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a b s t r a c t 

We investigate the stability of the deformation modeled by the opening angle method, often used to 

give a measure of residual stresses in arteries and other biological soft tubular structures. Specifically, we 

study the influence of stiffness contrast, dimensions and inner pressure on the onset of wrinkles when 

an open sector of a soft tube, coated with a stiffer film, is bent into a full cylinder. The tube and its 

coating are made of isotropic, incompressible, hyperelastic materials. We provide a full analytical expo- 

sition of the governing equations and the associated boundary value problem for the large deformation 

and for the superimposed small-amplitude wrinkles. For illustration, we solve them numerically with a 

robust algorithm in the case of Mooney–Rivlin materials. We confront the results to experimental data 

that we collected for soft silicone sectors. We study the influence of axial stretch and inner pressure on 

the stability of closed-up coated tubes with material parameters comparable with those of soft biologi- 

cal tubes such as arteries and veins, although we do not account for anisotropy. We find that the large 

deformation described in the opening angle method does not always exist, as it can become unstable for 

certain combinations of dimensions and material parameters. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

One of the most effective ways to demonstrate the existence

f residual stresses in biological structures is to isolate a cylindrical

hape and cut it axially. Invariably it will open up, revealing that

he cylinder was under a large circumferential stress, see Fig. 1 . 

In turn, one of the most successful advances of non-linear elas-

icity is the modeling of this stress through the so-called opening

ngle method . By measuring how much a tube opens up into a sec-

or, one can reconstitute a backward scenario whereby the struc-

ure was initially an open circular sector, subsequently bent into

 complete tube by the action of what can now be identified as a

esidual stress, see Fig. 2 . Hence the opening angle gives a measure

f the level of residual stress for an assumed model of material

ehavior. 

Of course many questions remain open at the end of the pro-

ess and here we address the following: Is the bending deforma-

ion always possible, or is it limited by loss of stability with respect
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o small-amplitude static wrinkles? Moreover, can the instability

e overcome by pressurization of the reconstituted tube? These is-

ues are most relevant to Finite Element simulations of residually-

tressed tubes, where buckling should be avoided as much as

ossible. 

Here we first formulate in Section 2 the equations governing

he large deformation of a coated circular sector into an intact

ube, which is possibly subjected to an internal hydrostatic pres-

ure and a uniform axial stretch. We then specialize the analysis to

he case when the coating and the substrate are made of different

ooney–Rivlin materials, because the stress components can then

e computed analytically. We pay particular attention to writing

he boundary conditions properly (hydrostatic pressure on inner

ace, perfect contact at the interface, traction-free on outer face). 

In Section 3 we present the algorithm implemented to solve the

ncremental problem of static wrinkles superimposed onto large

ending, axial stretch, and pressurizing. It relies on the Stroh for-

ulation and the Surface Impedance Matrix method, and is robust

nd unaffected by numerical stiffness. 

Finally, Section 4 presents experimental and numerical results:

rst our own, achieved by gluing a silicone coating on a urethane

ubstrate; and second those coming from the literature on soft bi-

logical tubes, although of course those cannot be accurately mod-
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Fig. 1. Cutting biological cylindrical structures radially reveals that they were under circumferential residual stresses. Left: slice of an Irish Ash tree; Middle: a green chilli 

pepper; Right: equatorial slice of rat heart (taken from Omens and Fung (1990) ). (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

Fig. 2. The opening angle method: (a) An initially stress-free coated sector is subject to axial stretch and bent into (b) a residually-stressed full tube. It can also be subject 

to (c) an internal pressure. But is that large deformation stable? 
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eled as isotropic. In our experiments, we show that no wrinkles

form when a sector of opening angle 120 ° is closed, while wrin-

kles form before a sector of opening angle 240 ° is closed. Applying

the aforementioned algorithm, we show numerically that the crit-

ical opening angle at which wrinkles form is 209 ° and that four

wrinkles should appear along the circumference, which is consis-

tent with the experimental results. Applying the algorithm for di-

mensions and material parameters comparable (with the limitation

that anisotropy is not accounted for) to those of a rabbit artery,

we show that, in the absence of internal pressure, wrinkles form

for an opening angle of 320 °, but that these wrinkles can be elim-

inated by applying an internal pressure or can be delayed by the

presence of an axial stretch. These results are in line with intuition

and experiments made on biological tubes. 

