℤ2. We say that 𝜓 is orthogonal if𝑀𝜓 is a Hadamard matrix, i.e.𝑀𝜓𝑀

⊤
𝜓
= 𝑛𝐼𝑛

where 𝑛 = |𝐺| is necessarily 1, 2, or a multiple of 4.
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The paper [6] describes explicit links between orthogonal cocycles and other combinatorial objects.
For example, we can use an orthogonal cocycle to construct a relative difference set with forbidden
subgroup ℤ2 in a central extension of ℤ2 by 𝐺, and vice versa. Such extensions, known as Hadamard
groups, were studied by Ito in a series of papers beginning with [13]. Their equivalence with cocyclic
Hadamard matrices was demonstrated in [8]. They are further equivalent to class regular group divisible
designs on which the Hadamard group acts as a regular group of automorphisms. Techniques and
results have been translated fruitfully between the different contexts.

Recently, cocycles over groups𝐺 of even order not divisible by 4 have been examined as a source of
(−1, 1)-matrices with maximal determinant [1,3]. In this paper, we discuss existence, classification, and
combinatorics of such cocycles under the appropriate version of orthogonality—modifying a familiar
balance condition on rows (and columns) of the cocyclic matrix when |𝐺| is divisible by 4. In particular,
we prove versions of the equivalences in [6]. The paper is a launching point for investigation of all these
new algebraic and combinatorial ideas.

Throughout, 𝐼 denotes an identity matrix and 𝐽 a square all-1s matrix. The Kronecker product of
𝐴 = [𝑎𝑖,𝑗] and 𝐵 is 𝐴⊗ 𝐵 ∶= [𝑎𝑖,𝑗𝐵]. Given a matrix𝑀 = [𝑚𝑖,𝑗], we write abs(𝑀) for [|𝑚𝑖,𝑗|].
2 QUASI-ORTHOGONAL COCYCLES

A Hadamard matrix with normalized first row (each entry equal to 1) has zero row sums everywhere
else. The same statement with “row” replaced by “column” is also true. As it happens, this constraint on
rows and columns characterizes the cocyclic matrices that are Hadamard:𝜓 ∈ 𝑍2(𝐺,ℤ2) is orthogonal
if and only if |{ℎ ∈ 𝐺 ∣ 𝜓(𝑔, ℎ) = 1}| = |𝐺|∕2 (equivalently, |{ℎ ∈ 𝐺 ∣ 𝜓(ℎ, 𝑔) = 1}| = |𝐺|∕2) for
each 𝑔 ∈ 𝐺 ⧵ {1}.

Let𝑀 = [𝑚𝑖,𝑗] be an 𝑛 × 𝑛 (−1, 1)-matrix with normalized first row. The row excess

𝑅𝐸(𝑀) =
𝑛∑
𝑖=2

|||
𝑛∑
𝑗=1
𝑚𝑖,𝑗

|||
measures how close the row sums of𝑀 are to zero. Assuming that 𝑛 ≡ 0 mod 4, a cocycle 𝜓 over a
group 𝐺 of order 𝑛 is orthogonal if and only if 𝑅𝐸(𝑀𝜓 ) = 0. We will give an appropriate minimality
condition on row excess for cocyclic matrices of orders 𝑛 ≡ 2 mod 4.

Denote the Grammian 𝑀𝑀⊤ by Gr(𝑀). Fix an ordering 𝑔1 = 1, 𝑔2,… , 𝑔𝑛 of 𝐺 to index 𝑀𝜓 =
[𝜓(𝑔𝑖, 𝑔𝑗)]. Manipulations with the cocycle identity (1) yield

Lemma 2.1 (Lemma 6.6 of [12]). Gr(𝑀𝜓 ) has (𝑖, 𝑗)th entry

𝜓
(
𝑔𝑖𝑔

−1
𝑗
, 𝑔𝑗

) ∑
𝑔∈𝐺
𝜓
(
𝑔𝑖𝑔

−1
𝑗
, 𝑔
)
.

Unless stated otherwise, henceforth𝐺 is a group of order 4𝑡 + 2 ≥ 6. Thus𝐺 has a (normal) splitting
subgroup of order 2𝑡 + 1.

Each row of a (−1, 1)-matrix may be designated as even or odd, according to the parity of the num-
ber of 1s that it contains. Note that rows of different parity cannot occur in a Hadamard matrix of
order > 2.

Proposition 2.2 (cf. Proposition 2 of [1]). Let𝑀 be a cocyclic matrix with indexing group 𝐺 and let
𝑒 be the number of its even rows. Then
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(i) 𝑒 = 4𝑡 + 2 or 2𝑡 + 1; so RE (𝑀) ≥ 4𝑡.
(ii) RE(𝑀) = 4𝑡 if and only if

abs(Gr(𝑀)) =
[
4tI + 2𝐽 0

0 4tI + 2𝐽

]
(2)

up to row permutation.

