Nilmat
Computing with Nilpotent Matrix Groups

A GAP4 Package

Version 1.3

Alla Detinko

Department of Mathematics
National University of Ireland, Galway
Ireland

alla.detinko@nuigalway.ie

Bettina Eick
Institut Computational Mathematics
TU Braunschweig
38106 Braunschweig
Germany

beick@tu-bs.de

Dane Flannery
Department of Mathematics
National University of Ireland, Galway
Ireland

dane.flannery@nuigalway.ie

September 2017

2.1
2.2
23
24
2.5

3.1
3.2
3.3

Introduction

Computing with nilpotent linear groups
Preliminaries

Testing nilpotency

Finiteness, Sylow subgroups, testing complete reducibility
A library of primitive nilpotent groups
Further examples of nilpotent matrix groups
Examples

Constructing some nilpotent matrix groups
Testing nilpotency and other functions

Using the library of primitive nilpotent groups
Installation

Bibliography

Index

Contents

© 0 9 9 O O U s AR W

[
=

11
12

Introduction

This package is for computing with nilpotent matrix groups over a field F, where F is a finite field GF(g) or the
rational number field Q.

Nilmat contains an implementation of algorithms developed over the past few years, available in theoretical form
in the papers [DF04,DF05b,DF06,DF07]. The theory of nilpotent matrix groups is an essential part of linear group
theory. Many structural and classification results for nilpotent linear groups are known (see e.g. [Sup76,Weh73]),
and specialized methods for handling these groups have been developed. The computational advantages of nilpotent
linear groups have been addressed in [DF05a]. For a full description of most of the algorithms of this package, further
general information, and historical remarks, see [DF06,DF07].

One purpose of Nilmat is testing nilpotency of a subgroup G of GL(n,F). If G < GL(n, Q) is found to be nilpotent
then the package provides a function for deciding whether G is finite. If G < GL(n, g) is found to be nilpotent then
the package provides a function that returns the Sylow subgroups of G. Additional functions allow one to test whether
a nilpotent subgroup G of GL(n, F) is completely reducible or unipotent, and to compute the order of G if it is finite.

Another feature of Nilmat is a library of nilpotent primitive matrix groups. Specifically, for each integer n > 1 and
prime power g, this library returns a complete and irredundant list of GL(n, ¢)-conjugacy class representatives of the
nilpotent primitive subgroups of GL(n, q).

The problem of constructing nilpotent matrix groups is interesting in its own right. We have included in the package
functions concerned with this problem. For example, one such function constructs maximal absolutely irreducible
nilpotent subgroups of GL(n, q).

Related research on solvable and polycyclic matrix groups was carried out by Bjorn Assmann and Bettina Eick in
[AE05,AE07]. Most of the algorithms in [AE05] were implemented in the GAP package Polenta, on which Nilmat
partially relies.

This work has emanated from research conducted with the financial support of Science Foundation Ireland and the
German Academic Exchange Service (DAAD).

2»

3»

4»

5»

Computing
with nilpotent
linear groups

This chapter contains the main functions of this package for computing with nilpotent matrix groups.

2.1 Preliminaries
We first describe some of the basic functions used in Nilmat for nilpotency testing of a group G input by a finite
generating set of matrices.

JordanSplitting(G) A

For a subgroup G of GL(n,F), F = GF(q) or Q, returns a list of two groups [S, U], where S is the semisimple part of
G (the group generated by the semisimple parts of the generators of G), and U is the unipotent part of G (the group
generated by the unipotent parts of the generators of G). If G is nilpotent, then G = S x U, the group S is completely
reducible and U is unipotent. This attribute relies on the GAP attribute JordanDecomposition.

IsUnipotentMatGroup(G) P

For a subgroup G of GL(n,F), F = GF(q) or Q, returns true if G is unipotent (i.e. conjugate to a group of upper
unitriangular matrices) and false otherwise.