2. The opening angle method 

Consider the sector of a soft cylindrical tube with geometry

delimited in the cylindrical coordinate system { R, �, Z } (and or-

thonormal basis { E R , E �, E Z } ) in its natural state B 0 by the region

A ≤ R ≤ C, −(2 π − α0 ) / 2 ≤ � ≤ (2 π − α0 ) / 2 , 0 ≤ Z ≤ L, (1)

where A, C are the radii of the inner and outer faces of the sector,

respectively, L is its height, and α ∈ (0, 2 π ) is the opening angle .
0 
he stress-free circular sector consists of a stiff thin layer placed at

he inner side ( A ≤ R ≤ B ), glued onto a thicker and softer layer

ocated in the outer region B ≤ R ≤ C , where B is the radius of the

nterface between two layers, as shown on Fig. 2 a. From now on,

he superscripts ( c ) and 

( s ) refer to the coating and the substrate,

espectively. 

The sector is deformed into an intact (circular cylindrical) tube

ith respect to a cylindrical coordinate system { r, θ , z } (with or-

honormal basis { e r , e θ , e z }) by the following mapping ( Destrade

t al., 2010b ) 

 = r(R ) , θ = k �, z = λz Z, (2)

here 

 = 

2 π

2 π − α0 

> 1 (3)

s a measure of the opening angle and λz ≥ 1 is the uniform axial

tretch. We denote this configuration by B r and refer to it as the

esidually-stressed configuration . The geometry of the tube is now 

 ≤ r ≤ c, 0 ≤ θ ≤ 2 π, 0 ≤ z ≤ �, (4)

here a = r(A ) , b = r(B ) , c = r(C) and � = λz L is the current tube

ength as shown on Fig. 2 . 
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The associated deformation gradient F is 

 = 

d r 

d R 

e r � E R + 

kr 

R 

e θ � E � + λz e z � E Z . (5) 

he incompressibility condition, det F = 1 , and one of the geomet-

ic requirements, e.g. r(A ) = a, impose 

(R ) = 

√ 

R 

2 − A 

2 

kλz 
+ a 2 . (6) 

Taking into account the diagonal form of deformation gradient,

e introduce the principal stretches 

1 = 

R 

kλz r 
, λ2 = 

kr 

R 

, λ3 = λz , (7)

uch that λ1 λ2 λ3 = 1 to satisfy incompressibility. 

We take both coating and substrate to be made of isotropic hy-

erelastic materials with strain energy densities W 

( c ) , W 

( s ) , respec-

ively, so that the Cauchy stress σ is diagonal in the e i �e j basis,

ith components 

(l) 
rr = −q (l) + λ1 

∂W 

(l) 

∂λ1 

, σ (l) 
θθ

= −q (l) + λ2 
∂W 

(l) 

∂λ2 

, 

(l) 
zz = −q (l) + λ3 

∂W 

(l) 

∂λ3 

. (8) 

ere l = c, s and q ( l ) are the Lagrange multipliers arising from the

ncompressibility condition. 

In the absence of body forces the only non-trivial equation of

quilibrium is 

∂σrr 

∂r 

(l) 

+ 

σ (l) 
rr − σ (l) 

θθ

r 
= 0 (l = s, c) . (9)

or the boundary conditions, we assume that the inner (coated)

ace of the tube at r = a is under internal pressure P , that there is

erfect bonding between the two layers at the interface r = b, and

hat the outer face at r = c is free of traction: 

(c) 
rr (a ) = −P, σ (s ) 

rr (b) = σ (c) 
rr (b) , σ (s ) 

rr (c) = 0 . (10)

By introducing the following quantities ( Destrade et al., 2010b ),

 ≡ kλz 
r 2 

R 

2 
, x a ≡ kλz 

a 2 

A 

2 
, x b ≡ kλz 

b 2 

B 

2 
, x c ≡ kλz 

c 2 

C 2 
, 

(11) 

e may rewrite the principal stretches in terms of x as λ1 =
 / 
√ 

kλz x , λ2 = 

√ 

kx/λz so that the energy density for fixed

3 = λz may be seen as a function of x only: ̂ W 

(l) (x ) =
 

(l) (1 / 
√ 

kλz x , 
√ 

kx/λz , λz ) for l = s, c. 

