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a b s t r a c t

A body force concentrated at a point and moving at a high speed can induce shear-wave
Mach cones in dusty-plasma crystals or soft materials, as observed experimentally and
named the elastic Cherenkov effect (ECE). The ECE in soft materials forms the basis of the
supersonic shear imaging (SSI) technique, an ultrasound-based dynamic elastography
method applied in clinics in recent years. Previous studies on the ECE in soft materials
have focused on isotropic material models. In this paper, we investigate the existence and
key features of the ECE in anisotropic soft media, by using both theoretical analysis and
finite element (FE) simulations, and we apply the results to the non-invasive and non-
destructive characterization of biological soft tissues. We also theoretically study the
characteristics of the shear waves induced in a deformed hyperelastic anisotropic soft
material by a source moving with high speed, considering that contact between the ul-
trasound probe and the soft tissue may lead to finite deformation. On the basis of our
theoretical analysis and numerical simulations, we propose an inverse approach to infer
both the anisotropic and hyperelastic parameters of incompressible transversely isotropic
(TI) soft materials. Finally, we investigate the properties of the solutions to the inverse
problem by deriving the condition numbers in analytical form and performing numerical
experiments. In Part II of the paper, both ex vivo and in vivo experiments are conducted to
demonstrate the applicability of the inverse method in practical use.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The systematic theoretical treatment of waves generated in an infinite elastic solid by a variable body force dates back to
the classic work of Eason et al. (1956). In the introduction of that paper, the authors made the following remark regarding
their theoretical solutions, which seemed reasonable at that time: “In many cases, too, it is difficult to see how the solutions as
they stand can be applied to a practical engineering problem. A body force concentrated at a point and moving with uniform
velocity through an infinite solid is not easy to envisage physically.” Approximately 50 years after the publication of that
seminal paper, experiments on wave motion in a dusty-plasma crystal clearly demonstrated shear-wave Mach cones
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generated by a laser radiation force moving with a high speed (Melzer et al., 2000; Nosenko et al., 2002). Subsequently, a
French group (Bercoff et al., 2004a, 2004b) proposed a technique to generate a concentrated body force moving with su-
personic speed through soft media to generate shear-wave Mach cones. Their key idea was to use ultrasonic focused beams
to remotely generate a mechanical vibration source inside the soft medium. The vibration source can move at supersonic
speed along a given direction, and the resulting shear waves interfere constructively along a Mach cone according to the
theory developed by Eason et al. (1956), thus creating two intense plane shear waves (Fig. 1d). This phenomenon is ana-
logous to the “sonic boom” created by a supersonic aircraft (Fig. 1a), the wake patterns generated by a high-speed yacht
(Fig. 1b) (Rabaud and Moisy, 2013) and the Cherenkov effects induced by a high-energy charged particle passing through a
transparent medium at a speed greater than the speed of light in that medium (Fig. 1c). Hence, Bercoff et al. (2004a, 2004b)
have named the phenomenon observed in their experiments the elastic Cherenkov effect (ECE, Fig. 1d), and it forms the
theoretical basis of the supersonic shear imaging (SSI) technique.

The SSI technique (Bercoff et al., 2004a) is a shear wave elastography (SWE) method that has received considerable
attention since the 1990s (Sarvazyan et al., 1998; Fatemi and Greenleaf, 1998; Nightingale et al., 2002; Chen et al., 2009a;
Song et al., 2012, 2015). SWE methods using shear waves traveling in human soft tissues to deduce in vivo elastic properties
have found widespread clinical applications, including monitoring the development of liver fibrosis, detecting malignant
tumors, assessing myocardial elasticity, and determining the stage of chronic kidney disease (CKD).

Liver fibrosis is a common pathway for a multitude of liver injuries. Precisely estimating the degree of liver fibrosis is of
great importance for the evaluation of prognosis, surveillance, and treatment decisions in patients with chronic liver disease
(Chen et al., 2009b; Bavu et al., 2011; Ferraioli et al., 2012; Bota et al., 2013; Cassinotto et al., 2013; Paparo et al., 2014).
Currently, liver biopsy is the reference standard for the assessment of liver fibrosis. However, it is an invasive method
associated with patient discomfort, and its accuracy is limited by intra- and inter-observer variability and sampling error.
Therefore, the development of a non-invasive method, such as elastography, to inspect the occurrence and development of
liver fibrosis is urgently needed. Tumors are frequently detected through physical palpation as hard masses located within
surrounding softer tissues. Elastography methods may serve as a “virtual finger” allowing quantitative detection of the

Fig. 1. Four similar wave phenomena in which the velocity of the excitation source is greater than that of the resulting waves in the medium. (a) “Sonic
boom” phenomenon caused by an F/A-18F plane during a transonic flight, (b) the wake pattern generated by a high-speed yacht, (c) a schematic of
Cherenkov radiation, (d) the ECE induced by a moving shear source in soft media.
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stiffness of the solid tumor and has the potential to differentiate malignant tumors from benign ones (Bercoff et al., 2004a;
Tanter et al., 2008; Athanasiou et al., 2010; Chamming’s et al., 2013). Cardiac pathologies, including postinfarction re-
modeling and hypertrophic cardiomyopathy, are usually accompanied by fibrosis and myocardial fiber disorganization.
Therefore, evaluating the myocardial elasticity and myocardial fiber orientation may help diagnose hypertrophic or ischemic
cardiomyopathy (Lee et al., 2012). CKD is difficult to diagnose by using conventional medical imaging methods. It has been
recognized that intra-renal fibrosis is a final common pathway for all CKD and can alter renal stiffness. SWE methods enable
assessment of the renal stiffness and can therefore provide valuable diagnostic information in CKD (Samir et al., 2015).

The SSI technique is distinct from other SWE methods in that it relies on the ECE induced in isotropic soft media.
Moreover, it uses an ultrafast imaging technique to visualize and measure the speed of the resulting shear wave in less than
20 ms (Bercoff et al., 2004a, 2004b). In principle, this measurement enables mapping of the elasticity of the tissue, once the
wave speed is related to the tissue stiffness. This technique has great potential in the diagnosis of some diseases; however,
some fundamental issues remain regarding the clinical use of the SSI technique, and these issues warrant careful in-
vestigation. This paper is concerned with the following issues.

First, it is well known that most soft biological tissues are anisotropic materials; this category includes the cardiovascular
system, skin, kidneys and muscles. The use of the SSI technique on these soft organs/tissues requires revealing and un-
derstanding the salient features of the ECE in anisotropic soft media and no systematic studies have yet been performed to
address this important issue to the authors’ knowledge. Second, by modeling soft tissues as incompressible transversely
isotropic (TI) materials, a number of authors (Gennisson et al., 2010, 2012) have recently attempted to determine the ani-
sotropic elastic properties of the kidney and skeletal muscles by using the SSI technique but without exploring the ECE. It
should be pointed out that three constitutive parameters are required to describe an incompressible TI linear elastic solid;
generally, these are the transverse and longitudinal shear moduli and the elastic modulus. The studies above (Gennisson
et al., 2010, 2012) have assessed the shear moduli μT and μL, but have not evaluated the elastic modulus EL by using the SSI
technique. Third, contact between the probe and the soft tissue may lead to finite deformation of the medium. In this case,
the propagation of the shear wave generated by a moving source in a deformed anisotropic soft tissue should be investigated.
The resulting study of this acousto-elastic effect will enable quantitative evaluation of the effects of finite deformation on
the determination of the anisotropic properties of soft tissues by using the SSI technique. Furthermore, it may also be used
to develop an inverse approach to determine the in vivo hyperelastic properties of an anisotropic soft tissue.

