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We study what is clearly one of the most common
modes of deformation found in nature, science and
engineering, namely the large elastic bending of
curved structures, as well as its inverse, unbending,
which can be brought beyond complete straightening
to turn into eversion. We find that the suggested
mathematical solution to these problems always
exists and is unique when the solid is modelled as a
homogeneous, isotropic, incompressible hyperelastic
material with a strain-energy satisfying the strong
ellipticity condition. We also provide explicit
asymptotic solutions for thin sectors. When the
deformations are severe enough, the compressed
side of the elastic material may buckle and wrinkles
could then develop. We analyse, in detail, the onset of
this instability for the Mooney–Rivlin strain energy,
which covers the cases of the neo-Hookean model in
exact nonlinear elasticity and of third-order elastic
materials in weakly nonlinear elasticity. In particular,
the associated theoretical and numerical treatment
allows us to predict the number and wavelength of
the wrinkles. Guided by experimental observations,
we finally look at the development of creases,
which we simulate through advanced finite-element
computations. In some cases, the linearized analysis
allows us to predict correctly the number and the
wavelength of the creases, which turn out to occur
only a few per cent of strain earlier than the wrinkles.
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Figure 1. Commissural region of an aortic valve leaflet (porcine heart): undeformed (a,d), bent during valve opening (b,e) and
unbent during valve closure (c,f ). The bottom pictures are the zooms indicated by the dotted squares in the top pictures. They
show thatwrinkles develop in bothmodes, eventually evolving into creases. Reprintedwith permission fromMirnajafi et al. [15].

1. Introduction
Bending and unbending are without a doubt the two most common modes of deformation for
the elastic curved structures found in nature and engineering. Mathematically, large bending and
unbending are actually exact solutions for incompressible, isotropic, nonlinearly elastic circular
sectors, as shown by Rivlin [1]. Over the years, there have been a good number of studies
investigating the bending of a rectangular block into a sector of circular cylinder up to, and
including the possible appearance of wrinkles on the inner face of the resulting sector [2–6]. Very
few works have looked at the stability of the converse problem, the straightening of a sector
into a rectangular block [7,8], or at the stability of the bending into a closed full cylinder [9].
The questions of existence, uniqueness and stability for the continuous problem of bending
and large unbending that can go all the way to eversion (when the inner and outer faces
swap roles) remain scarcely investigated (only a few studies related to the deformation itself
exist [10–13]).

Many works looking at large bending take their motivation from biological applications.
An example can be found in the recent work by Rudykh & Boyce [6] on the super flexibility
of elasmoid fish in bending, due to the multilayered structure of their imbricated scale tissue.
Similarly, researchers wishing to model residual stresses in tubular soft tissues often use the so-
called opening angle method, where the bending of a cylindrical sector into an intact tube creates
large residual stresses—see, for instance, the textbook by Taber [14] for the modelling of residual
stresses in arteries, in the left ventricle and in the embryonic heart.

Wrinkles, in turn, signal the onset of instability, and are often precursors to the development
of creases, which are ubiquitous in nature, see the deformation of a heart valve leaflet in figure 1,
or the deep creases developed on the inner face of a depressurized pulmonary artery [16]. These
latter creases would considerably alter the blood flow during a low pressure episode due to an
upstream blockage and alter the geometry of an artery for a planned surgery. In order to model
creases, we must first discover when the sector buckles on its way to be closed into a full cylinder.
With this ultimate goal in mind, we now embark on a complete resolution of the titular problem.
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In the next section, we recall the exact solution of nonlinear elasticity for the flexure of circular
sectors made of incompressible isotropic solids. We pay particular attention to the unbending
mode, because it can be brought to go beyond the stage where the sector is deformed into a
straight rectangular block. Then the sector becomes an everted sector and the inner and outer
faces exchange roles.

In §3, we present analytical results for the existence and uniqueness of the deformation. It
turns out that bending, unbending and eversion of a cylindrical sector are always possible (and
the solution is unique), provided its strain energy function satisfies the strong ellipticity condition.
We also manage to provide an explicit thin-wall expansion of the results, valid for all strain energy
functions up to the third order in the thickness. Details of the associated calculations are given
in appendix A.