Noting that 

(l) 
θθ

− σ (l) 
rr = 2 x ̂  W 

(l) 
,x (x ) (l = s, c) , (12)

ntegrating equilibrium Eq. (9) for each layer, and using boundary

onditions (10) , we find that the inflating pressure P is 

 = 

∫ x b 

x a 

̂ W 

(c) 
,x (x ) 

1 − x 
d x + 

∫ x c 

x b 

̂ W 

(s ) 
,x (x ) 

1 − x 
d x (l = s, c) . (13)

e can also determine the stress components throughout the wall,

s 

(s ) 
rr (x ) = −

∫ x c 

x 

̂ W 

(s ) 
,t (t) 

1 − t 
d t, 

(c) 
rr (x ) = −

∫ x b 

x 

̂ W 

(c) 
,t (t) 

1 − t 
d t −

∫ x c 

x b 

̂ W 

(s ) 
,t (t) 

1 − t 
d t, 

(l) 
θθ

=σ (l) 
rr +2 x ̂  W 

(l) 
,x (x ) , σ (l) 

zz =σ (l) 
rr +λ3 

∂W 

(l) 

∂λ
− λ1 

∂W 

(l) 

∂λ
. (14) 
3 1 o
For a given geometry of an undeformed coated sector in B 0 , the

ollowing quantities are prescribed, 

B = B 

2 /A 

2 − 1 , εC = C 2 /A 

2 − 1 . (15)

hen the physics of the stretched and pressurized closed-up cylin-

er in B r are prescribed by the given strain energy densities ̂ W 

(l) 

or coating and substrate, the given axial stretch λz and the given

nner pressure P . The new geometry is entirely determined by solv-

ng the system of three equations for the three unknowns x a , x b , x c 
omposed by Eq. (13) and the two relations 

 b (εB + 1) = εB + x a , x c (εC + 1) = εC + x a . (16)

hen the state of stress is entirely determined by Eq. (14) . 

For illustration, in this paper we model the substrate and coat-

ng using the Mooney–Rivlin energy density; it reads 

 

(l) = 

1 
2 
C (l) 

1 ( tr (C ) − 3 ) + 

1 
2 
C (l) 

2 

(
tr (C 

−1 ) − 3 

)
, (l = s, c) , (17)

here C (l) 
1 

> 0 and C (l) 
2 

> 0 are material constants and C = F T F is

he right Cauchy–Green deformation tensor. This model is quite

eneral because it recovers, at the same level of approximation

 Destrade et al., 2010a ), the most general model of isotropic, in-

ompressible, third-order weakly non-linear elasticity, 

 = μ tr (E 

2 ) + 

1 
3 

A tr (E 

3 ) , (18)

here E = 2 C + I is the Green–Lagrange strain tensor, μ is the

amé coefficient of linear elasticity, and A is the Landau coefficient

f third-order elasticity (The connections between the constants

re μ = C 1 + C 2 , A = −4 C 1 − 8 C 2 .) For the Mooney–Rivlin material

17) , we have 

̂ 

 

(l) (x ) = 

1 
2 
(C (l) 

1 
+ C (l) 

2 
λ2 

z ) 

(
kx 

λz 
+ 

1 

kλz x 

)
+ constant , (19)

hich provides explicit expressions for the stress components in

q. (14) . Hence 

(s ) 
rr = 

C (s ) 
1 

λ−1 
z + C (s ) 

2 
λz 

2 k 

[ 
(1 − k 2 ) ln 

(
x − 1 

x c − 1 

)
−ln 

(
x 

x c 

)
+ 

1 

x 
− 1 

x c 

] 
, 

(20) 

nd so on for the other components. 