Bearing the above issues in mind, we investigated the ECE in an incompressible TI material, which has widely been
adopted to model soft tissues, and we propose an inverse approach to infer both the linear anisotropic elastic parameters
and the hyperelastic parameters of the material. Part I of the paper is organized as follows. Section 2 presents the elasto-
dynamic model describing the elastic waves generated in an anisotropic elastic medium by a pulse load and a uniformly
moving point force. We give the dispersion relation of the TI elastic medium, which can be used to determine the correlation
between the phase velocities and the group velocities of the shear waves induced by the moving point force. We then
conduct a theoretical analysis in Section 3 to derive the displacement field caused by a moving point force in both isotropic
elastic solids and a special anisotropic elastic medium. The results provide considerable insights into the ECE in these cases,
for instance giving the shape of the Mach cone and the critical moving speed of the vibration source (i.e., the focused
acoustic radiation force) beyond which the quasi-plane waves can be generated. To reveal the salient features of the ECE in
more general TI soft media, we develop a finite element (FE) model in Section 4 to solve the elastodynamic problem with a
vibration source moving at different speeds in a TI solid. In Section 5, we perform a theoretical analysis based on the
incremental elastodynamic theory (Ogden, 2007) and derive an analytical solution to elucidate the influence of finite de-
formation on the propagation of shear waves in an incompressible TI solid. Based on the analysis conducted in Sections 3–5,
we propose an inverse method in Section 6 to determine the anisotropic and hyperelastic parameters of TI soft materials by
using the SSI technique. We conduct both a theoretical analysis and numerical experiments to investigate the properties of
the solutions to the present inverse problem. Finally we provide some concluding remarks in Section 7. In Part II of the
paper (Li et al., 2016), ex vivo and in vivo experiments are performed to validate our inverse method and demonstrate its
usefulness in practice.

2. Wave motion in a TI soft medium

The elastodynamic equations and corresponding dispersion relations involved in this study are briefly given in this
section, and one can refer to Achenbach (1973) and Auld (1990) for details.

The equilibrium equations under the assumption of infinitesimal deformation are given by

ρ+ = ( )c u f u , 2.1ijkl k jl i i tt, ,

where ui ( =i 1, 2, 3) are the components of the displacement, cijkl are the components of the fourth-order elastic tensor, and
fi are the components of the body force. ρ is the mass density, and t the time. The subscript ‘ t, ’ represents the material time
derivative. Here, the stress-strain relation is given by σ ε= cij ijkl kl, and the strain components εkl are related to the dis-
placement by ε = ( + )u ukl k l l k

1
2 , , . The fundamental solution corresponding to the pulse load is usually referred to as the

elastodynamic Green function, which can be used to derive the solutions for variable loads (Wu, 2002). Suppose that the
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body force is a pulse force imposed at the origin of the coordinates and along the direction of em, where em is the base vector
of xm ( =m 1, 2, 3), i.e., ( )δ δ δ= ( )f txi im, where δ ( )x is the delta function and δim is the Kronecker delta. Then, Eq. (2.1) can be
written as

( )δ δ δ ρ+ ( ) = ( )c u t ux . 2.2ijkl k jl im i tt, ,

The solution to Eq. (2.2) is denoted by ( )G tx,im , and thus, Eq. (2.1) can be written as

( )δ δ δ ρ+ ( ) = ( )c G t Gx . 2.3ijkl km jl im im tt, ,

The subscript ‘m’ of the Green function Gim refers to the loading direction of the point force. Gim can be solved in analytical
form for an infinite isotropic solid and some special anisotropic solids (Aki and Richards, 1980; Wang and Achenbach, 1994;
Vavryčuk, 2001).

To derive the wave dispersion relationships, we consider plane waves in the form

⎡⎣ ⎤⎦( ) ( )ω= ⋅ − ( )u t U i tx k x, exp , 2.4i i

where = ^kk k is the wave vector, and =k k the wave number. ω represents the circular frequency,Ui is the amplitude of the
wave along ei, and the direction of the vector = UU ei i is referred to as the polarization direction of the wave. Inserting Eq.
(2.4) into the equilibrium equation, the following relation can be obtained

( )ρω δ^ ^ − = ( )k c k k U 0. 2.5ijkl j l ik k
2 2

The existence of a non-zero Uk requires

( )ρω δ^ ^ − = ( )k c k kdet 0, 2.6ijkl j l ik
2 2

where ‘det’ represents the determinant. It should be noted that Eq. (2.6) is a homogeneous equation, so that

( ) ( )( )ω ω ω= ^ = ^k kk k k (Landau and Lifshitz, 1986). The function ( )ω k̂ gives the dispersion relation. Then, the phase velocity

v reads

( )( )ω ω= = ^
( )v

k
k

k , 2.7

which is independent of ω. The group velocity, which represents the velocities of the wave packets, is a vector and given by

ω= ∂
∂ ( )v
k

. 2.8g

In this study, we focus on an incompressible TI linear elastic material model. It has three independent material constants
(Spencer, 1984; Chadwick, 1993; Destrade et al., 2002, Rouze et al., 2013; also see the Supporting Information (SI) 1), taken
here as μL and EL, the initial shear modulus and extension modulus along the fiber direction, respectively, and μT , the shear
modulus perpendicular to that direction. In this section and henceforth, we choose a Cartesian coordinate system such that
its x3-axis is aligned with the fibers, and x1 and x2 are arbitrarily chosen in the perpendicular plane (Fig. 2a). In this co-
ordinate system, the relationships between the elastic stiffnesses cijkl and μL, μT and EL are straightforward to derive (see SI1).
The dispersion relations for incompressible TI materials can be obtained by inserting those relationships into Eq. (2.6).

For incompressible TI materials, Chadwick (1993) has established that two transverse waves may propagate in the
medium (Carcione, 2007; Papazoglou et al., 2006; see also SI1), with speeds given by

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )

ρ μ μ

ρ μ μ μ

= ^ + ^ + ^

= + + − − ^ ^
( )

v k k k

v E k k4 1
,

2.9

SH T L

qSV L L T L

2
1

2

2

2

3

2

2
3

2

3

2

where we follow the geophysics convention for the subscripts ‘SH’ and ‘SV’ (Thomsen, 1986). The first (shear horizontal)

wave is a pure transverse mode, polarized along × ^e k3 , whereas the second (quasi-shear vertical) is polarized approxi-

mately along × ^ × ^e k k3 .
The two shear modes may be involved simultaneously in the use of the SSI technique. In previous studies (Gennisson

et al., 2010; Lee et al., 2012; Eby et al., 2015), the axis of the ultrasound probe is perpendicular to the fibers, so that the
resulting shear waves are the SH modes according to the definition above. Rotating the probe about its axis (see Fig. 2b)
changes the shear wave speeds continuously, thus giving access to the linear anisotropic properties of muscles (Gennisson
et al., 2010; Lee et al., 2012). However, Eq. (2.9) shows that the phase velocities of the SH mode depend only on the two
elastic parameters μT and μL and that the protocol does not yield the parameter EL. Bearing this issue in mind, and inspired
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by the work of Rouze et al. (2013), we propose a method based on the SSI technique to determine EL by using the qSV mode.
The key idea is shown in Fig. 2c. Indeed, when the axis of the ultrasound probe is not perpendicular to the fibers, neither are
the polarization directions of the resulting shear waves. In this case, the shear wave of the qSV mode can be evaluated by
using the SSI technique, which can be related to the parameter EL, as shown in detail below.