ClassLimit(n , F) F

returns an upper bound on the nilpotency class of nilpotent subgroups of GL(n,F), F = GF(q) or Q.
AbelianNormalSeries(G, [) F

Here G < GL(n,q) and [is a positive integer. If G is nilpotent of class at most / and the order of G is coprime to
the characteristic of GF(gq), then this function determines a normal series with abelian factors for G. Otherwise, the
function may still return such a series or it may return fail. The function is based on recursively selecting non-central
elements from the second centers of terms in the abelian series.

PiPrimarySplitting(G) A

For a subgroup G of GL(n, q), this function returns a list of two subgroups [B, C] with G = BC. If G is nilpotent, then
G = B x C, the group C is the product of all Sylow p-subgroups with p > n and B is the product of all other Sylow
subgroups of G.

1»

2»

3»

Section 3. Finiteness, Sylow subgroups, testing complete reducibility 5

2.2 Testing nilpotency

The following is one of the main functions of the Nilmat package.
IsNilpotentMatGroup(G) F

For a subgroup G of GL(n,F), F = GF(q) or Q, returns true if G is nilpotent and false otherwise. This function is
also installed as method for the property IsNilpotentGroup.

We include a brief description of the algorithm behind this function. Let X be a generating set of the given group G.
The first stage of testing nilpotency of G is reduction to the semisimple part S of G. The procedure for reducing to
the semisimple case is based on the Nilmat functions JordanSplitting and IsUnipotentGroup described in the
previous section. In the following, we assume that all elements of X are semisimple matrices.

If F = GF(q), then we apply the function PiPrimarySplitting to the group S and thus reduce to a smaller group
B. Next, we attempt to compute an abelian normal series for B using the function AbelianNormalSeries. If no such
series exists, then G is not nilpotent. If such a series exists, then we use it to construct the Sylow subgroups of B and
check that they commute pairwise. For details on this method, see [DF06].

If F = Q, then we first use a reduction mod p for a suitable prime p and check that the image of G under the
corresponding congruence homomorphism is nilpotent using the finite field method above. If so, then we construct
the kernel of the congruence homomorphism and test whether this is central in G. We refer to [DF08] for details.
Note that the construction of the congruence homomorphism and its kernel is based on the methods of the Package
Polenta; see also [AE05] for background.

The nilpotency testing functions of the package Nilmat have advantages over the standard GAP methods for Is-
NilpotentGroup. When F is finite, the Nilmat functions have better runtimes for all input groups we tested. When
IF is infinite, the standard GAP functions frequently do not terminate at all in sensible time; on the other hand, the
Nilmat functions always terminate, with comparatively small runtimes (see the examples in Chapter 3).

2.3 Finiteness, Sylow subgroups, testing complete reducibility

The function IsNilpotentMatGroup determines various structural properties of the given group as by-products. The
functions in this section have been designed to exploit these by-products.

IsFiniteNilpotentMatGroup(G) F

For a nilpotent subgroup G of GL(n,Q), returns true if G is finite and false otherwise. Note that the function
assumes that G is nilpotent and may return an incorrect result if not. The function exploits the by-products of the
nilpotency testing functions in Nilmat and hence runs particularly fast (and usually faster than the standard GAP
method for testing finiteness) if they have been used to check nilpotency. This function is also installed as method for
the property IsFinite.

SylowSubgroups0fNilpotentFFMatGroup(G) F

For a nilpotent subgroup G of GL(n,F), F = GF(q), returns the list of all Sylow subgroups. The advantage of this
function over the GAP function SylowSubgroup is that the former function returns all Sylow subgroups of G without
first computing all prime divisors of the order of G. This function is installed as method for SylowSystem for nilpotent
matrix groups.

SizeOfNilpotentMatGroup(G) F

For a finite nilpotent subgroup G of GL(n,F), F = GF(q) or Q, this function returns the order of G. The function is
based on by-products of the nilpotency testing in Nilmat. Again, in some situations it is more efficient than the similar
default GAP function; see the examples in Chapter 3.