In §4 and appendix B, we summarize our strategy to write down and solve numerically
the boundary value problem of small-amplitude wrinkles superimposed on large bending,
unbending or eversion, leaving the curved faces free of incremental traction. Within the
framework of incremental elasticity [17], we formulate the governing equations and the boundary
conditions using the Stroh formalism. This formulation allows us to implement robust numerical
procedures (surface impedance matrix method, compound matrix method) to overcome the
numerical stiffness arising here.

In §5, we present the results of those numerical procedures for sectors made of Mooney–Rivlin
materials or equivalently, of weakly nonlinear, third-order elastic solids. The results turn out to
be independent of the material constants, and are thus universal to these families of models.
Our analysis of the number of wrinkles forming at the onset of instability is quite detailed and
is consistent with, and thus generalizes, the previously studied special cases of bending of a
rectangular block into a sector, unbending of a sector into a rectangular block, and bending of
a sector into a full cylinder.

In §6, we present the results of table-top and finite-element (FE) experiments of bending,
unbending and everting a cylindrical sector. Both types of experiments reveal the formation of
creases rather than sinusoidal wrinkles, in line with previous results for deforming homogeneous
solids. In both cases, we get period-doubling due to the merging of some creases. The FE
simulations show that the creases appear a bit earlier (a couple of per cent less strain) than the
wrinkles, which are thus not expressed. Nevertheless, the wrinkles analysis still proves useful,
because we find that the number and the wavelength of the creases (counting the creases which
would exist in the absence of period-doubling) predicted by the FE simulations is the same or
close to the number and wavelength of wrinkles predicted by the numerical procedures of §5.
It follows that the linearized analysis can be used to approximate the more computationally
expensive FE simulations of creases, by predicting within a few percents the bifurcation strain,
and the number and wavelength of creases. It also generates the best shape possible for the
perturbation introduced in the numerical creasing analysis. Finally, it forms the basis for the study
of the stability of coated sectors, for which sinusoidal wrinkles are the dominant mode.

2. Large bending, unbending and eversion
We consider a right cylinder sector, initially undeformed and placed in the following region:

A ≤ R ≤ B, −αr ≤ Θ ≤ αr and 0 ≤ Z ≤ L,

where (R, Θ , Z) are the cylindrical coordinates in the reference configuration, with orthonormal
basis (ER, EΘ , EZ). Here, A, B are the inner and outer radii of the undeformed sector, respectively,
L its axial length and 2αr its undeformed or referential angle, related to its opening angle αo through
the relation αo = 2(π − αr) .

By applying appropriate moments and forces (determined later), the sector can be deformed
into a more closed (bending) or more open (unbending) sector, with current axial length � and
deformation angle 2αd.
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Figure 2. The three scenarios covered in this paper for a cylindrical circular sector (second column), which is bent, unbent
or everted (third column) and eventualy buckles on one face (last column).

Hereon, we exclude the possibility of scenarios when αr and αd are exact zeros, which are to be
treated separately using Cartesian coordinate system and different universal solutions as in [3,7],
for instance. Case αr = 0 describes bending of a rectangular block, while case αd = 0 corresponds
to the problem of the sector straightening. Still, we encompass these cases in the limits where
αr � 1 and |αd| � 1. Hence, we have

αr ∈ (0, π ] and αd ∈ [−π , π ]\{0}.
We now introduce κ , a measure of the change in the angles, as

κ = αd

αr
∈
[
− π

αr
,

π

αr

]
\{0}.

Hence, κ > 1 corresponds to bending, κ < 1 corresponds to unbending, and further, κ < 0
corresponds to unbending beyond the straight rectangular configuration, a deformation which
we call eversion from now on. Figure 2 shows sketches of these deformations and where wrinkling
is going to take place.

The deformation can be modelled as

r = r(R), θ = κΘ and z = λzZ, (2.1)

where λz = �/L is the axial stretch, and (r, θ , z) are the cylindrical coordinates in the current
configuration, with orthonormal basis (er, eθ , ez).