To illustrate the dependence of the shear wave speeds of the qSV mode on the elastic parameter EL, we introduce the
following parameter C

μ μ= + −
( )C

E 4
2

, 2.10
L T L

so that from Eq. (2.9), we have

⎛
⎝⎜

⎞
⎠⎟ρ μ= + − ^ ^

( )
v C k k2 1 .

2.11qSV L
2

3

2

3

2

In Fig. 3, the spatial distributions of the phase velocities of the qSV mode shear waves are plotted for different propa-
gation directions. It can be seen that the distribution of the wave speeds depends strongly on the parameter C . In general,
Eq. (2.11) indicates that it is possible to infer EL from vqSV once μT and μL are known from the measurements of vSH , provided
that the ECE exists in an incompressible TI solid.

3. Theoretical analysis of the ECE

The ECE forms the theoretical basis of the SSI technique. To date, experimental evidence of the ECE has been reported in
isotropic elastic solids (Bercoff et al., 2004a, 2004b), but its existence and key features in anisotropic elastic solids have not been
fully investigated. In this section, we first briefly revisit the ECE in isotropic elastic solids. Although the results can also be
obtained from the original theory by Eason et al. (1956), here, we base our derivations on the more recent treatments by
Dowling and Williams (1983) and Bercoff et al. (2004b). Furthermore, we derive the theoretical and analytical solutions for
the ECE in a special type of anisotropic elastic solid, namely, incompressible TI solids with =C 0. In Section 4, we develop a
FE model to solve the elastodynamic problem and investigate the ECE in more general TI soft media with ≠C 0.

Fig. 2. Schematic of shear waves of the SH and qSV modes and measurements of skeletal muscle by using the SSI technique. (a) Schematic of the SH mode
and the qSV mode. θ denotes the angle between the wave vector k and x3-axis, so that ( )θ θ=k sin , 0, cos . (b) Using the shear waves of the SH mode to
measure the elastic parameters of skeletal muscle. By rotating the ultrasound probe, the velocities of the SH mode shear wave can be measured in different
directions. (c) Experimental setup proposed in this study to measure EL . The polarization directions of the shear waves are no longer perpendicular to the
material symmetric direction, and the shear waves are qSV modes.
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3.1. The ECE in an isotropic elastic soft medium

The displacement field induced by a variable body force fi depends on the time t and position x via the integral

∫ ∫( ) ( ) ( )τ τ τξ ξ ξ= − − ( )u t f G tx x, , , d d . 3.1i m im

where Gim is the Green function (see Achenbach (1973) or Auld (1990) for details).
The uniformly moving point force is imposed along the same direction as its moving direction and thus can be written in

the form

( ) ( )δ= − ( )f t a v tx x a, , 3.2i i e

where a is the unit vector along the movement direction, and ve is the movement speed. For an isotropic elastic solid with
Lamé constants marked as λ and μ, the Green function is given by (Aki and Richards, 2002)

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∫( ) ( ) ( )

( )
πρ γ γ δ τδ τ τ

πρ
γ γ δ

πρ
δ γ γ δ

= − −

+ − + − −
( )

G t
r

t

v r
t r

v v r
t r

v

x, 1
4

3 1 d

1
4

1 1
4

1 .
3.3

im
Iso

i m im
r v

r v

p
i m

p s
im i m

s

3 /

/

2 2

p

s

where =r x , γ = = ∂
∂i

x
r

r
x

i

i
, and μ ρ=v /s , ( )λ μ ρ= +v 2 /p are the velocities of the Swave (shear wave, secondary wave) and P

wave (pressure wave, primary wave) in isotropic elastic media, respectively. The superscript ‘Iso’ denotes isotropic materials.
Neglecting the coupling components (the first term in Eq. (3.3)), because they decay quickly away from the sources (Aki and
Richards, 2002), and the P wave term (the second term in Eq. (3.3)), because > >v vP s in an incompressible soft solid, Eq.
(3.3) can be approximately written as

⎛
⎝⎜

⎞
⎠⎟( )πρ

δ γ γ δ≈ − −
( )

G
v r

t r
v

1
4

1 .
3.4im

Iso

s
im i m

s
2

Without losing generality, let ( )=a 0, 0, 1 , which indicates that the force is moving along x3. Inserting Eqs. (3.4) and (3.2)
into Eq. (3.1) (see SI2 for the detailed derivations), we have

( )( )Θ
τ τ( ) =

− ( )
u t

M t
F tx x, 1

1 sin
, , , ,

3.5
i

Iso

Iso Iso Iso
2 2

1 2

where =M v v/Iso e s is defined as the Mach number,

( )( ) ( ) ( )τ Θ Θ= +
( − )

± −
( )

t
R t

v M
M t M t

1
cos 1 sin ,

3.6
Iso

s Iso
Iso Iso1,2 2

2 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( ) ( ) ( )

( )∑τ τ
πμ

δ
τ τ

= −
∂

∂
∂

∂ ( )=
F t

R t

R

x

R

x
x, , , 1

4
.

3.7

Iso Iso Iso

k
i

k
Iso

i

k
Iso

1 2
1

2

3
3

and

Fig. 3. Spatial distribution of the phase velocities for the shear wave of the qSV mode. For illustration, we take μ = 9 kPaT and μ = 25 kPaL for all three
cases, and ( ) = −C kPa 62.5 , 0, 21.875, respectively.
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⎧
⎨⎪

⎩⎪
⎛
⎝⎜

⎞
⎠⎟

( )
( )Θ

= −

= ⋅
( )

t v t

t
R

R x a

R aarccos
,

3.8

e

where ( ) ( )=R t tR is the distance between a spatial point x and the point where the moving force is applied at time t , and

Θ ( )t is the angle between the vector a and ( )tR (Fig. 4a).
Eq. (3.6) shows that the following inequality must hold

( )Θ− ≥ ( )M t1 sin 0. 3.9Iso
2 2

In the case of >M 1iso , where the speed of the moving point force is greater than the velocity of the resulting shear waves,
we thus have

Θ ≤ ( )M
sin 1 ,

3.10iso

which indicates that the displacements are confined in aMach cone. Furthermore, Eq. (3.5) shows that the displacements are
singular on the cone surface. This is the ECE phenomenon, which has been demonstrated experimentally by Bercoff et al.
(2004b).

3.2. The ECE in an incompressible TI soft medium with =C 0

A number of authors have investigated the response of an anisotropic elastic solid subjected to moving line forces (Stroh,
1962; Asaro et al., 1973; Ting, 1996; Wu, 2002; Iovane et al., 2004, 2005). In this paper, we perform an analytical study on the
wave motion in an incompressible TI solid by considering a moving point force to reveal the key features of the ECE, which
has not been done in previous studies.

Obtaining the dynamic Green function in Eq. (3.1) in analytical form for a general anisotropic elastic solid remains
challenging; however, it is possible to obtain ( )G tx,im in analytical form for some special types of anisotropic elastic solids.
For instance, for incompressible TI solids with =C 0, the Green function has been obtained through the high-order ray theory
(Vavryčuk, 2001). Under the condition of incompressibility and neglecting the coupling components, the solution is

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪πρ μ τ δ τ μ μ τ δ τ( ) ≈ ( − ) + ( − )

( )
−G t

g g
t

g g
tx, 1

4
1 1 ,

3.11
im
TI

L

i m

T L

i m
1/2 3

2 2

2
2

3 3

3
3

where

Fig. 4. A schematic of the ECE in a soft medium. (a) The ECE in an isotropic elastic solid. The force is moving along the x3-axis. The resulting displacements
are confined in a Mach cone according to Eq. (3.5). (b) The ECE in an incompressible TI solid. The force is moving along ( )α α= −a sin , 0, cos with velocity
ve . Here, only the Mach cone for the SH mode is plotted, and it is no longer a perfect cone for an anisotropic solid in the physical coordinate system.
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Using Eq. (3.11), the displacement field induced by the moving point force for the case of =C 0 can be derived. The key
results are given below, and the derivations can be found in SI3.