IsCompletelyReducibleNilpotentMatGroup(G) F

For a nilpotent subgroup G of GL(n,F), F = GF(q) or Q, returns true if G is completely reducible and false
otherwise.

1»

2»

1»

2»

3»

6 Chapter 2. Computing with nilpotent linear groups

2.4 A library of primitive nilpotent groups

Another main part of Nilmat is a library of nilpotent primitive matrix groups over finite fields.
NilpotentPrimitiveMatGroups(n , p , [) F

returns a complete and irredundant list L of the conjugacy class representatives of the nilpotent primitive subgroups
of GL(n,p'). The list L contains non-abelian (i.e. non-cyclic) subgroups only if n = 2m, m is odd, and p' = 3 mod 4.
Every non-abelian group in L is given by three generators. Note that the groups in L know their orders i.e. the attribute
Size has been set for these groups.

SizesOfNilpotentPrimitiveMatGroups(n , p , [) F

returns the list of orders of groups in the list L output by NilpotentPrimitiveMatGroups(n , p , [).

2.5 Further examples of nilpotent matrix groups

In this section we describe various functions designed to produce interesting examples of nilpotent matrix groups.

MaximalAbsolutelyIrreducibleNilpotentMatGroup(n , p ,) F

constructs the unique (up to conjugacy) maximal absolutely irreducible nilpotent subgroup of GL(n,p') if such a
group exists. Note that such a group exists if and only if each prime divisor of n divides p' — 1. Otherwise the function
returns fail.

MonomialNilpotentMatGroup(n) F
constructs an example of a finite nilpotent monomial subgroup of GL(n, Q).
ReducibleNilpotentMatGroup(m, k, [p, 11) F

constructs an example of a reducible but not completely reducible nilpotent subgroup of GL(mk,F), where F = Q if
there are two arguments given and IF = GF(p') if there are four arguments given.

Examples

In this chapter we give some examples of computing with the Package Nilmat.

3.1 Constructing some nilpotent matrix groups

gap> gl := MaximalAbsolutelyIrreducibleNilpotentMatGroup(52,3,3);
<matrix group with 7 generators>

The group g1 is a subgroup of GL(52, 3%) generated by 7 matrices.

gap> g2 := MaximalAbsolutelyIrreducibleNilpotentMatGroup(180,11,2);
<matrix group with 41 generators>

The group g2 is a subgroup of GL(180, 11?) generated by 41 matrices.
gap> MaximalAbsolutelyIrreducibleNilpotentMatGroup (210,2,10);
fail
In this third example, absolutely irreducible nilpotent subgroups of GL(210,2'°) do not exist, because the degree of

the matrices and the field size are both even.

gap> g3 := MonomialNilpotentMatGroup(450);
<matrix group with 24 generators>

Here g3 is a monomial nilpotent subgroup of GL(450, Q).

gap> g4 := ReducibleNilpotentReducibleMatGroup(3,180,11,2);
<matrix group with 82 generators>

Here g4 < GL(540, 112) is the Kronecker product of a unipotent subgroup of GL(3, 11?) and the group g2.

gap> gb := ReducibleNilpotentMatGroup(7,36);
<matrix group with 72 generators>

Here gb < GL(252,Q) is a reducible nilpotent group constructed as the Kronecker product of a unipotent subgroup
of GL(7,Q) with MonomialNilpotentMatGroup(36).