Proof. Two rows of different (respectively, the same) parity in 𝑀 have inner product 0 (respectively,
2) modulo 4. Hence 2𝑒(4𝑡 + 2 − 𝑒) entries of Gr(𝑀) are congruent to 0 modulo 4. On the other hand,
because a row of 𝑀 sums to 0 modulo 4 if and only if it is odd, Lemma 2.1 implies that each row of
Gr(𝑀) has precisely 4𝑡 + 2 − 𝑒 entries congruent to 0 modulo 4. Now (i) is apparent.

If 𝑅𝐸(𝑀) = 4𝑡 then we get the Grammian (2) after permuting rows of 𝑀 so that the first 2𝑡 + 1
rows are even. Conversely, if (2) holds then 𝑒 = 2𝑡 + 1, the only noninitial rows of 𝑀 with nonzero
sum are rows 2,… , 2𝑡 + 1, and that sum is ±2. □

Combined with our earlier observation that full orthogonality of a cocycle𝜓 is the same as𝑅𝐸(𝑀𝜓 )
being minimal, Proposition 2.2 suggests the following.

Definition 2.3. 𝜓 ∈ 𝑍2(𝐺,ℤ2) is quasi-orthogonal if 𝑅𝐸(𝑀𝜓 ) = 4𝑡.

The next result, a useful working characterization of quasi-orthogonality, essentially just rephrases
Proposition 2.2 (ii).

Lemma 2.4. For 𝜓 ∈ 𝑍2(𝐺,ℤ2), let

𝑋1 =
{
𝑔 ∈ 𝐺 ⧵ {1}|||∑

ℎ∈𝐺
𝜓(𝑔, ℎ) = ±2

}
and

𝑋2 =
{
𝑔 ∈ 𝐺 ⧵ {1}|||∑

ℎ∈𝐺
𝜓(𝑔, ℎ) = 0

}
.

Then 𝜓 is quasi-orthogonal if and only if |𝑋1| = 2𝑡 and |𝑋2| = 2𝑡 + 1.

We record some facts about the existence of quasi-orthogonal cocycles.

Proposition 2.5. No coboundary is quasi-orthogonal.

Proof. Observe that𝑀 =𝑀𝜕𝜙 is Hadamard equivalent to the group-developed matrix𝑁 = [𝜙(𝑔ℎ)]𝑔ℎ.
Thus, if 𝜕𝜙 is quasi-orthogonal and abs(Gr(𝑀)) has the form (2), then abs(Gr(𝑁)) does as well. It
follows that 𝐽Gr(𝑁) ≡ 2𝐽 mod 4. Also 𝐽Gr(𝑁) = 𝑘2𝐽 where 𝑘 denotes the constant row and column
sum of𝑁 . But of course 𝑘2 ≢ 2 mod 4. □

Remark 1. Indeed, every row of 𝑀𝜕𝜙 is even; from which it is immediate that 𝜕𝜙 cannot be quasi-
orthogonal.

Remark 2. Orthogonal coboundaries exist (in square orders).

After carrying out exhaustive searches using MAGMA [4], we found quasi-orthogonal cocycles over
every group of order 4𝑡 + 2 ≤ 42.

Example (R. Egan). Take any Hadamard matrix with circulant core and let 𝐴 be the normalized core.

Then
[
1 1
1 −1

]
⊗𝐴 displays a quasi-orthogonal cocycle.
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By contrast, groups over which there are no cocyclic Hadamard matrices start appearing at order 8.
Also, from order 24 onwards there exist Hadamard matrices that are not cocyclic: see [16, Table 1].

A cocyclic matrix of order 4𝑡 + 2 whose determinant has absolute value attaining the Ehlich–Wojtas
bound 2(4𝑡 + 1)(4𝑡)2𝑡 must be quasi-orthogonal [1, Proposition 3]. Examples of quasi-orthogonal cocy-
cles are thereby available in [1,2]. So far, we have not found a group 𝐺 of order 4𝑡 + 2 such that 4𝑡 + 1
is the sum of two squares and there is no quasi-orthogonal cocycle over 𝐺 whose matrix attains the
Ehlich–Wojtas bound.

Cohomological equivalence of cocycles does not preserve orthogonality nor quasi-orthogonality.
However, both properties are preserved by a certain “shift action” on each cocycle class. For 𝑎 ∈ 𝐺,
this action maps 𝜓 ∈ 𝑍2(𝐺,ℤ2) to 𝜓𝑎 ∶= 𝜓𝜕𝜓𝑎, where 𝜓𝑎(𝑥) = 𝜓(𝑎, 𝑥); see [11, Definition 3.3]. By
Lemma 2.1, the sum

∑
ℎ∈𝐺 𝜓(𝑎, ℎ)𝜓(𝑎𝑔, ℎ) of row 𝑔 ≠ 1 in𝑀𝜓𝑎 is either a noninitial row sum of𝑀𝜓 ,

or the negation of one. Hence, by Lemma 2.4, 𝜓𝑎 is quasi-orthogonal if and only if 𝜓 is too (this is the
same argument as the one in the proof of [11, Lemma 4.9] for orthogonal cocycles).