For a TI solid, without loss of generality, we let the moving direction of source a lie in the −x x1 3 plane and let α be the
angle between the x3-axis and a, so that ( )α α= −a sin , 0, cos , as shown in Fig. 4b. The two transverse wave modes, SH and
qSV, correspond to two successive terms on the right hand side of Eq. (3.11). By separating the resulting displacements into
two parts, = +u u ui i

qSV
i
SH , we have

( )( )Θ
τ τ=

− ( )
u

M t
F tx1

1 sin
, , , ,

3.14
i
qSV

qSV

qSV qSV qSV
2 2 1 2

where =M v v/qSV e qSV , and μ ρ=v /qSV L , according to Eq. (2.11), when =C 0,

( )( )
( ) ( ) ( )τ

μ ρ
Θ Θ= +

−
± −

( )
t

R t

M
M t M t

1 /
cos 1 sin ,

3.15
qSV

qSV L
qSV qSV1,2 2

2 2

and the definitions of ( )tR and ( )Θ t are given by Eq. (3.8).
Eq. (3.14) is basically in the same form as Eq. (3.5), as expected, because the phase velocity vqSV and the group velocity for

the qSV mode are independent of the spatial direction for =C 0.
For the SH mode, the phase velocity vSH varies with the spatial direction; in this case, the resulting Mach cone is no longer

a perfect cone (Fig. 4b). To make the expression of the resulting displacement more concise and consistent with Eq. (3.5) or
Eq. (3.14), we introduce the coordinate transformation

⎧
⎨⎪

⎩⎪ β

′ =
′ =
′ = ( )

x x
x x
x x

,

3.16

1 1

2 2

3 3

where β = μ
μ

2 T

L
is a dimensionless parameter that gives a measure of the anisotropic properties of the material. When =C 0

and β = 1, the material is isotropic, whereas when ≠C 0 and β = 1, the phase velocities of the SH mode do not vary with the
spatial direction based on Eq. (2.9), although the material may be anisotropic. In the new coordinate system, the speed ′v e of
the moving source is

α β α′ = + ( )v v sin cos , 3.17e e
2 2 2

and the unit vector in the moving direction is

( )α β α
α β α

′ =
+ ( )

a
sin , 0, cos

sin cos
.

3.182 2 2

The resulting displacement for the SH mode in the transformed coordinate system is (see SI4 for details)

( )
Θ

τ τ=
−

′
( )

u
M

F tx1

1 sin
, , , ,

3.19
i
SH

SH SH

SH SH SH
2 2

1 2

where μ ρ= ′M v / /SH e T is defined as the Mach number,

( )( ) ( ) ( )τ
μ ρ

Θ Θ= + ′
−

′ ± − ′
( )

t R
M

M t M t
/ 1

cos 1 sin ,
3.20

SH

T SH
SH SH1,2 2

2

and
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⎝⎜

⎞
⎠⎟

( )
( )Θ

′ = ′ − ′ ′

′ = ′⋅ ′
′ ( )

t v t

t
R

R x a

R acos arccos
.

3.21

e

Eq. (3.19) shows that the displacement is confined in a Mach cone in the transformed coordinate system, as illustrated in
Fig. 5. This transformation provides a useful tool to study the profile of the wave fronts in an anisotropic soft medium
generated by a moving source, e.g., the existence of the Mach cone and its cone angle. In the SSI technique (Bercoff et al.,
2004a), the source moves with supersonic speed, and the Mach number is very large. Thus, our analytical results given by
Eq. (3.19) reveal that quasi-plane waves can be generated. The speed of the wave fronts along the direction of the wave
vector can be measured experimentally by relying on the time-of-flight algorithm (McLaughlin and Renzi, 2006; Tanter
et al., 2008), which can be combined with Eq. (2.9) to further infer the elastic properties of anisotropic soft materials.

The analytical solution was derived here under the condition of =C 0. Fig. 3 illustrates that parameter C plays an im-
portant role in determining the spatial variation of the shear wave velocity. We now investigate the ECE in more general
cases with ≠C 0.

4. Computational studies on the ECE in an incompressible TI solid

For incompressible TI solids with ≠C 0, it is difficult to obtain the solutions in analytical forms similar to Eqs. (3.14) and
(3.19). In this section, we use finite element analysis (FEA) to study the ECE in more general cases.

The FEA is conducted using the commercial software Abaqus/explicit (2010). A cubic solid of size
× ×40 mm 40 mm 40 mm is used to model the soft media. The model contains 4,096,000 C3D8R elements. Following

previous treatments of acoustic radiation force (ARF) (Palmeri et al., 2005; Rouze et al., 2013), the moving source is modeled
as the following body force with a three-dimensional Gaussian distribution, traveling uniformly with speed ve,

( )
( )

= ( )
− −

f t a F ex, , 4.1i i

v t

r

x a

0

e
2

0
2

where = −F N100
3 denotes the amplitude of the force, the unit vector a is along the movement direction, and =r mm0.50 . We

rely on the user subroutine of VDload in Abaqus.
As mentioned in Section 2, the parameter C plays a key role in investigations of the ECE in a TI soft material. We divide

incompressible TI solids into three classes: >C 0, =C 0 and <C 0. In our FEA, we consider three different TI materials, with
representative material constants given in Table 1.

We again choose a coordinate system such that the x3-axis is parallel to the fibers. The source moves in a line making an
angle α with the fibers, so that ( )α α= −a sin , 0, cos . We investigate the following three different cases in turn:

Fig. 5. In the transformed coordinate system, the displacement is confined in a Mach cone.

Table 1
Elastic parameters used in the FE simulations.

EL (kPa) μL (kPa) μT (kPa)

C¼62.5 kPa 216 25 9
C¼ 0 91 25 9
C¼"21.875 kPa 47.25 25 9
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α = ° ° °0 , 90 , 45 .

4.1. Source moving along the fibers α = °0

When the source moves along the direction α = °0 , the problem is axisymmetric. In this case, the shear wave of the qSV
mode is the main concern, and its speed can be measured with the SSI technique.

We first study the case where the Mach number, μ ρ=M v / /qSV e L , is relatively small to reveal the key features of the ECE
in an anisotropic soft medium. The source speed is taken as =v 15m/se in our simulations, which corresponds to =M 3qSV .
The representative results shown in Fig. 6 indicate that the resulting shear-wave Mach cones depend strongly on parameter
C . For instance, for >C 0 (Fig. 6a–d), we first measure the angle of the Mach cone (Fig. 6a) based on the FE results. Then,
inserting the wave vector of ( )θ θ^ =k sin , 0, cos into Eq. (2.11) (so that the angle of the Mach cone is ( )θ° −90 ) and using
the geometric condition ( )θ= ° −v v/ sin 90qSV e , we have

( ) ( )μ θ θ ρ
θ

+
= ° − ( )

C

v

2 sin cos /
sin 90 .

4.2
L

e

2 2

Solving Eq. (4.2) with the material parameters given by the first line in Table 1 results in ( )θ° − ≈ °90 25.5 , which is in
good agreement with the value obtained from the FE simulations (Fig. 6a).

Fig. 6 shows that the shear-wave Mach cones are dependent on parameter C (or the elastic parameter EL), and in this
sense, it is theoretically possible to evaluate the elastic parameter EL by measuring the angle of the Mach cone. However, our
analysis shows that the variation of the cone angle is not sensitive to the variation in EL, thus indicating that the solution to
the inverse problem will be very sensitive to data errors.