For an example, assume that the coating is � times stiffer than

he substrate, in the sense that C (c) 
1 

= �C (s ) 
1 

, C (c) 
2 

= �C (s ) 
2 

, where

≥ 1 is the stiffness contrast factor. Then we consider how the

tresses are distributed along the radial axis for different stiff-

ess factors �. We take the case where there is no inner pressure

 P = 0 ) and the opening angle is 139 °. In the undeformed geometry

e take A = 13 mm, B = 14 . 5 mm, C = 18 mm. Fig. 3 illustrates the

istribution of stresses along the thickness of the wall of closed-

p cylinders, for a uniform material (� = 1 . 0 ), and for two-layered

olids with moderately ( � = 3 . 0 ) and significantly ( � = 7 . 0 ) stiffer

oatings compared to substrates. We clearly observe the jump in

he circumferential stresses at the interface between coating and

ubstrate, as expected. 

. Wrinkling of a coated sector 

Here we study the stability of a coated sector closed into a

ressurized cylinder. We signal the onset of instability by the ex-

stence of small-amplitude wrinkles, solutions to the incremen-

al equations of equilibrium. From experimental observations, we

now that they should be varying sinusoidally along the circum-

erence of the tube, with amplitude decay from the inner face to

he outer face. The analysis for the existence of such wrinkles can

e put together from the results of the previous section and those

f Destrade et al. (2010b ) and we omit the details to save space. 
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Fig. 3. Non-dimensional radial σ rr and circumferential σ θθ stresses through two-layered wall of coating (red) and substrate (blue) modeled as Mooney–Rivlin materials with 

corresponding material constants C (c) 
i 

and C (s ) 
i 

related by C (c) 
i 

= �C (s ) 
i 

( i = 1 , 2 , j = 0 , 1 , 2 ), where � ≥ 1 is the stiffness contrast between the coating and the substrate. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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In short, the wrinkles exist when the following boundary value

problem is solved for z (l) = z (l) (x ) , ( l = s, c), the 2 × 2 Hermitian

surface impedance matrix ( Destrade et al., 2009 ). 

(i) Initial condition: z (s ) (x c ) = 0 ; 

(ii) Numerical integration of the differential Riccati matrix equa-

tion 

d 

d x 
z (l) = 

1 

2 x (1 − x ) 

[ 
z (l) G 

(l) 
2 

z (l) + i 
(
G 

(l) 
1 

)† 
z (l) − i z (l) G 

(l) 
1 

+ G 

(l) 
3 

] 
,

(21)

in the substrate ( l = s ), from x c to x b ; 

(iii) Interfacial condition: z (c) (x b ) = z (s ) (x b ) ; 

(iv) Numerical integration of the differential Riccati matrix Eq.

(21) in the coating ( l = c), from x b to x a ; and 

(v) Target condition: 

det 

(
z (c) (x a ) + P 

[
1 i n 

−i n 1 

])
= 0 . (22)

In Eq. (21) , † denotes the Hermitian transpose and the Stroh

sub-matrices G i have components ( Destrade et al., 2010b ), 

G 1 = 

[
i −n 

−n (1 − σ ) −i (1 − σ ) 

]
, G 2 = 

[
0 0 

0 1 /α

]
, 

G 3 = 

[
κ11 i κ12 

−i κ12 i κ22 

]
, (23)

where the superscript “( l )” is understood, n denotes the wrinkling

mode (number of wrinkles in the circumference), and 

κ11 = 2 β + 2 α(1 − σ ) + n 

2 [ γ − α(1 − σ ) 2 ] , 
12 = n (2 β + γ + α(1 − σ 2 ) , 

22 = γ − α(1 − σ ) 2 + 2 n 

2 (β + α(1 − σ ) . (24)

ere, in general, 

α = 

2 x ̂  W ,x (x ) 

k 2 x 2 − 1 

, γ = k 2 x 2 α, 

= 2 x 2 ̂ W ,xx (x ) + x ̂  W ,x (x ) − α, σ = σrr /α, (25)

nd in particular for the Mooney–Rivlin model, 

= (C 1 λ
−1 
z + C 2 λz ) 

1 

kx 
, γ = (C 1 λ

−1 
z + C 2 λz ) kx, β = 

1 
2 
(α + γ ) .