3 QUASI-HADAMARD GROUPS

A group 𝐸 of order 8𝑡 is a Hadamard group if it contains a Hadamard subset: a transversal 𝑇 for the
cosets of a central subgroup 𝑍 ≅ ℤ2 such that |𝑇 ∩ 𝑥𝑇 | = 2𝑡 for all 𝑥 ∈ 𝐸 ⧵𝑍 (in fact 𝑥 ∈ 𝑇 ⧵𝑍
suffices; cf. Remark 3 below). These definitions are due to Ito [13]. He showed that the dicyclic group

𝑄8𝑡 = ⟨𝑎, 𝑏 ∣ 𝑎2𝑡 = 𝑏2, 𝑏4 = 1, 𝑏−1𝑎𝑏 = 𝑎−1⟩
is a Hadamard group whenever 2𝑡 − 1 or 4𝑡 − 1 is a prime power [14], and conjectured that 𝑄8𝑡 is
always a Hadamard group. In [8], Hadamard groups are shown to coincide with cocyclic Hadamard
matrices, and Ito's conjecture is verified for 𝑡 ≤ 11. Schmidt [18] later extended the verification up to
𝑡 = 46.

We now define the analog of Hadamard group.

Definition 3.1. Let 𝐸 be a group of order 8𝑡 + 4 ≥ 12 with central subgroup 𝑍 ≅ ℤ2. We say that 𝐸
is a quasi-Hadamard group if there exists a transversal 𝑇 for 𝑍 in 𝐸 containing a subset 𝑆 ⊂ 𝑇 ⧵𝑍
of size 2𝑡 + 1 such that

|𝑇 ∩ 𝑥𝑇 | = {
2𝑡 + 1 𝑥 ∈ 𝑆
2𝑡 or 2𝑡 + 2 𝑥 ∈ 𝑇 ⧵ (𝑆 ∪𝑍). (3)

Remark 3. For any 𝑥 ∈ 𝐸 and the nontrivial element 𝑧 of 𝑍, |𝑇 ∩ 𝑥𝑇 | = 𝑛 if and only if |𝑇 ∩ 𝑥𝑧𝑇 | =
4𝑡 + 2 − 𝑛.

We call the transversal 𝑇 in Definition 3.1 a quasi-Hadamard subset of 𝐸. It may be assumed that
1 ∈ 𝑇 .

Given a group 𝐺 and 𝜓 ∈ 𝑍2(𝐺, ⟨−1⟩), denote by 𝐸𝜓 the canonical central extension of ⟨−1⟩ by
𝐺; this has elements {(±1, 𝑔) ∣ 𝑔 ∈ 𝐺} and multiplication (𝑢, 𝑔) (𝑣, ℎ) = (𝑢𝑣𝜓(𝑔, ℎ), 𝑔ℎ). In the other
direction, suppose that 𝐸 is a finite group with normalized transversal 𝑇 for a central subgroup ⟨−1⟩ ≅
ℤ2. Put𝐺 = 𝐸∕⟨−1⟩ and 𝜎(𝑡⟨−1⟩) = 𝑡 for 𝑡 ∈ 𝑇 . The map𝜓𝑇 ∶ 𝐺 × 𝐺 → ⟨−1⟩ defined by𝜓𝑇 (𝑔, ℎ) =
𝜎(𝑔)𝜎(ℎ)𝜎(𝑔ℎ)−1 is a cocycle; furthermore, 𝐸𝜓𝑇 ≅ 𝐸.

Theorem 3.2 (cf. Propositions 3.3 and 3.4 of [8]).

(i) If 𝜓 is quasi-orthogonal then 𝑇 = {(1, 𝑔) ∣ 𝑔 ∈ 𝐺} is a quasi-Hadamard subset of 𝐸𝜓 .
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(ii) If 𝐸 has quasi-Hadamard subset 𝑇 then 𝜓𝑇 is quasi-orthogonal.

Proof.

(i) For each 𝑥 = (𝑢, 𝑔) ∈ 𝐸𝜓 , |𝑇 ∩ 𝑥𝑇 | counts the number of ℎ ∈ 𝐺 such that 𝜓(𝑔, ℎ) = 𝑢. Hence

|𝑇 ∩ 𝑥𝑇 | = ⎧⎪⎨⎪⎩
2𝑡 𝑥 ∈ {1} ×𝑋1,− ∪ {−1} ×𝑋1,+

2𝑡 + 1 𝑥 ∈ {−1, 1} ×𝑋2

2𝑡 + 2 𝑥 ∈ {1} ×𝑋1,+ ∪ {−1} ×𝑋1,−

where 𝑋1,± = {𝑔 ∈ 𝐺 ⧵ {1} ∣
∑
ℎ∈𝐺 𝜓(𝑔, ℎ) = ±2}, and 𝑋2, 𝑋1 = 𝑋1,+ ∪𝑋1,− are as in

Lemma 2.4. So (3) holds with 𝑆 = {1} ×𝑋2.