Fig. 6. The ECE at lowMach number when the force is moving along the material symmetric axis direction. The angles of the Mach cones are (a) °25.6 , (e) °19.0 ,
(i) °17.5 . (a)–(c) for >C 0, (e)–(g) for =C 0 and (i)–(k) for <C 0. In general, the wave vectors are not in the same direction as the group velocities, except when

=C 0. The phase velocities are the projections of the group velocities in the directions of the wave vectors, as schematically given by (d), (h) and (l).
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Fig. 6 also shows that the direction of the wave vector k̂ is not always consistent with the direction of the group velocity
vg , as expected for wave motion in an anisotropic medium (Thomsen, 1986). A schematic of this phenomenon is given in
Fig. 6.

Fig. 7. The ECE at high Mach number when the force is moving along the material symmetric axis direction. (a)-(c) for C40, (d)-(f) for C=0, (g)-(i) for
Co0. The angle of the Mach cone is approximately equal to zero, and quasi-plane waves are formed. (j) The normalized displacements of two points
located on the x1-axis are plotted, from which the velocity of the shear wave can be determined.
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For all three cases in Table 1, the movement distances of the source are the same, but the interfered wave fronts are
different, simply because the directions of the group velocities are not the same (see Fig. 6d, h and l). In general, the
interfered wave fronts in anisotropic media travel along the directions of the group velocities, which usually differ from the
directions of the wave vectors, except in some special cases (e.g., =C 0 in the present problem).

We then investigate the case in which the Mach number is large. In experiments (Bercoff et al., 2004b), the source can
move at supersonic speed, and the Mach number can be very large (!1000). We can see from Eq. (4.2) that the angle of the
Mach cone, ( )θ° −90 , is close to zero when μ ρ=M v / /qSV e L is large. In our FEA model, we take =M 30qSV . Fig. 7a, d and g
show that the resulting angles of the Mach cone for all three cases are very close to zero, i.e., θ ≈ °90 . In this case, the wave
vector is almost aligned with x1: ( )^ =k 1, 0, 0 . In practical experiments, the wave speed ⊥vqSV , along the direction of the wave
vector is measured, and the phase velocity formula (Eq. (2.11)) can be simply used to determine μL

ρ μ= ( )⊥v , 4.3qSV L,
2

where the subscript ‘⊥’ denotes that the propagation direction of the shear wave is perpendicular to the fibers. In our
analysis, the parameter μL is taken as constant in all three cases; therefore, the phase velocities of the shear waves should
also have the same values (Fig. 7).

We also plot the normalized displacements in Fig. 7j for two points located along the direction of the wave vector (i.e.,
along the x2-axis). Then, by tracking the time delay of the peaks on the curves, we can calculate the speed of the shear wave

⊥vqSV , .

4.2. Source moving perpendicular to the fibers α = °90

In this case, only the SH modes exist in the ultrasound imaging plane, according to the discussion in Section 2. The Mach
number is μ ρ= ′M v / /SH e T , where ′v e defined in Eq. (3.17) is ve when α = °90 . In our simulations, we took =M 50SH . The

Fig. 8. The ECE at a high Mach number when the shear source is moving perpendicular to the material symmetric axis. (a) for C40, (b) C=0, (c) Co0. (d)
The normalized displacements for two points located on x2-axis and two points located on x3-axis are plotted to calculate vSH,⊥ and vSH,‖.
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results in Fig. 8a-c show that the resulting shear waves are basically the same, even though the elastic parameter C (or EL) is
different in all three cases, thus confirming the analytical result that the SH mode is dependent on only μL and μT , as
described in Section 3. In our FEA, the parameters μL and μT are fixed according to Table 1, thus explaining why the speeds of
the resulting waves for the three cases are essentially the same. The shear wave speeds ⊥vSH, and ∥vSH, that are perpendicular
to and along the fibers, respectively, are determined from the variation of the displacements with time at four characteristic
points, as plotted in Fig. 8d. Given that the quasi-plane waves are generated at a high Mach number, the correlations
between the phase velocities and the shear moduli perpendicular to and along the fibers are given by (Thomsen, 1986)

⎪
⎪⎧⎨
⎩

ρ μ
ρ μ

=
= ( )

⊥

∥

v

v . 4.4

SH T

SH L

,
2

,
2

A number of authors have combined Eq. (4.4) and the SSI technique (Gennisson et al., 2010; Lee et al., 2012) to determine
μL and μT for an incompressible TI soft tissue. Our above analysis shows that Eq. (4.4) is applicable, provided that the
movement speed of the source is high, and thus, the Mach number is large, and quasi-plane waves are generated.

In Section 3, we introduced a transformation of coordinates to obtain the Mach cone of the SH mode in the form of a
perfectly circular cone. As a further illustration, the Mach cones in the original coordinate system and that in the trans-
formed coordinate system are compared in Fig. 9, taking =C 62.5 kPa as an example. Clearly, in the transformed coordinate
system, a Mach cone in the form of a circular cone is achieved.

4.3. Source moving oblique to the fibers α = °45

The analysis above shows that in the cases of α = °90 and α = °0 , shear-wave Mach cones and quasi-plane waves can be
generated by the moving shear source, which provides a reliable means to determine the initial shear moduli μL and μT from
the wave velocities simply by using Eq. (4.4) (for both μL and μT ) or Eq. (4.3) (for μL). However, determining the third elastic
parameter EL remains challenging. Bearing this important issue in mind, we investigate the case in which the angle between
the movement direction of the source and the material symmetric axis is °45 (Fig. 2c), inspired by the recent study by Rouze
et al. (2013) on ARF impulse (ARFI) elastography. In this case, the qSV mode may be used to access the parameter EL.

Fig. 10 gives the computational results. Clearly, the resulting shear-wave Mach cones are significantly different from
those observed in the cases of α = °90 and α = °0 , and they strongly depend on parameter C (or EL). When >C 0 (Fig. 10g),
two shear waves with different polarization directions are clearly observed, in contrast to when ≤C 0 (Fig. 10h and i). This
result may be explained as follows. When >C 0, two wave modes are excited, and they have different speeds on the ul-
trasound imaging plane, as illustrated in Fig. 10d. Then, Eq. (2.11) and the definition of parameter C indicate that the phase
velocity of the qSV mode is greater than that of the other mode. When ≤C 0, the displacements generated by the source
moving at a high speed will be approximately parallel to the loading direction, and therefore, only the qSV mode can be
observed on the ultrasound imaging plane, as shown in Fig. 10e and f. In summary, the interfered wave fronts tracked in
experiments using the SSI technique (Bercoff et al., 2004a) will always be the qSV modes when α = °45 . The normalized
displacements of two characteristic points located along the direction of wave vector are plotted in Fig. 10g–i, enabling
evaluation of the speeds of the quasi-plane shear waves. Furthermore, the following correlation between the phase velocity
of the qSV mode and the material parameters may be used to establish an inverse approach to measure parameter C (or EL),

Fig. 9. The Mach cones in the original and transformed coordinate systems according to the FE results.
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as shown in detail in Section 6.