We define the current radii a ≡ r(A) and b ≡ r(B). When κ > 0, the inner and outer faces remain
the respective inner and outer faces of the deformed sector, which occupies the following region:

a ≤ r ≤ b, −αd ≤ θ ≤ αd and 0 ≤ z ≤ �.

But when κ < 0 (eversion), the inner face of the undeformed sector becomes the outer face of the
deformed sector, and vice versa. The sector then occupies the region

b ≤ r ≤ a, αd ≤ θ ≤ −αd and 0 ≤ z ≤ �.
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Note that the deformation does not account for slanting surfaces that can appear in large bending,
especially in eversion [11].

The corresponding deformation gradient F has components

F = dr
dR

er ⊗ Er + κr
R

eθ ⊗ EΘ + λzez ⊗ EZ.

For incompressible solids, det F = 1 at all times, from which we deduce that

r =
√

R2 − A2

κλz
+ a2 and b =

√
B2 − A2

κλz
+ a2. (2.2)

Then we find the principal stretches (the square roots of the eigenvalues of FFT) as

λr = R
|κ|λzr

, λθ = |κ|r
R

and λz. (2.3)

Note that in the special case where κλz = A2/a2, the deformation is homogeneous. It then reads

r = R√
κλz

, θ = κΘ and z = λzZ, (2.4)

with constant principal stretches,

λr = 1√
κλz

, λθ =
√

κ

λz
and λz.

Now we compute the forces and moments required to effect the deformation. For an
incompressible, isotropic and hyperelastic material with strain energy density W = W(λr, λθ , λz),
the Cauchy stress tensor σ has components

σ = σrrer ⊗ er + σθθ eθ ⊗ eθ + σzzez ⊗ ez and σqq = −p + λq
∂W
∂λq

(q = r, θ , z),

where p is the Lagrange multiplier introduced by the constraint of incompressibility. Because the
principal stretches do not depend on θ and z, we readily deduce from the equilibrium equations
that p = p(r) only, and that

dσrr

dr
+ σrr − σθθ

r
= 0, (2.5)

which must be solved subject to the boundary conditions of traction-free inner and outer faces:

σrr(a) = σrr(b) = 0. (2.6)

To non-dimensionalize the equations, we use the scaled circumferential stretch λ (and its values
λa, λb on the faces), and the radii ratio ρ, defined as

λ =
√

λz|κ|r
R

, λa =
√

λz|κ|a
A

, λb =
√

λz|κ|b
B

and ρ = A
B

∈]0, 1[. (2.7)

According to (2.2), they are linked as follows,

λb =
√

ρ2λ2
a + (1 − ρ2)κ . (2.8)

Now we implement the change of variables from r to λ through

r
dλ

dr
= λ

κ
(κ − λ2), or, equivalently, dr = aλaκ

κ − λ2

√
κ − λ2

a

κ − λ2 dλ.

Then, introducing the single variable strain energy function Ŵ = Ŵ(λ) as

Ŵ(λ) ≡ W
(

1√
λzλ

,
λ√
λz

, λz

)
,
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we deduce that

λŴ′(λ) = −
(

λ1
∂W
∂λ1

− λ2
∂W
∂λ2

)
= −(σrr − σθθ ), (2.9)

so that the governing equation (2.5) and the boundary conditions (2.6) become, respectively,

dσrr

dλ
= κ

Ŵ′(λ)
κ − λ2 , σrr(λa) = 0 and σrr(λb) = 0.

These can be integrated to give

σrr = κ

∫λ

λa

Ŵ′(s)
κ − s2 ds and

∫λb

λa

Ŵ′(s)
κ − s2 ds = 0. (2.10)

Note that the latter equation and (2.8) form a system of two equations for λa, λb (of course, it must
be checked first that the equation has a solution, see next section). Hence, if a given material is
prescribed by the choice of its strain energy W, and the original dimensions A, B, αr are prescribed,
and the target deformation angle αd is prescribed, then λa, λb are found from these two equations,
and the new radii a, b follow.

Now that the radial stress σrr is determined, we deduce the circumferential stress from (2.9) as
σθθ = σrr + λŴ′(λ). Finally, we find that the stresses on the end surfaces θ = ±αd are equivalent to
couples with moments

M|θ=±αd = ±
{

A2Lλ4
a(κ − λ2

a)
∫λb

λa

Ŵ′(s)
(κ − s2)2 ds

}
ez.