(ii) Let 𝑆 be as in Definition 3.1. Since 𝜓𝑇 (𝑔, ℎ) = 1 ⇔ 𝜎(𝑔)𝜎(ℎ) ∈ 𝑇 , the number of ℎ ∈ 𝐺 such that
𝜓𝑇 (𝑔, ℎ) = 1 for fixed 𝑔 ≠ 1 is |𝑇 ∩ 𝜎(𝑔)−1𝑇 | = |𝜎(𝑔)𝑇 ∩ 𝑇 |, which equals 2𝑡 + 1 if 𝜎(𝑔) ∈ 𝑆 and
2𝑡 or 2𝑡 + 2 otherwise, by (3). Now this part follows from Lemma 2.4, with 𝑋1 = {𝑔 ∈ 𝐺 ⧵ {1} ∣
𝜎(𝑔) ∉ 𝑆} and 𝑋2 = {𝑔 ∈ 𝐺 ∣ 𝜎(𝑔) ∈ 𝑆}. □

Theorem 3.2 shows that quasi-orthogonal cocycle and quasi-Hadamard group are essentially the
same concept.

Let𝐷4𝑡+2 denote the dihedral group of order 4𝑡 + 2. If 𝜓 ∈ 𝑍2(𝐷4𝑡+2,ℤ2) is not a coboundary then
𝐸𝜓 is the group 𝑄8𝑡+4 with presentation

⟨𝑎, 𝑏 | 𝑎2𝑡+1 = 𝑏2, 𝑏4 = 1, 𝑏−1𝑎𝑏 = 𝑎−1⟩.
Note that 𝑄8𝑡+4 ≅ 𝐶2𝑡+1 ⋊ 𝐶4. We propose an analog of Ito's conjecture that the cocycle class in
𝐻2(𝐷4𝑡,ℤ2) labeled (𝐴,𝐵,𝐾) = (1,−1,−1) in [8] always has orthogonal elements; equivalently, 𝑄8𝑡
is always a Hadamard group.

Conjecture 1. 𝑄8𝑡+4 is a quasi-Hadamard group for all 𝑡 ≥ 1.

Conjecture 1 has been verified up to 𝑡 = 10, by our computer search for quasi-orthogonal cocycles.
Actually, for fixed isomorphism type of 𝐺, there are very few possible isomorphism types of quasi-
Hadamard groups arising from cocycles over 𝐺.

Lemma 3.3. 𝐻2(𝐺,ℤ2) ≅ ℤ2.

Proof. First, 𝐻2(𝐺) ≅ 𝐻2(𝑁) where 𝑁 ≤ 𝐺 is a splitting subgroup of index 2 (see, e.g., [15,
2.2.6, p. 35]). Then𝐻2(𝐺,ℤ2) ≅ Ext(𝐺∕𝐺′,ℤ2) ≅ ℤ2 by the Universal Coefficient Theorem, because|𝐻2(𝑁)| is odd. □

Lemma 3.3 and Proposition 2.5 imply

Corollary 3.4. For each 𝑡 ≥ 1 and fixed 𝐺, there are at most two non-isomorphic quasi-Hadamard
groups arising from elements of 𝑍2(𝐺,ℤ2).

Remark 4. For example, if 𝐺 is cyclic or dihedral then a quasi-Hadamard group must be isomorphic
to 𝐶8𝑡+4 or 𝑄8𝑡+4.

Remark 5. While all quasi-Hadamard groups are solvable, there exist non-solvable Hadamard groups.

Besides Conjecture 1, Ito proved two results about Hadamard groups that have had important
consequences for the existence question in the theory of cocyclic Hadamard matrices; see [7,
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Corollaries 15.6.2 and 15.6.5, pp. 184–185]. We quote these for comparison with the less interesting
situation for quasi-Hadamard groups (each of which has Sylow 2-subgroup 𝐶4).

Theorem 3.5. Suppose that𝐻 is a cocyclic Hadamard matrix of order greater than 2 over a group 𝐺
with cyclic Sylow 2-subgroups. Then𝐻 is group-developed over 𝐺; i.e. the corresponding Hadamard
group does not have cyclic Sylow 2-subgroups.

Theorem 3.6. No Hadamard group has a dihedral Sylow 2-subgroup.