ρ μ= + ( )°v C/2. 4.5qSV L,45
2

5. Propagation of shear waves in a deformed anisotropic soft material

In the previous sections, we investigated the ECE in an incompressible and stress-free TI material. The results may be
used together with the dynamic elastography method, e.g., the SSI technique (Bercoff et al., 2004a), to determine the an-
isotropic elastic parameters of biological soft tissues. Notably, (a) in clinical use, contact between the probe and the tissue
may lead to finite deformation in the soft tissue and (b) knowing how shear waves propagate in a deformed soft tissue (the
theory of acousto-elasticity) can facilitate understanding of its hyperelastic (nonlinear elastic) properties (Gennisson et al.,
2007; Rénier et al., 2008; Latorre-Ossa et al., 2012; Jiang et al., 2015a; 2015b). In this section, we thus investigate the
propagation of shear waves in a deformed incompressible TI soft medium.

The theory of elastic wave propagation in deformed solids dates back to the works of Hadamard (1903), Brillouin (1925)
and Biot (1940). This theory was later rewritten in compact form by Ogden and collaborators (see Ogden (2007) for a review

Fig. 10. The ECE at a high Mach number when the angle between the direction of the moving force and the material symmetric axis is taken as α = °45 , (a),
(d) and (g) for C40; (b), (e) and (h) for C=0; (c), (f) and (i) for Co0.
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or Ogden and Singh (2011)) and was further developed within the framework of finite elasticity. Here, we rely on these
equations to derive analytical solutions predicting the speed of the shear waves generated in an incompressible anisotropic
soft tissue by a moving source. In our derivations, we use the constitutive relationship proposed by Murphy (2013) because
it is compatible with the linear elastic TI model with infinitesimal deformation and motion. This provides a strong link to the
ultrasonic measurements made on un-deformed solids; however, any other hyperelastic model could be used in our
analysis.

5.1. Governing equations

Here, we briefly recall the governing equations used to analyze the propagation of homogeneous shear waves in a
deformed hyperelastic solid (see Ogden (2007) for more details).

We consider small-amplitude motions in an incompressible TI material with a strain energy density W that has been
subjected to a large homogeneous deformation described by the constant deformation gradient = ∂ ∂F x X/ , where x and X
are the spatial and material coordinates, respectively. The displacement ( )tu x, satisfies the following incremental equations
of motion and the condition of incompressibility (Ogden, 2007)

⎪

⎪⎧⎨⎩
Α δ ρ− =

= ( )
u p u

u 0
,

5.1

piqj j qp i i tt

i i

0 , , ,

,

where δp is the increment of the Lagrange multiplier p due to the internal constraint of incompressibility, and Α0 is the
fourth-order tensor of the instantaneous elastic moduli, with components

Α = ∂
∂ ∂ ( )α β

α β
F F W

F
.

5.2
piqj p q

i j
0

2

5.2. Constitutive relation

Several constitutive models have been proposed over the years to characterize incompressible TI soft tissues (e.g.,
Humphrey and Yin, 1987; Merodio and Ogden 2003, 2005; Destrade et al., 2013; Murphy, 2013). In general, their strain-
energy function W may be written as a function of four invariants,

( )= ( )W W I I I I, , , , 5.31 2 4 5

where ⎡⎣ ⎤⎦( )( ) ( )= = −I IC C Ctr , tr tr1 2
1
2

2 2 are the isotropic invariants, =C F FT is the right Cauchy-Green deformation tensor,

and I4 and I5 are the anisotropic invariants,

= · = · ( )I IM CM M C M, . 5.44 5
2

Here, the unit vector M is along the fibers, which we chose to be aligned with the x3-axis of the coordinate system, so that
( )=M 0, 0, 1 .

The corresponding Cauchy stress tensor is (Spencer, 1972)

σ = − + + ( − ) + ⊗
+ ( ⊗ + ⊗ ) ( )

p W W I W

W

I B B B FM FM

FM BFM BFM FM

2 2 2

2 , 5.5

2
1 2 1 4

5

where =B FFT is the left Cauchy-Green deformation tensor, and = ∂
∂Wi
W
Ii
( { }∈i 1, 2, 4, 5 ). When the material is undeformed

( =F I) and stress free,

⎪

⎪⎧⎨
⎩

= +
+ = ( )

p W W

W W

2 4

2 0
,

5.6

0
1
0

2
0

4
0

5
0

where the superscript 0 indicates that the quantities are evaluated at the ground state, where = =I I 31 2 , = =I I 14 5 .
For infinitesimal deformations, three independent elastic parameters, i.e., μT , μL and EL, are required to describe the

mechanical behavior of the incompressible TI solid, as noted earlier. Merodio and Ogden (2003, 2005) have presented the
conditions to ensure the compatibility between the linear elastic and hyperelastic models, which can be written as (Murphy,
2013)

⎧
⎨
⎪⎪

⎩
⎪⎪

μ
μ

μ μ

+ =
+ + =
+ + = + − ( )

W W

W W W

W W W E

2 2

2 2 2

4 16 16 4

,

5.7

T

L

L T L

1
0

2
0

1
0

2
0

5
0

44
0

45
0

55
0

where Wij is ∂ ∂ ∂W I I/ i j
2 ( ){ }∈i j, 1, 2, 4, 5 .
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Murphy (2013) has noted that W should include both I4 and I5 to meet the initial condition given by Eq. (5.7). Fur-
thermore, the strain-energy function may be written in the following form:

μ μ= ( ) + − ( − − ) ( )W I I I I,
2

2 1 . 5.8
T L

1 4 4 5-

Eq. (5.8) is compatible with the linear elastic model. Bearing Eq. (5.8) in mind, Murphy (2013) has generalized the
material model proposed by Humphrey-Yin (1987) to the following form, which is used in this study

⎡⎣ ⎤⎦ ⎡⎣⎢ ⎤⎦⎥
μ μ μ μ μ= − + + − − + − ( − − ) ( )

( − ) ( − )W
c

e
E

c
e I I

2
1

4
2

1
2

2 1 .
5.9

T c I L T L c I T L

2

3

4

1
4 52 1 4 4

1/2 2

where >c 02 and >c 04 are the isotropic and anisotropic strain-hardening parameters, respectively, and = ⋅I M CM4 is the
squared stretch in the direction of the fibers. To simplify these expressions, we will use A, B and C to denote μ

2
T , μ μ−

2
T L and

μ μ+ −E 4
2

L T L , respectively. Importantly, when the parameter C ¼0, the effect of the hardening parameter c4 will not apply.
Using the strain-energy function Eq. (5.9), we can compute the elastic moduli explicitly as (e.g., see Destrade, 2015)

( ) ( )δ δ δ δ= + + [ +

+ + + + ] + + ( )

A W B W m m W m m

B m m B m m B m m B m m W B B W m m m m

Bm Bm2 2 2

4 4 , 5.10
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5.3. An analytical solution to predict the speed of a shear wave in a deformed TI solid

In this subsection, an analytical solution is derived to predict the effects of a finite deformation in a soft material on the
propagation of the SH wave (Fig. 2b). In Sections 3 and 4, we showed the presence of the ECE and the quasi-plane waves
generated at a high Mach number. Therefore, in this section, we consider the propagation of the plane waves of the form
(Destrade et al., 2010a, 2010b)

⎪

⎪

⎧
⎨
⎩ δ

=
= ( )

(^ ⋅ − )

(^ ⋅ − )

e

p ikPe

u U
,

5.12

ik vt

ik vt

k x

k x

where U is the amplitude of the wave (without loss of generality, U is taken as a unit vector), k̂ is the unit vector in the
direction of wave propagation, k is the wave number, v is the phase velocity, and P is a scalar.