8 Chapter 3. Examples

3.2 Testing nilpotency and other functions

We now illustrate use of the functions IsNilpotentMatGroup, SylowSubgroups0fNilpotentFFMatGroup, Is-
FiniteNilpotentMatGroup, SizeOfNilpotentMatGroup, and IsCompletelyReducibleNilpotentMatGroup.|j

gap> IsNilpotentMatGroup(GL(200,Rationals));
false

gap> IsNilpotentMatGroup(GL(150,1173));
false

gap> g6 := MaximalAbsolutelyIrreducibleNilpotentMatGroup(127,2,7);
<matrix group with 3 generators>

gap> IsNilpotentMatGroup(g6) ;

true

gap> g7 := MonomialNilpotentMatGroup(350);
<matrix group with 6 generators>

gap> IsNilpotentMatGroup(g7);

true

gap> IsFiniteNilpotentMatGroup(g7);

true

gap> g8 := ReducibleNilpotentMatGroup(6,35) ;
<matrix group with 5 generators>

gap> IsNilpotentMatGroup(g8);

true

gap> IsFiniteNilpotentMatGroup(g8);

false

gap> g9 := ReducibleNilpotentMatGroup(2,36,5,2);

<matrix group with 21 generators>

gap> SylowSubgroups0fNilpotentFFMatGroup(g9) ;

[<matrix group with 5 generators>, <matrix group with 6
generators>, <matrix group with 1 generators>]

gap> IsCompletelyReducibleNilpotentMatGroup(g9) ;

false

gap> gl0 := MaximalAbsolutelyIrreducibleNilpotentMatGroup(24,5,2);
<matrix group with 17 generators>

gap> Size0fNilpotentMatGroup(gl0);

173946175488

gap> IsCompletelyReducibleNilpotentMatGroup(gl0);

true

gap> gll := MonomialNilpotentMatGroup(96);
<matrix group with 31 generators>

gap> SizeOfNilpotentMatGroup(gll);

6442450944

gap> IsCompletelyReducibleNilpotentMatGroup(gll);
true

Section 3. Using the library of primitive nilpotent groups 9

3.3 Using the library of primitive nilpotent groups

This section gives examples of applying the functions from the Nilmat library of primitive nilpotent subgroups of
GL(n,q).

gap> LO := NilpotentPrimitiveMatGroups(2,3,1);
[Group([[[0%z(3), Z2(3)70 1, [2(3)70, Z2(3)"0 1] |
Group([[[2(3)70, 0%z(3) 1, [0%Z(3), Z(3)"0 1 1,
[[z, 2301, [2), 2311,
[[2(3)70, 0%2(3) 1, [0%Z(3), 2(3) 11 1),
Group([[[Z(3)70, 0%Z(3) 1, [0%Z(3), Z(3)"01 1,
[[0%2(3), Z(3)"0 1, [2(3), 0%Z2(3) 1 1,
[[z, zB) 1, [23, 2301111
gap> SizesOfNilpotentPrimitiveMatGroups(2,3,1);
[8, 8, 16]
gap> List(L0,Size);
[8, 8, 16]

ID

gap> L1 := NilpotentPrimitiveMatGroups(2,2,10);;

gap> Length(L1);

40

gap> Size(L1[38]);

209715

gap> s := SizesOfNilpotentPrimitiveMatGroups(2,2,10);;

[5, 15, 25, 41, 55, 75, 123, 155,

165, 205, 275, 451, 465, 615, 775, 825, 1025, 1271, 1353, 1705,
2255, 2325, 3075, 3813, 5115, 6355, 6765, 8525, 11275, 13981,
19065, 25575, 31775, 33825, 41943, 69905, 95325, 209715,
349525, 1048575]

gap> L2 := NilpotentPrimitiveMatGroups(55,3,1);;
gap> Length(L2);
114

gap> L3 := NilpotentPrimitiveMatGroups(6,3,3);;
gap> Length(L3);
110

gap> L4 := NilpotentPrimitiveMatGroups(22,11,1);;
gap> Length(L3);
1002

The lists L1 and L2 contain only abelian groups, while L3 and L4 contain non-abelian nilpotent groups.

Installation

The Package Nilmat is a GAP code only package and requires no external binaries.