4 RELATIVE QUASI-DIFFERENCE SETS

Let 𝐸 be a group of order 𝑣𝑚 with normal subgroup𝑁 of order 𝑚. A relative (𝑣, 𝑚, 𝑘, 𝜆)-difference set
in 𝐸 with forbidden subgroup 𝑁 is a 𝑘-subset 𝑅 of a transversal for 𝑁 in 𝐸, such that if 𝑥 ∈ 𝐸 ⧵𝑁
then 𝑥 = 𝑟1𝑟−12 for exactly 𝜆 pairs 𝑟1, 𝑟2 ∈ 𝑅. The last condition may be rewritten as

|𝑅 ∩ 𝑥𝑅| = 𝜆 ∀ 𝑥 ∈ 𝐸 ⧵𝑁. (4)

An important special case in which 𝑘 = 𝑣 is the following.

Proposition 4.1 (Corollary 2.5 of [6]). Let |𝐺| = 4𝑡. A cocycle 𝜓 ∈ 𝑍2(𝐺, ⟨−1⟩) is orthogonal if
and only if {(1, 𝑔) ∣ 𝑔 ∈ 𝐺} is a relative (4𝑡, 2, 4𝑡, 2𝑡)-difference set in 𝐸𝜓 with forbidden subgroup⟨(−1, 1)⟩.

In other words, a relative (4𝑡, 2, 4𝑡, 2𝑡)-difference set is a Hadamard subset of a Hadamard
group, and vice versa. However, when 𝑡 is odd, Hiramine [10] proved that there are no relative
(2𝑡, 2, 2𝑡, 𝑡)-difference sets. So we need an analog of relative difference set for quasi-Hadamard
groups.

Definition 4.2. Let 𝐸 a group of order 8𝑡 + 4, and 𝑍 a normal (hence central) subgroup of order 2. A
relative (4𝑡 + 2, 2, 4𝑡 + 2, 2𝑡 + 1)-quasi-difference set in 𝐸 with forbidden subgroup 𝑍 is a transversal
𝑅 for 𝑍 in 𝐸 containing a subset 𝑆 ⊂ 𝑅 ⧵ {1} of size 2𝑡 + 1such that, for all 𝑥 ∈ 𝐸 ⧵𝑍,

|𝑅 ∩ 𝑥𝑅| = 2𝑡 + 1 𝑥 ∈ 𝑠𝑍 for some 𝑠 ∈ 𝑆|𝑅 ∩ 𝑥𝑅| = 2𝑡 or 2𝑡 + 2 otherwise. (5)

The familiar default assumption is that relative (quasi-) difference sets are normalized, i.e.
contain 1.

Example. 𝑅 = {1, 𝑎, 𝑎2, 𝑏, 𝑎𝑏, 𝑎2𝑏} is a relative (6, 2, 6, 3)-quasi-difference set in 𝐸 = ⟨𝑎, 𝑏 | 𝑎3 =
𝑏2, 𝑏4 = 1, 𝑎𝑏 = 𝑎5⟩ ≅ 𝑄12 with forbidden subgroup 𝑍 = ⟨𝑎3⟩.

It is clear from the definitions and Remark 3 that a relative (4𝑡 + 2, 2, 4𝑡 + 2, 2𝑡 + 1)-quasi-difference
set in 𝐸 is precisely a quasi-Hadamard subset of 𝐸. Together with Theorem 3.2, we then have

Proposition 4.3. A cocycle 𝜓 ∈ 𝑍2(𝐺, ⟨−1⟩) is quasi-orthogonal if and only if {(1, 𝑔) ∣ 𝑔 ∈ 𝐺} is a
relative (4𝑡 + 2, 2, 4𝑡 + 2, 2𝑡 + 1)-quasi-difference set in 𝐸𝜓 with forbidden subgroup ⟨(−1, 1)⟩.

When 𝜓 is a coboundary, Proposition 4.1 gives an equivalence between group-developed Hadamard
matrices, Menon–Hadamard difference sets, and normal relative difference sets in ℤ2 × 𝐺 with
forbidden subgroup ℤ2 × {1𝐺}; see [6, Theorem 2.6, Corollary 2.7]. This result has no counterpart
in the context of Proposition 4.3, since quasi-orthogonal coboundaries do not exist.
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Suppose now that 𝑘 is not necessarily equal to 𝑣. The link between orthogonal cocycle and relative
difference set may be broadened in several ways. As shown in [9], a relative (𝑣, 𝑚, 𝑘, 𝜆)-difference set
in 𝐸 with forbidden subgroup 𝑁 is equivalent to a factor pair of 𝑁 by 𝐺 ≅ 𝐸∕𝑁 that is (𝑣, 𝑚, 𝑘, 𝜆)-
orthogonal. The factor pair consists of a factor set 𝜓 ∶ 𝐺 × 𝐺 → 𝑁 and a coupling that together deter-
mine𝐸; it is (𝑣, 𝑚, 𝑘, 𝜆)-orthogonal with respect to a 𝑘-set𝐷 ⊆ 𝐺 if for each 𝑥 ∈ 𝐺 ⧵ {1} the sequence
{𝜓(𝑥, 𝑦)}𝑦∈𝐷∩𝑥−1𝐷 is a listing of each element of 𝑁 exactly 𝜆 times (see [9] or [12, Section 7.2]). If
𝑚 = 2 then the coupling is trivial and the set of factor pairs of 𝑁 by 𝐺 is just 𝑍2(𝐺,ℤ2). Moreover,
an orthogonal cocycle is an orthogonal factor pair (with 𝑘 = 𝑣 and 𝜆 = 𝑣∕2). The same is not true for
quasi-orthogonal cocycles.