(26)

Finally, the derivation of the target condition (22) is detailed in

he appendix. 

. Experimental & numerical results 

Here we implement the stability analysis described in the pre-

ious section for two cases: polymers and biological tissues. The

lgorithm is illustrated in Fig. 7 (a). Essentially, we implement the

teps (i) –(iv) and iterate over α0 until the target condition (v) is

eached. We denote by αcr = α0 the critical opening angle at which

rinkles form when the sector is closed into an intact tube, i.e.,

he value of α0 when the target condition is reached. 

.1. Results for polymers 

For our first experiment, we used artificial materials, namely

elatively stiff silicone (red) for the coating, urethane (black) and
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Fig. 4. (a) Tensile tests for red silicone and black urethane. The early part of the data for silicone was discarded as unreliable and the curve-fitting to the Mooney–Rivlin 

models was done over the 1.5 ≤ λ ≤ 5.0 range indicated by the dashed lines, yielding a relative error of less than 5%. (b) Sector with opening angle 120 °, black urethane 

substrate and red silicone coating. No wrinkles form when the sector is closed into an intact tube. (c) Sector with opening angle 240 °, black urethane substrate and red 

silicone coating. Six wrinkles form shortly before the sector is closed into an intact tube. (d), (e) Similar results for sectors with white silicone substrate and red silicone 

coating, and opening angles 120 ° and 240 °, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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ery soft silicone (white) for the substrate. We subjected each ma-

erial to a tensile test using a MTS electromechanical material char-

cterization machine. We then determined the Mooney–Rivlin con-

tants by curve-fitting over a useable range of data, and found that

 

(c) 
1 

= 0 . 98 , C (c) 
2 

= 0 . 021 (MPa) for the red silicone, and C (s ) 
1 

= 0 . 14 ,

 

(s ) 
2 

= 0 . 41 (MPa) for the black urethane, see Fig. 4 (a). We then

lued a 1.6 mm thick red silicone layer onto a 26.9 mm thick black

rethane sector ( B = 23 . 93 mm, C = 50 . 83 mm) and produced two

oated sectors, one with opening angle 120 °, the other with open-

ng angle 240 °, see Fig. 4 (b) and (c). We produced similar sectors

sing white urethane as the substrate, see Fig. 4 (d). 

We found that, for the black urethane substrate, no wrinkles

ormed when the former sector was closed ( Fig. 4 (b)), while for

he latter sector six wrinkles formed shortly before the sector be-

ame intact ( Fig. 4 (c)). Thus we would expect the critical opening

ngle at which wrinkles form when the sector becomes intact to

e somewhere between 120 ° and 240 °. To check this assertion, we

erformed the stability analysis described in the previous section

or the same dimensions and material parameters as in the exper-

ments. We found that the critical opening angle was 209 ° with

orresponding mode number n = 4 , which supports our previous

ypothesis. 

.2. Results for soft tissues 

Here we perform the stability analysis using the dimensions

nd material parameters which are of the same order of magni-

ude as those of a rabbit carotid artery, as collected by Holzapfel

t al. (20 0 0) . 

The artery consists of three layers: the intima, the media and

he adventitia. However, the intima is very thin and not very

tiff (at least in healthy young individuals), and so we can use

ur two-layer model with the dimensions ( Holzapfel et al., 20 0 0 )

 − A = 0 . 26 mm, C − B = 0 . 12 mm, A = 1 . 43 mm, along with an

xial stretch λz = 1 . 695 . For the material parameters, Holzapfel

t al. (20 0 0) used an anisotropic model. Here we have only con-

idered isotropic models, and so we set to zero Holzapfel et al.’s

nisotropic parameters to make a (somewhat arbitrary) connection

ith their measurements. Moreover, Holzapfel et al. (20 0 0) did

ot consider a dependence of W on the second invariant of strain
r (C 

−1 ) , so here we take C (c) 
2 

= 0 , C (s ) 
2 

= 0 . For the other (neo-

ookean) parameters, we have C (c) 
1 

= 3 kPa, C (s ) 
1 

= 0 . 3 kPa, in line

ith Holzapfel et al. (20 0 0) values of the shear modulus for the

rtery’s elastin matrix. 