3. Existence, uniqueness and thin-wall expansion
We investigated the existence and uniqueness of a positive root to (2.10)2, and found that they are
always guaranteed for materials with a strain-energy function W satisfying the strong ellipticity
condition. This condition simply puts constraints on the material parameters of many widely used
models. For example, it is satisfied by the neo-Hookean, Mooney–Rivlin, Fung, Gent and one-
term Ogden models, as long as all parameters are positive [7]. We relegate the details of this proof
to appendix A.

For thin sectors, we were also able to establish some general conclusions about the deformed
configuration. For our asymptotic analysis we introduced the following small thickness parameter
ε > 0 defined as

ε = 1 − ρ = (B − A)
B

� 1.

Then we found the following expansion of λa up to order ε4:

λa = 1 + 1
2

(1 − κ)ε + 1
24

(1 − κ)(13 − 3κ)ε2 − 1
48

(1 − κ)(3κ2 + 8κ − 27)ε3

+ 1
5760

(1 − κ)

[
45κ3 − 363κ2 − 1813κ + 3667

+ (1 − κ)2 2(15κ − 23)Ŵiv(1) − 3(1 − κ)Ŵv(1)

Ŵ′′(1)

]
ε4 + O(ε5). (3.1)

In particular, note that the results are independent of the form of strain-energy function up to
order ε3. Again the details are collected in appendix A.

4. Wrinkles
Incremental instability is triggered by the apparition of small-amplitude wrinkles on the compressed
face of the deformed sector. For bending (κ > 1) and eversion (κ < 0), this is the inner face; for
unbending with 0 < κ < 1, it is the outer face, see the last column of figure 2 and in the animation
in the electronic supplementary material.
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The existence of small-amplitude wrinkles itself is governed by the incremental equations of
incompressibility and of equilibrium. These equations can be formatted into the so-called Stroh
formulation, a first-order system of linear equations with variable coefficients. We do not present
the details of this derivation, which can be found in Destrade et al. [9].

It suffices to recall that the incremental mechanical displacements u are sought in the form

u = 	{[U(r)er + V(r)eθ ]einθ } and n = mπ

αd
= mπ

καr
(m ∈ N),

where the amplitudes U and V are functions of r only, and n is a real number to be determined
from the condition of no incremental normal tractions on the end faces θ = ±αd of a sector; m
is an integer, which we call the circumferential mode number, giving the number of wrinkles on
the contracted face. Then the components of the incremental nominal traction Ṡ have the same
structure:

Ṡ
T

er = 	{[Srr(r)er + Srθ (r)eθ ]einθ }.

We can readily obtain the equations for the displacement-traction Stroh vector η =
[U, V, irSrr, irSrθ ]T in the form [9]

d
dr

η(r) = i
r

G(r)η(r), (4.1)

where G is the Stroh matrix:

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i −n 0 0

−n
(

1 − σrr

α

)
−i
(

1 − σrr

α

)
0 − 1

α

κ11 iκ12 −i −n
(

1 − σrr

α

)
−iκ12 κ22 −n i

(
1 − σrr

α

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.2)

Here,

α = λŴ′(λ)
λ4 − 1

, γ = λ4α, β = λ2

2
Ŵ′′(λ) − α,

κ11 = 2(α + β − σrr) + n2
[
γ − α

(
1 − σrr

α

)2
]

,

κ12 = n

[
2β + α + γ − σrr

2

α

]

κ22 = γ − α
(

1 − σrr

α

)2 + 2n2(α + β − σrr).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.3)

Now the system (4.1) needs to be integrated numerically, subject to the boundary conditions
that the incremental traction vanish on the inner and outer faces, i.e.