Proposition 4.4. There is no (6, 2, 𝑘, 𝜆)-orthogonal factor pair for any 𝑘, 𝜆 > 0. Thus, none of the
quasi-orthogonal cocycles over the groups of order 6 is an orthogonal factor pair.

Proof. If a factor pair of ℤ2 by 𝐺 is (𝑣, 2, 𝑘, 𝜆)-orthogonal with respect to 𝐷 then 𝐷 is an ordinary
(𝑣, 𝑘, 2𝜆)-difference set in 𝐺. But nontrivial (6, 𝑘, 𝜆)-difference sets do not exist. □

5 PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS

A relative (𝑣, 𝑚, 𝑘, 𝜆)-difference set in 𝐸 with forbidden subgroup 𝑁 is equivalent to a divisible
(𝑣, 𝑚, 𝑘, 𝜆)-design that is class regular with respect to𝑁 and has𝐸 as a regular group of automorphisms
(𝐸 acts regularly on the points and blocks, while 𝑁 acts regularly on each of the 𝑣 point classes); see
[17, Theorem 1.1.11, p. 13]. We establish the analogous passage between relative quasi-difference sets
and partially balanced incomplete block designs. A reference for the standard material in this section
is [5, VI.1 and VI.42].

Let 𝑋 be a 𝑣-set and 𝑅0, 𝑅1,… , 𝑅𝑚 be nonempty subsets of 𝑋 ×𝑋, called associate classes. The
class 𝑅𝑖 is represented by an associate (incidence) matrix, i.e. a (0, 1)-matrix 𝐴𝑖 indexed by 𝑋, with 1
in row 𝑥 and column 𝑦⇔ (𝑥, 𝑦) ∈ 𝑅𝑖. The 𝑅𝑖s comprise an association scheme on 𝑋 if

1. 𝐴0 = 𝐼
2.

∑𝑚

𝑖=0 𝐴𝑖 = 𝐽
3. for all 𝑖, 𝐴⊤

𝑖
= 𝐴𝑖

4. for all 𝑖, 𝑗 such that 𝑖 ≤ 𝑗, there are 𝑝𝑘
𝑖𝑗
∈ ℕ such that 𝐴𝑖𝐴𝑗 =

∑
𝑘 𝑝
𝑘
𝑖𝑗
𝐴𝑘.

Given such an association scheme, a partially balanced incomplete block design PBIBD(𝑚) with
parameters 𝑣, 𝑏, 𝑟, 𝑘, 𝜆1,… , 𝜆𝑚 based on 𝑋 has 𝑏 blocks, all of size 𝑘, each 𝑥 ∈ 𝑋 occurs in exactly 𝑟
blocks, and if (𝑥, 𝑦) ∈ 𝑅𝑖 then 𝑥, 𝑦 occur together in exactly 𝜆𝑖 blocks.

Theorem 5.1 (42.4, pp. 562–563 of [5]). Let𝑁 be an incidence matrix of a PBIBD(𝑚)with parameters
𝑣, 𝑏, 𝑟, 𝑘, 𝜆1,… , 𝜆𝑚 corresponding to an association scheme with associate matrices 𝐴0,… , 𝐴𝑚. Then

NN⊤ = rI +
𝑚∑
𝑖=1
𝜆𝑖𝐴𝑖 and JN = kJ. (6)

Conversely, a 𝑣 × 𝑏 (0, 1)-matrix 𝑁 such that (6) holds for associate matrices 𝐴𝑖 of an association
scheme is an incidence matrix of a PBIBD(𝑚) with parameters 𝑣, 𝑏, 𝑟, 𝑘, 𝜆1,… , 𝜆𝑚.
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We now embark on the construction of a specific PBIBD(4). Let𝑀 be any (−1, 1)-matrix satisfying
(2) (so that if 𝑀 is cocyclic then the underlying cocycle is quasi-orthogonal). Form the expanded
matrix

𝑀 =
[
𝑀 −𝑀

−𝑀 𝑀

]
.