We perform the stability analysis over a physiological pressure

ange ( Dominguez, 1927 ) of 0–170 mm Hg. We plot the results in

ig. 7 (c) for the non-dimensional measure of pressure ˆ P = P/C (s ) 
1 

.

hen the physiological pressure range corresponds to 0 ≤ ˆ P ≤ 75 . 5 .

First we plot the curves giving the critical opening angle αcr 

gainst the pressure ˆ P for increasing values of the mode number 

 = 2 , 3 , 4 , . . . . Each curve is a bifurcation plot: at a given pressure
ˆ 
 , a tube with opening angle larger than αcr will buckle when it

s bent into an intact closed tube; in order not to buckle, a sector

ust have an opening angle which is less than the smallest crit-

cal angle from all curves. Here we find that all curves for mode

umbers n ≥ 5 are all below those for n = 2 , 3 , 4 and are virtually

ndistinguishable one from another, see Fig. 5 . Hence our analysis

oes not allow us to determine the mode number precisely here,

n contrast to the scenario of Section 4.1 . 

From the plots we see that when there is no internal pressure

 ̂

 P = 0 ), only sectors with an opening angle greater than αcr � 320 ◦

ill buckle when closed into an intact tube. This value is sig-

ificantly above the recorded opening angle for the rabbit artery

 Holzapfel et al., 20 0 0 ), which was 160 °. Hence we would expect

provided the crudeness of our modeling arteries here is over-

ooked) that the rabbit artery is smooth when it is not subject to

nternal pressure. 

We also observe that as the internal pressure increases, the crit-

cal opening angle increases, with asymptotic behavior αcr → 360 ◦

s ˆ P → ∞ . Hence buckling can be eliminated by applying an in-

ernal pressure, which is in line with our intuition and with, for

xample, experiments on a rat’s pulmonary artery ( Fung and Liu,

992 ), see Fig. 7 (b). 

For comparison, we also plot the curves obtained in the case of

o axial stretch, λz = 1 , see Fig. 6 . We find that the axial stretch

akes the sector more stable with respect to bending into an in-

act tube (the values of αcr are higher when λz > 1 than when

z = 1 ). To complete the picture, we also provide the plots of

he variations of the critical circumferential stretch λa (contraction

tretch on the inner face of the intact tube). 
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Fig. 5. (a) Plots of the critical opening angle αcr for several mode numbers n versus the non-dimensional pressure ˆ P using the material parameters and dimensions compa- 

rable with those of a rabbit artery ( Holzapfel et al., 20 0 0 ), when it is subject to an axial stretch λz = 1 . 695 . (b) Plots of the critical circumferential stretch λa on the inner 

face of the intact tube at buckling versus the pressure ˆ P . 

Fig. 6. (a) Plots of the critical opening angle αcr for several mode numbers n versus the non-dimensional pressure ˆ P using the material parameters and dimensions compa- 

rable with those of a rabbit artery ( Holzapfel et al., 20 0 0 ), when it is not subject to an axial stretch ( λz = 1 . 0 ). (b) Plots of the critical circumferential stretch λa on the inner 

face of the intact tube at buckling versus the pressure ˆ P . 
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5. Discussion 

Often it is assumed that a stable deformation of a sector into

an intact tube exists. These “opening angle” deformations are then

used to estimate the residual stresses in the material ( Garcia-

Herrera et al., 2016 ). Here we have shown that, depending on the

material properties and dimensions, wrinkling may occur before

the sector becomes intact, which would be followed by further

buckling and creases when the sector is closed. Our results have

important implications for finite element reconstructions of the

opening angle method. First, a stiffer coating will lead to instabili-

ties in finite element simulations, earlier than for a homogeneous

sector ( Destrade et al., 2010b; Garcia-Herrera et al., 2016 ). Second,

if the wrinkles occur, then our analysis is a first step towards pro-

viding meaningful precursors to creases (see Figs. 1 and 7 (b)). 