Srr(a) = Srr(b) = 0 and Srθ (a) = Srθ (b) = 0. (4.4)

5. Numerical results for wrinkles
The numerical techniques described in appendix B can be implemented to predict the onset
of instability in sectors made of any hyperelastic material. From now on, we specialize our
discussion to Mooney–Rivlin solids, for which

W = C
2

(λ2
1 + λ2

2 + λ2
3 − 3) + D

2
(λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 − 3),

where C ≥ 0 and D ≥ 0 are material constants.
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For this class of nonlinearly elastic materials, the single variable function Ŵ reads

Ŵ(λ) = 1
2 [(Cλ−1

z + Dλz)(λ2 + λ−2) + C(λ2
z − 3) + D(λ−2

z − 3)], (5.1)

from which the parameters α, β and γ in (4.3), and the radial stress σrr are found to be

α = (Cλ−1
z + Dλz)λ−2, γ = (Cλ−1

z + Dλz)λ2, β = α + γ

2
(5.2)

and

σrr = −(Cλ−1
z + Dλz)

[
κ2 − 1

2κ
ln

(
λ2 − κ

λ2
a − κ

)
+ 1

κ
ln
(

λ

λa

)
+ λ2 − λ2

a

2λ2λ2
a

]
. (5.3)

The scaled circumferential stretch λa in (5.3) is the unique root of the equation

κ2 − 1
κ

ln ρ + 1
κ

ln

√
ρ2λ2

a + (1 − ρ2)κ

λa
+ (1 − ρ2)(κ − λ2

a)

2λ2
a[ρ2λ2

a + (1 − ρ2)κ]
= 0, (5.4)

which is derived from (2.8) and (2.10)2 for the Mooney–Rivlin Ŵ of (5.1).
It can be easily shown that, in agreement with the thin-wall expansion (3.1), the unique

solution to (5.4) tends to 1 as ρ → 1 for any value of κ . For sectors with small radii ratio ρ = A/B,
we distinguish the bending (κ > 1), unbending (0 < κ < 1) and eversion (κ < 0) cases and obtain
the following respective approximations for the scaled circumferential stretch on the side under
compression (i.e. λa in bending, λb in unbending and eversion):

λa �
√

κ

W0(eρ2(1−κ2))
if κ > 1,

λb �
√

κ

1 + W0(−ρ2κ2
/e)

if 0 < κ < 1

and λb �
√

κ

1 + W−1(−ρ2κ2
/e)

if κ < 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.5)

where W0 and W−1 are, respectively, the upper and lower branches of the real-valued Lambert-W
function. From (5.5)1 (respectively, (5.5)3), we deduce that for bending (respectively, eversion) the
scaled circumferential stretch λa (respectively, λb) is an infinitesimal quantity of the same order as
1/
√| ln ρ| when ρ → 0 and thus it tends abruptly to 0 as ρ → 0. For unbending, λb → √

κ as ρ → 0
and

dλb

dρ
→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞ if κ ∈
(

0,
1√
2

)
,

1

2e 4
√

2
if κ = 1√

2
,

0 if κ ∈
(

1√
2

, 1
)

.

Once again, for κ ∈ (0, 1/
√

2) the stretch on the side under compression changes rapidly near ρ =
0. Because of the asymptotic behaviour of the circumferential stretches λa and λb, the stability
problem for a sector with a very small ρ is numerically stiff.

Now from (5.2) and (5.3), we can readily compute all the coefficients (4.3) of the Stroh matrix
(4.2). As shown by Destrade et al. [9] and from equations (5.2)–(5.3), the incremental governing
equations and boundary conditions can then be normalized in such a way that C, D and λz

disappear (simply by dividing all equations across by Cλ−1
z + Dλz). These quantities thus play

no role in the stability analysis, and the following results are thus valid for all values of C, D,
λz. This flexibility makes the results quite general, because the Mooney–Rivlin model recovers
not only the neo-Hookean model of exact nonlinear elasticity (D = 0) but also, at the same order
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Figure 3. Critical deformation angles αd (a) and critical stretches λa ((b) scaled and (c) regular) plotted versus radii ratios
ρ = A/B for sectors withαr = π/6 and mode numbersm= 1, . . . , 10 undergoing plane strain bending. (r, θ ) plane view
(d) of the sectors indicated in (b) in the undeformed configuration and at buckling. The numerical results for the specific sectors

A , B , C are shown in table 1; in (d), the lengths are normalized with respect to the initial thickness H = B − A,
so that A= ρH/(1 − ρ) and B= H/(1 − ρ). (Online version in colour.)

of approximation, the general form of strain energy function for weakly nonlinear third-order
(isotropic, incompressible) elasticity [18,19]:

W = μ tr(E2) + A
3

tr(E3),

where μ > 0 is the second-order Lamé coefficient, A is the third-order Landau constant and E =
(FTF − I)/2 is the Green-Lagrange strain tensor.