Once Nilmat is loaded, calls to the GAP functions IsNilpotent, IsNilpotentGroup, SylowSubgroup, and Sy-
lowSystem for subgroups of GL(n, ¢), and calls to IsNilpotent, IsNilpotentGroup, and IsFinite for subgroups
of GL(n,Q), automatically switch to corresponding functions from Nilmat. Thus Nilmat should be disabled if one
wishes to use the former GAP functions for matrix groups over GF(q) or Q.

For testing nilpotency and finiteness over Q, the GAP package Polenta is also required. Note that Nilmat does not
use functions from Polenta which depend on KASH. Hence to use Nilmat, KASH installation is not required, and all
Nilmat functions run under both Windows and Linux.

Bibliography

[AEO5] B. Assmann and B. Eick. Computing polycyclic presentations for polycyclic rational matrix groups. J.
Symbolic Comput., 40(6):1269-1284, 2005.

[AEO7] B. Assmann and B. Eick. Testing polycyclicity of finitely generated rational matrix groups. Math. Comp.,
76:1669-1682, 2007.

[DF04] A. S. Detinko and D. L. Flannery. Classification of nilpotent primitive linear groups over finite fields.
Glasgow Math. J., 46:585-594, 2004.

[DF05a] A. S. Detinko and D. L. Flannery. Locally nilpotent linear groups. Irish Math. Soc. Bull., (56):37-51, 2005.

[DFO5b] A. S. Detinko and D. L. Flannery. Nilpotent primitive linear groups over finite fields. Comm. Algebra, 33:1-
9, 2005.

[DF06] A.S. Detinko and D. L. Flannery. Computing in nilpotent matrix groups. LMS J. Comput. Math., 9:104—134
(electronic), 2006.

[DFO8] A. S. Detinko and D. L. Flannery. Algorithms for computing with nilpotent matrix groups over infinite
domains. J. Symbolic Comput., 43:43 (2008) 8-26, 2008.

[Sup76] D. A. Suprunenko. Matrix Groups. Transl. Math. Monogr., vol. 45. American Mathematical Society,
Providence, RI, 1976.

[Weh73] B. A. F. Wehrfritz. Infinite Linear Groups. Springer-Verlag, Berlin, Heidelberg, New York, 1973.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted to the
indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter” comes before

“permutation group”.

A

AbelianNormalSeries, 4
A library of primitive nilpotent groups, 6

ClassLimit, 4
Constructing some nilpotent matrix groups, 7

F

Finiteness, Sylow subgroups, testing complete
reducibility, 5
Further examples of nilpotent matrix groups, 6

IsCompletelyReducibleNilpotentMatGroup, 5
IsFiniteNilpotentMatGroup, 5
IsNilpotentMatGroup, 5
IsUnipotentMatGroup, 4

J

JordanSplitting, 4

MaximalAbsolutelyIrreducibleNilpotentMat-
Group, 6

MonomialNilpotentMatGroup, 6

N
Nilmat package, 3, 4, 7, 10
NilpotentPrimitiveMatGroups, 6

P
PiPrimarySplitting, 4
Preliminaries, 4

R

ReducibleNilpotentMatGroup, 6

S

SizeOfNilpotentMatGroup, 5
SizesOfNilpotentPrimitiveMatGroups, 6
SylowSubgroups0fNilpotentFFMatGroup, 5

T

Testing nilpotency, 5
Testing nilpotency and other functions, 8

U

Using the library of primitive nilpotent groups, 9

	Contents
	Introduction
	Computing with nilpotent linear groups
	Preliminaries
	Testing nilpotency
	Finiteness, Sylow subgroups, testing complete reducibility
	A library of primitive nilpotent groups
	Further examples of nilpotent matrix groups

	Examples
	Constructing some nilpotent matrix groups
	Testing nilpotency and other functions
	Using the library of primitive nilpotent groups

	Installation
	Bibliography
	Index
	A
	C
	F
	I
	J
	M
	N
	P
	R
	S
	T
	U