Put 𝐴 = 1
2 (𝐽 +𝑀) and �̄� = 1

2 (𝐽 −𝑀); then the (0, 1)-version of 𝑀 is

Φ =
[
𝐴 �̄�

�̄� 𝐴

]
. (7)

Clearly

𝐽Φ = (4𝑡 + 2)𝐽 . (8)

Next, we check that

𝐴𝐴⊤ + �̄��̄�⊤ = (4𝑡 + 2)𝐼 + (2𝑡 + 2)Δ1 + 2𝑡Δ2 + (2𝑡 + 1) ((𝐽2 − 𝐼2)⊗ 𝐽2𝑡+1),

�̄�𝐴⊤ + 𝐴�̄�⊤ = 2𝑡Δ1 + (2𝑡 + 2)Δ2 + (2𝑡 + 1) (𝐽2 − 𝐼2)⊗ 𝐽2𝑡+1

where

Δ1 = (Gr(𝑀) + 2(𝐼2 ⊗ 𝐽2𝑡+1) − (4𝑡 + 4)𝐼)∕4,

Δ2 = (2(𝐼2 ⊗ 𝐽2𝑡+1) + 4𝑡𝐼 − Gr(𝑀))∕4.

Thus

ΦΦ⊤ = (4𝑡 + 2)𝐴0 + (2𝑡 + 1)𝐴2 + (2𝑡 + 2)𝐴3 + 2𝑡𝐴4 (9)

where 𝐴0 = 𝐼8𝑡+4, 𝐴2 = 𝐽2 ⊗ (𝐽2 − 𝐼2)⊗ 𝐽2𝑡+1, 𝐴3 = 𝐼2 ⊗ Δ1 + (𝐽2 − 𝐼2)⊗ Δ2, and 𝐴4 = 𝐼2 ⊗
Δ2 + (𝐽2 − 𝐼2)⊗ Δ1. Let 𝐴1 = (𝐽2 − 𝐼2)⊗ 𝐼4𝑡+2. Then

• 𝐴2
1 = 𝐴0, 𝐴1𝐴2 = 𝐴2, 𝐴1𝐴3 = 𝐴4, 𝐴1𝐴4 = 𝐴3.

• 𝐴2
2 = (4𝑡 + 2)(𝐴0 + 𝐴1 + 𝐴3 + 𝐴4), 𝐴2𝐴3 = 𝐴2𝐴4 = 2𝑡𝐴2.

• 𝐴2
3 = 𝐴

2
4 = 2𝑡𝐴0 + (2𝑡 − 1)𝐴𝑗, 𝐴3𝐴4 = 2𝑡𝐴1 + (2𝑡 − 1)𝐴7−𝑗 where 𝑗 ∈ {3, 4}.

So requirement 4 in the definition of association scheme holds. Requirements 1–3 hold as well.
Therefore

Lemma 5.2. 𝐴0, 𝐴1, 𝐴2, 𝐴3, 𝐴4 as above are the associate matrices of an association scheme.

We now have our desired PBIBD.

Proposition 5.3. The matrix Φ as defined in (7) for any 𝑀 satisfying (2) is an incidence matrix of
a PBIBD(4) with parameters 𝑣 = 𝑏 = 8𝑡 + 4, 𝑟 = 𝑘 = 4𝑡 + 2, 𝜆1 = 0, 𝜆2 = 2𝑡 + 1, 𝜆3 = 2𝑡 + 2, and
𝜆4 = 2𝑡.

Proof. This follows from (8), (9), Lemma 5.2, and Theorem 5.1. □
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Example. Let 𝑡 = 1 in Proposition 5.3. We choose a quasi-orthogonal cocycle over 𝐷6 whose matrix
𝐴 is visible in the top left quadrant of

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 0 0 0 0 0 0
1 0 0 1 1 1 0 1 1 0 0 0
1 0 1 0 0 0 0 1 0 1 1 1
1 1 0 0 1 0 0 0 1 1 0 1
1 1 0 0 0 1 0 0 1 1 1 0
1 1 0 1 0 0 0 0 1 0 1 1
0 0 0 0 0 0 1 1 1 1 1 1
0 1 1 0 0 0 1 0 0 1 1 1
0 1 0 1 1 1 1 0 1 0 0 0
0 0 1 1 0 1 1 1 0 0 1 0
0 0 1 1 1 0 1 1 0 0 0 1
0 0 1 0 1 1 1 1 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The nontrivial associate matrices are

𝐴1 =
[
06 𝐼6
𝐼6 06

]
, 𝐴2 =

⎡⎢⎢⎢⎢⎣

03 𝐽3 03 𝐽3
𝐽3 03 𝐽3 03
03 𝐽3 03 𝐽3
𝐽3 03 𝐽3 03

⎤⎥⎥⎥⎥⎦
, 𝐴3 =

[
Δ1 Δ2
Δ2 Δ1

]
, 𝐴4 =

[
Δ2 Δ1
Δ1 Δ2

]

where

Δ1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
, Δ2 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
.

From now on, the notation 𝑅𝑖, 𝐴𝑖 is reserved for the association scheme of Lemma 5.2, and Φ is
an incidence matrix of a corresponding PBIBD(4) with parameters 𝑣 = 𝑏 = 8𝑡 + 4, 𝑟 = 𝑘 = 4𝑡 + 2,
𝜆1 = 0, 𝜆2 = 2𝑡 + 1, 𝜆3 = 2𝑡 + 2, 𝜆4 = 2𝑡.