Figures 3 and 4 report the critical values of the bending angles αd and the critical
circumferential stretches on the corresponding contracted faces as functions of the radii ratio ρ =
A/B for a sector with an undeformed angle αr = π/6. In bending (figure 3), the critical thresholds
for αd and λa are plotted for ρ ∈ (0, 0.7619) because in this range, αd > π . As ρ approaches 0.7619,
αd approaches π . Hence, a circular cylindrical sector with ρ ∈ (0.7619, 1) can be closed to form
an intact tube without experiencing wrinkles on the inner face r = a. In unbending/eversion
(figure 4), the critical thresholds are plotted for ρ ∈ (0, 0.8079). Here, we see that a sector with
ρ ∈ (0.8079, 1) can be completely everted to form an intact tube without the appearance of wrinkles
on the inner side r = b.
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Figure 4. Critical deformation angles αd (a) and critical stretches λb ((b) scaled and (c) regular) plotted versus radii ratios
ρ = A/B for sectors withαr = π/6 andmode numbersm= 1, . . . , 11 undergoing plane strain unbending (αr > αd > 0)
and eversion (αd < 0). (r, θ ) plane view (d) of the sectors indicated in (b) in the undeformed configuration and at buckling.

The numerical results for the specific sectors A – D are shown in table 1; in (d), the lengths are normalized with respect
to the initial thickness H = B − A, so that A= ρH/(1 − ρ) and B= H/(1 − ρ). (Online version in colour.)

Figures 3 and 4 display curves corresponding to different circumferential mode numbers
m = 1, . . . N, which define the number of prismatic wrinkles appearing on the contracted side
of a deformed sector. However, only the modes corresponding to the highest critical stretches λa

and λb (correspondingly, the lowest critical angles αd in bending and the highest critical angles
αd in unbending and eversion) are meaningful, as the lower stretches cannot be reached once a
sector has buckled. We call these mode numbers the acute mode numbers.

For example, figure 3a–c shows that the acute mode number for a sector with αr = π/6 and
ρ ∈ (0, 0.21) is m = 2; for a sector with ρ ∈ (0.21, 0.39), it is m = 3; and so on. We use circle markers
to highlight the transitions from one acute mode number to another as shown in figures 3a–c
and 4a–c.

Now we provide a more in-depth examination of how the critical deformations and number
of wrinkles in bending and eversion depend on the referential geometry; in particular, how they
differ for the same sector in bending and eversion (unbending αr > αd > 0 is not that noticeable in
figure 4a for αr = π/6 and, thus, will be illustrated in the subsequent discussion for another αr). To

this end, we pick the geometries labelled A , B , C as shown in figures 3b and 4b, denoting
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Table 1. Critical parameters for bending and eversion of three sectors from figures 3–4 and one sector from the following
section.

bending eversion

sector ρ = A/B αr m αd λa m αd λb

A 0.1 π/6 2 0.2425π 0.5604 1 −0.0049π 0.5654
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B 0.486 π/6 4 0.4562π 0.5607 3 −0.2204π 0.5614
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C 0.67 π/6 7 0.7175π 0.5609 6 −0.4802π 0.5619
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D 0.486 π/3 9 0.9124π 0.5607 6 −0.4372π 0.5626
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sectors with initial radii ratios ρ � 0.1, 0.486, 0.67, respectively, and referential angle αr = π/6. In

figures 3d and 4d, we show an (r, θ ) plane view of Sector A in the reference configuration and

at buckling (the lengths are normalized with respect to the initial thickness H = B − A). Table 1

collects the results of the incremental stability analysis. We note that these sectors A , B ,

C present one more wrinkle in bending than in eversion, although this is not always the case

for other referential geometries.
To validate our results here, we connect with the analysis of Haughton [2] for the flexure of

rectangular blocks. Even though we have an initial curvature for our sectors (as opposed to the
rectangular geometry from [2]), we similarly discover that the different acute mode numbers
effectively form an envelope predicting loss of stability at the critical stretch of approximately
λ = 0.563 (figures 3c and 4c), see also [4].