Inserting u and δp into the incremental equations of equilibrium Eq. (5.1) gives

( ) ρ^ − ^ = ( )P vQ k U k U, 5.13
2

where [ (^)] = ^ ^Q A k kk ij piqj p q0 is the acoustic tensor. The constraint of incremental incompressibility given in Eq. (5.1) becomes

⋅^ = ( )U k 0, 5.14

which means that the wave is purely transverse. Taking the dot product of Eq. (5.13) with k̂ gives

( )= ^⋅ ^
( )P k Q k U. 5.15

Inserting Eqs. (5.15) and (5.14) into Eq. (5.13), we arrive at the following symmetric eigenvalue problem

( ) ( )( ) ρ− ^ ⊗ ^ ^ − ^ ⊗ ^ = ( )vI k k Q k I k k U U. 5.16
2

Taking the dot product of Eq. (5.13) with U together with the expression of [ (^)]Q k ij gives the expression of the wave speed

( )ρ = ⋅ ^ = ^ ^
( )v A k k U UU Q k U . 5.17piqj p q i j

2
0

Recall that x3 is aligned with the fibers so that = ( )M 0, 0, 1 . We assume that the direction of the moving source is along
x2, in line with the particulars of the SSI technique. In this case, the polarization direction of the SH wave is also along x2, i.e.,

= ( )U 0, 1, 0 . The direction of the wave propagation lies in the −x x1 3 plane and is given by, for example, θ θ^ = ( )k sin , 0, cos .
As shown in Fig. 11, the homogeneous state of deformation in the region of interest can be described by
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,

5.18

1 1 1

2 2 2

3 3 3

where λ1, λ2 and λ3 are the principal stretch ratios. The deformation gradient tensor F corresponding to this deformation state
is

λ λ λ= ⊗ + ⊗ + ⊗ ( )F e E e E e E , 5.191 1 1 2 2 2 3 3 3

where ei and αE ( ){ }α ∈i, 1, 2, 3 are the base vectors of the material and spatial configurations, respectively. The constraint
of incompressibility, =Fdet 1, yields λ λ λ = 11 2 3 . For the strain-energy function Eq. (5.9), the phase velocity v is determined
from Eq. (5.17) as

⎛
⎝⎜

⎞
⎠⎟ρ λ θ λ λ λ λ θ= + [ + + − − ( + )]

( )
λ( − ) ( − ) ( − )v Ae Ae B Ce B2 sin 2 4 2 1 1 2 2 cos ,

5.20
c I c I c2 3

1
2 2 3 1

3
3
2

2
2

3
2 22 1 2 1 4 3 2

where λ λ λ= + +I1 1
2

2
2

3
2.

Eq. (5.20) clearly shows how the shear wave speed depends on the material parameters and the deformation of the
material. Based on Eq. (5.20), an inverse approach can be established to determine the constitutive parameters, as shown in
Section 6 in detail. In the absence of deformation, λ λ λ= = = 11 2 3 , and Eq. (5.20) reduces to

ρ μ θ μ θ= + ( )v sin cos , 5.21T L
2 2 2

which is consistent with Eq. (2.9) when taking θ θ^ = ( )k sin , 0, cos .
In the practical use of the SSI technique, the shear wave speeds in the directions along (θ = 0o) and perpendicular

(θ = 90o) to the fibers are usually measured. After inserting θ = 90o and θ = 0o into Eq. (5.20), the speeds of the shear waves
in these two directions are given by

ρ λ= ( )( − )v Ae2 , 5.22T
c I2 3

1
22 1

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
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( )
λ( − ) ( − )v Ae B Ce B2 4 2 1 1 2 2 ,

5.23
L

c I c2 3 1

3
3
2

2
2

3
22 1 4 3 2

where vL and vT are the speeds along and perpendicular to the fibers, respectively.
To further illustrate the dependence of the shear wave speed given in Eqs. (5.22) and (5.23) on the deformation state, we

now write λ λ=2 and λ λ= ξ−
1 , so that λ λ= ξ−( − )

3
1 because of the constraint of incompressibility. When compression is im-

posed along x2, the value of ξ should be in the range of ξ< <0.5 1, with the lower bound corresponding to uni-axial
compression/equi-biaxial deformation and the upper bound to plane strain deformation. Fig. 12 shows the variation of
ρ μv /T T

2 and ρ μv /L L
2 with ξ for different λ. It can be seen that ξ exerts a significant influence only when λ is small for a

propagation direction perpendicular to the fibers, e.g., λ = 0.75. This conclusion is consistent with that of Jiang et al. (2015a)
for isotropic soft materials. However, when the propagation direction is along the material symmetric axis, ρ μv /L L

2 sig-
nificantly depends on ξ, even when the deformation is small, e.g., λ = 0.9. Moreover, greater values of EL correspond to more
significant effects of ξ on ρ μv /L L

2 . Our analytical solutions given by Eqs. (5.22) and (5.23) not only enable evaluation of the

Fig. 11. (a) Illustration of the original and deformed configurations of the region of interest; (b) illustration of the wave vector.
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extent to which the deformation affects the wave velocities and the determination of the anisotropic parameters but also
allow development of an inverse approach to determine the hyperelastic parameters of an incompressible TI soft material,
as shown in detail in Section 6.

6. Inverse method to determine the linear and hyperelastic parameters of TI soft materials

In Sections 3–5, we investigated the ECE in a TI soft medium and the propagation of shear waves in a deformed material.
Based on the theoretical and computational results, an inverse approach can be proposed to infer the anisotropic and
hyperelastic parameters of an incompressible TI material.

6.1. Determination of anisotropic parameters μL, μT and EL

Three elastic parameters, μL, μT and EL, are required to describe a linear elastic incompressible TI soft material. The
existence of the ECE in an anisotropic soft medium allows evaluation of μL and μT by using the correlation between the speed
of the plane shear waves and the material parameters. Several authors have managed to measure μL and μT for skeletal
muscles (Gennisson et al., 2010), skin (Luo et al., 2015), and kidneys (Gennisson et al., 2012) by using the SSI technique.

Fig. 12. Dependence of the shear wave velocities vL and vT on parameter ξ for different λ.
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However, no effort has been made to infer the parameter EL of soft tissues, which may be altered by injury or disease, by
using the SSI technique. Our analysis in Section 4 shows that for α = °45 , quasi-plane waves can be formed when the Mach
number is high, thus enabling determination of C or EL by measuring the speed of the quasi-plane waves along the direction
of π π^ = ( ( ) ( ))k sin /4 , 0, cos /4 , as denoted by °vqSV ,45 .

Based on Eq. (4.5), the elastic parameter C or EL can be determined through the following relations:

( )ρ μ

ρ μ

= −

= − ( )
°

°

C v

E v

2

4 . 6.1

qSV L

L qSV T

,45
2

,45
2

6.2. Determination of the hyperelastic parameters c2 and c4

When the propagation direction of the shear wave is perpendicular to the fibers, we introduce the quantities λ and ξ and
rewrite Eq. (5.22) as follows

ρ λ= ( )( )λ λ λ ξ( + + − ) −ξ ξ− − −v Ae2 . 6.2T
c2 3 22 2 2 2 1

As explained previously, the transverse shear modulus μT can be determined from the measurements of vT . Furthermore,
the hardening parameter c2 can be determined from the equation

⎛
⎝⎜

⎞
⎠⎟

( )λ λ λ
=

+ + − ( )

ρ λ
μ

ξ ξ− − −

ξ

c
ln

3
.