We also showed that wrinkles can be eliminated by applying

an internal pressure, as has been confirmed in experiments. 
Our method could also be applied to other tissues such as the

sophagus, which is often modeled as a two-layered structured,

nd in which wrinkles and creases have been observed ( Sokolis,

010 ). However, it is important to consider the limitations of our

odel. For example, in the iliac artery of an 81 year old human,

uckling of the intima in the zero-pressure state leading to de-

amination has been observed ( Holzapfel et al., 2005 ). As has been

oted, the intima, one of the three layers of the artery, becomes

hicker and stiffer with age. Evidently, there are residuals stresses

resent leading to buckling, but clearly a three-layer model would

e necessary to investigate such an occurrence. Furthermore, each

ayer of the artery is highly anisotropic due to the presence of col-

agen fibers ( Holzapfel et al., 20 0 0 ), and so a more realistic model

ould reflect this fact. 
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Fig. 7. (a) Flow chart illustrating the algorithm used to find the critical opening αcr 

for given P and n . (b) Rat pulmonary artery at three different states: (A) Intact with 

low internal pressure of 15 mmHg and smooth internal surface; (B) Intact with no 

pressure and buckled internal face; (C) Cut open (image retrieved from Fung and 

Liu (1992) ). (c) Plot of the critical opening angle (for mode n = 4 ) versus the non- 

dimensional pressure ˆ P using the material parameters and dimensions of a rabbit 

artery ( Holzapfel et al., 20 0 0 ). Solid line: axial stretch λ = 1 . 695 , dashed line: λ = 1 . 
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ppendix A. Derivation of the target condition (22) 

At the coating/vacuum interface, the incremental nominal trac-

ion is Otténio et al. (2007) 

 

T e r = 

[
σ∗ + P ( grad u ) T 

]
e r , (27)

here u is the incremental mechanical displacement, and σ∗ is the

auchy incremental stress in the 0 ≤ r ≤ a region. But that space is

nder constant hydrostatic pressure P and has no constitutive law

o speak of, being the vacuum, so that σ∗ ≡ 0 . Also, the displace-

ent gradient has components ( Destrade et al., 2010b ) 

rad u = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

∂u 

∂r 

1 

r 

(
∂u 

∂θ
− v 

)
∂v 
∂r 

1 

r 

(
u + 

∂v 
∂θ

)
⎤ 

⎥ ⎥ ⎥ ⎦ 

, (28) 

n the e i �e j basis. 
For displacements of the form 

 u, v } = { U(r) e i nθ , V (r) e i nθ } , (29)

escribing prismatic wrinkles, the incremental nominal traction is

lso of a similar form: 

 s rr , s rθ } = { S rr (r) e i nθ , S rθ (r) e i nθ } , (30)

here U, V, S rr , S r θ are functions of r only. Then (27) reads 

 

[
S rr 

S rθ

]
= P 

[
rU 

′ 
i nU − V 

]
= P 

[
−U − i nV 

i nU − V 

]
, (31)

t r = a, where for the second equality we used the incremental

ncompressibility equation, 

iv u = 

∂u 

∂r 
+ 

1 

r 

(
u + 

∂v 
∂θ

)
= (rU 

′ + U + i nV ) 
e i nθ

r 
= 0 . (32)

On the other hand, the traction is related to the displacement

y the surface impedance matrix ( Destrade et al., 2009 ): 

 

[
S rr 

S rθ

]
= z (c) 

[
U 

V 

]
. (33) 

n particular, at the r = a interface, we have by (31) 

 

[
−U(a ) − i nV (a ) 
i nU(a ) − V (a ) 

]
= z (c) (a ) 

[
U(a ) 
V (a ) 

]
, (34)

rom which the target condition (22) follows (see Balbi and Ciar-

etta, 2015 for an early, but not entirely correct, derivation of the

arget condition). 
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