The next two theorems connect partially balanced incomplete block designs to quasi-orthogonal
cocycles.

Theorem 5.4. If 𝜓 ∈ 𝑍2(𝐺, ⟨−1⟩) is quasi-orthogonal then 𝐸𝜓 is a regular group of automorphisms
of the PBIBD(4) as in Proposition 5.3. The design is 𝑅1-class regular with respect to ⟨(−1, 1)⟩.
Proof. (Cf. [6, pp. 54–55].) Choose any ordering 1, 𝑔2,… , 𝑔4𝑡+2 of 𝐺, and index 𝑀𝜓

by 𝐸 = 𝐸𝜓
under the ordering (1, 1),… , (1, 𝑔4𝑡+2), (−1, 1),… , (−1, 𝑔4𝑡+2). Then

𝑀𝜓
= [𝜙(𝑥𝑦)]𝑥,𝑦∈𝐸

where 𝜙 ∶ (𝑢, 𝑔) → 𝑢. That is, 𝑀𝜓
is group-developed over 𝐸. Hence 𝐸 acts as a regular group of

permutation automorphisms of 𝑀𝜓
; see [7, Theorem 10.3.8, pp. 123–124]. Each of the point classes

{(1, 𝑔𝑖), (−1, 𝑔𝑖)} prescribed by 𝑅1 is stabilized by ⟨(−1, 1)⟩. □
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Theorem 5.5. Suppose that a PBIBD(4) with incidence matrix Φ has a central extension 𝐸 of ⟨−1⟩
as a regular group of automorphisms, and is 𝑅1-class regular with respect to ⟨−1⟩. Then there exists
a relative (4𝑡 + 2, 2, 4𝑡 + 2, 2𝑡 + 1)-quasi-difference set in 𝐸 with forbidden subgroup ⟨−1⟩.
Proof. By [17, p. 15] and the hypothesis that𝐸 is regular,Φ⊤Φ = ΦΦ⊤. ThusΦ⊤ is an incidence matrix
for a PBIBD(4) with the same parameters as those of Φ. Index Φ by the elements 𝑥1 = 1, 𝑥2,… , 𝑥8𝑡+4
of 𝐸, where 𝑥𝑖 shifts column 1 to column 𝑖. Note that 𝑥4𝑡+2+𝑖 = −𝑥𝑖 because Φ is 𝑅1-class regular
with respect to ⟨−1⟩. Let 𝑅 = {𝑥 ∈ 𝐸 ∣ Φ1,𝑥 = 1}. Since 𝜆1 = 0, 𝑅 is a transversal for ⟨−1⟩ in 𝐸.
Also 𝑥−1𝑅 = {𝑦 ∈ 𝐸 ∣ Φ𝑥,𝑦 = 1}; then |𝑅 ∩ 𝑥𝑅| = |𝑅 ∩ 𝑥−1𝑅| = (ΦΦ⊤)1,𝑥 for any 𝑥 ∈ 𝐸. Inspec-
tion of the first row of ΦΦ⊤ reveals that 𝑅 and 𝑆 = {𝑥 ∈ 𝐸 ∣ (ΦΦ⊤)1,𝑥 = 2𝑡 + 1 and Φ1,𝑥 = 1}
satisfy (5). □

Remark 6. Theorem 5.4 and Φ⊤Φ = ΦΦ⊤ imply that if 𝜓 is quasi-orthogonal then Gr(𝑀𝜓 ) =
Gr(𝑀⊤

𝜓
). Definition 2.3 may therefore be framed equivalently in terms of column excess rather than

row excess. (However, note that the transpose of a cocyclic matrix indexed by a non-abelian group
need not even be Hadamard equivalent to a cocyclic matrix.)

Our final result should be compared with [6, Theorem 2.4] and [12, Corollary 7.31, p. 152].

Theorem 5.6. The following are equivalent.

I. 𝑍2(𝐺, ⟨−1⟩) contains a quasi-orthogonal cocycle.
II. There is a relative (4𝑡 + 2, 2, 4𝑡 + 2, 2𝑡 + 1)-quasi-difference set with forbidden subgroup ⟨−1⟩ in

a quasi-Hadamard group 𝐸 such that 𝐸∕⟨−1⟩ ≅ 𝐺.
III. There exists a PBIBD(4) with incidence matrix Φ on which a quasi-Hadamard group 𝐸 such that

𝐸∕⟨−1⟩ ≅ 𝐺 acts regularly, and which is 𝑅1-class regular with respect to ⟨−1⟩.
Proof. We have I ⇔ II by Theorem 3.2 and Proposition 4.3, I ⇒ III by Theorem 5.4, and III ⇒ II by
Theorem 5.5. □

Remark 7. The results cited in the proof of Theorem 5.6 enable us to explicitly construct each object
from any other equivalent object.
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