6.3

v

2 2 2 2 1

T
T

2 2

When the propagation direction of the shear wave is parallel to the fibers, Eq. (5.23) can be rewritten as follows:

ρ λ λ λ λ= [ + + ( − ) − ( + )] ( )( )λ λ λ λ ξ ξ ξ( + + − ) ( − ) − − −ξ ξ ξ− − − −v Ae B Ce B2 4 2 1 2 2 , 6.4L
c c2 3 1 1 2 2 2 2 22 2 2 2 1 4 1 2

In principle, parameter c4 can be determined from Eq. (6.4) when parameter ≠C 0 as
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It should be noted that in an in vivo measurement using the SSI technique, λ3 is usually in the vicinity of 1, and therefore,
parameter c4 based on Eq. (6.5) will be very sensitive to data errors. However, in an in vitro or ex vivo measurement, a pre-
deformation may be imposed along the fiber direction, and thus, c4 may be obtained with good accuracy by using Eq. (6.5)
and the SSI technique.

6.3. Properties of the solutions to the inverse problem

Determining the anisotropic and hyperelastic parameters of soft tissues from speed measurements is an inverse problem.
The sensitivity of the identified solutions to data errors can be assessed by introducing the condition number. The condition
number for the determination of μL, μT and EL is 2, thus indicating that a 3% error in the measured wave velocity will lead to a
6% error in the identified solutions.

We then validate the inverse method by using numerical experiments. In Fig. 8d, we plot the normalized displacements
of four characteristic points for =C 62.5kPa. All of the points are located in the plane perpendicular to the movement
direction of the shear source. Two points are located on the x2-axis (perpendicular to material symmetric axis), whereas the
other two are located on the x3-axis. The distance between every two points is Δ =d 2.0 mm. To measure the velocities of the
shear waves, the time delays of the peaks on the curves, denoted by Δ ∥tSH, and Δ ⊥tSH, , are measured. Then, the velocities can
be calculated with = Δ Δ⊥ ⊥v d t/SH SH, , and = Δ Δ∥ ∥v d t/SH SH, , , respectively. The time delay calculated by the FEA is shown in
Fig. 8d, i.e., Δ =⊥t 0.69 msSH, and Δ =∥t 0.40 msSH, . Thus, we have =⊥v s2.9 m/SH, and =∥v s5.0 m/SH, . From Eq. (4.4), we deduce
the material parameters μT and μL as μ = 8.4 kPaT and μ = 25.0 kPaL , respectively, results in good agreement with the input

Table 2
A comparison of the identified parameter C using Eq. (6.1) with those input in the numerical experiments.

Input C (kPa) Time delay of the
qSV mode (ms)

°vqSV ,45

(m/s)
Identified C (kPa)

62.5 0.262 7.63 66.4
0 0.408 4.90 !1.98
!21.875 0.550 3.64 !23.5
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parameters used in the FEA (Table 1).
In Fig. 10g-i, we plot the normalized displacements for P1 and P2 along the direction of the wave vector because they are

also tracked in the SSI technique. From the figures, we obtain the time delays of the peaks on the curves. Furthermore, the
shear wave speeds °vqSV ,45 are calculated, and the parameters C are deduced according to Eq. (6.1). The results for the three
cases are listed in Table 2. The parameters C (or EL) deduced from the measured speeds match those input into the FEA well,
thus indicating that our inverse approach is effective. The in vivo determination of the EL of soft tissues using elastography
remains challenging, but our method has great potential for practical use, as demonstrated in Part II of this paper.

In the determination of μT , μL and EL, the deformation of soft tissues caused by contact with the ultrasound probe may
lead to errors. Our analytical solutions given by Eqs. (5.22) and (5.23) allow quantitative estimation of the effects of the soft
tissue deformation. For instance, in the determination of μT , if we take the hardening parameter =c 32 as an example, then a
deformation of λ = 0.8 may lead to an error up to 100% in the measured μT . Thus, the analytical solutions proposed here
provide guidelines for controlling the effects of deformation on the measurement of anisotropic parameters by using the SSI
technique.

The condition numbers that measure the sensitivity of the isotropic strain-hardening parameter c2 and anisotropic
parameter c4 to the errors in ρ μv /T T

2 and ρ μv /L L
2 in analytical form are given by
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respectively. Fig. 13 plots of the condition numbers according to Eqs. (6.6) and (6.7), which show that parameter λ plays an
important role.

To obtain a more reliable evaluation of parameter c2, a smaller λ (larger deformation) should be used in practical mea-
surements. Interestingly, Eq. (6.7) reveals that the stability of the identified c4 depends only on λ3, in addition to the material
parameters, regardless of the deformation state. In this sense, to obtain a reliable evaluation of c4, λ‖ − ‖13 should be suf-
ficiently large. Moreover, Eq. (6.7) and Fig. 13 indicate that the identified c4 may be sensitive to data errors for a material
with a small μC/ L ratio.

7. Concluding remarks

When a source is moving at a high speed (e.g., supersonic speed), shear-wave Mach cones may be formed and quasi-
plane waves may be generated in a soft medium. This phenomenon is termed the ECE and has been studied in isotropic soft
solids, thus forming the theoretical basis of the SSI method (Bercoff et al., 2004a, 2004b). In this paper, we investigated the
ECE in an incompressible TI solid for the first time because many soft tissues belong to this class of materials. In summary,
the following key results were obtained in Part I of the paper.

First, both a theoretical analysis and computational studies were performed to elucidate the salient feature of the
ECE in an incompressible TI solid. Our results clearly demonstrate that the shear-wave Mach cones are generated by the
moving source and quasi-plane waves are formed at high Mach numbers. These results have not been reported in
previous studies and form the theoretical basis for the use of the SSI technique to characterize the TI soft tissues. In
particular, over the past several decades, a number of analytical solutions have been proposed to predict the speeds of
plane shear waves for different types of anisotropic solids (Carcione, 2007). These analytical solutions, together with
the existence of the ECE and its salient features, as revealed in this paper, enable simple correlations between the shear
wave speed and the material parameters to be obtained. These results show that not only μT and μL but also EL may be
determined from simple relations.

Second, we investigated the propagation of a shear wave in a deformed incompressible TI soft medium. On the
basis of the theory proposed by Ogden (2007) and a constitutive model presented by Murphy (2013), we derived
analytical solutions revealing the correlation among the shear wave speeds, material parameters and the deformation
of the solid.

Third, based on the theoretical solutions presented above, we proposed an inverse approach to determine the anisotropic
and hyperelastic parameters of an incompressible TI soft material. We showed that the initial shear moduli μT and μL, the
elastic modulus EL and the hyperelastic parameters c2 and c4 can be determined with our inverse approach.

Finally, we performed both a theoretical analysis and numerical experiments to investigate the properties of the solu-
tions to the present inverse problem. Our theoretical analysis, in which the concept of the condition number is introduced,
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enabled us to address the extent to which the identified solutions are sensitive to data errors. The numerical experiments
indicate that, besides μT and μL, the material parameter EL can also be reliably determined by using the proposed inverse
method.

This study focused on the ECE in an incompressible TI solid. Understanding the ECE in general anisotropic solids is by no
means trivial because of the complexity of the dynamic Green function and the challenge in building the computational
models. This issue is of great importance considering that the SSI technique may be used to characterize soft tissues obeying
other anisotropic models. Besides, this paper was concerned with the body wave induced by ARF. The propagation of surface
waves on an isotropic or anisotropic elastic half-space has received considerable attention in the literature (Achenbach,
1973; Fu et al., 2013). The investigation of the surface waves induced by the moving ARF is important for characterizing the
superficial properties of soft tissues and warrants further research.
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Fig. 13. Plot of the condition number for c2 and c4 . (a) ξ = 0.65, and (b) ξ = 0.75. The parameters adopted are (c) μ =C/ 4.36L and (d) μ =C/ 0.36L .

G.-Y. Li et al. / J. Mech. Phys. Solids 96 (2016) 388–410408



Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.jmps.
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