The discussion above was conducted for sectors with αr = π/6. In figure 5, we provide the
critical deformation angles αd as functions of the radii ratio ρ = A/B for sectors corresponding to

other relevant undeformed angles αr (labelled by ). Figure 5a illustrates critical deformations

for bending and figure 5b for unbending (αr > αd > 0) and eversion (αd < 0). Only the curves
corresponding to the acute mode numbers and points of transition between them are displayed,
while the other information is not reported (compare, for illustration, critical deformation angles
αd for sectors with αr = π/6 in figures 3a, 4a and sectors with αr = π/6 in figure 5). Labels 1©, 2©,
3© are used to indicate buckling states of sectors illustrated in figure 2.

For each referential angle αr, there exist limiting radii ratios ρ�
αr

, ρ��
αr

∈ (0, 1) such that αd > π

for all ρ ∈ (ρ�
αr

, 1) in bending, and αd < −π for all ρ ∈ (ρ��
αr

, 1) in eversion. This means that a sector
with ρ ∈ (ρ�

αr
, 1) (respectively, ρ ∈ (ρ��

αr
, 1)) can be closed (respectively, completely everted) to form

an intact tube without the appearance of wrinkles on the inner side. Table 2 reports the radii
ratios ρ�

αr
and ρ��

αr
for all the referential angles in figure 5 as well as the corresponding acute mode

numbers in bending and eversion.
Figure 5 and table 2 contain then all the required information to form a theoretical prediction

on whether, when and how a given sector will wrinkle. Note that the overall largest acute number
was found to be m = 14, in eversion, as shown in figure 5b. For shorter wavelengths (larger m),
the buckling occurs for sectors with deformed angles such that |αd| > π , which is physically
impossible.

Finally, to illustrate the generality of our wrinkling analysis, we make the connection with three
special cases already reported in the literature: closing of a cylindrical sector into an intact tube [9],
straightening of a cylindrical sector into a rectangular block [7,8], and bending of a rectangular
block into a sector of a circular cylinder [4].

In the case of closing of a sector into an intact tube on the onset of instability, we recover the
critical deformations from [9] by simply looking at the limiting values of αd = π for different
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radii ratios ρ = A/B for sectors with different referential angles αr and acute mode numbers m= 1, . . . , 14. (Online

version in colour.)

αr (figure 5a). What is novel here is that our solution can address the situation when the sector
buckles before the full closing (figure 5b, αd < π ).

Similar observations can be made for the straightening of a cylindrical sector. Critical
deformations from [7] can be retrieved when we take αd = 0 for different αr (figure 5b) and
again, our treatment is able to predict how sectors buckle before the exact straightening (figure 5b,
0 < αd < αr).

Next, when making the link with stability results for bending of a rectangular block, we are not
able to derive the solution for αr = 0 due to characteristic singularity, but we can simply consider
a small referential angle αr = π/36, say (figure 5a), and the corresponding critical deformations
then match the results from [4] very well.

To sum up, from the problem of bending, unbending and eversion of a cylindrical sector we are
able to recover critical deformations of three classical universal deformations of incompressible
nonlinear elasticity. Moreover, it allows us to obtain new results on critical deformations of a
circular sector bent, unbent or everted (figure 5b, αd < 0) into another sector.
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D D

Figure 6. Bending (a) and eversion (b) of a cylindrical sector made of silicone, with reference angleαr = π/3 and radii ratio
ρ = A/B= 0.486. Note how creases appear on the contracted face, not wrinkles. We denote this physical sector as Sector

D . In bending, we count about six or seven creases; in eversion, only one. (Online version in colour.)

Table 2. Values of the limiting radii ratios ρ�
αr
and ρ��

αr
for different values of the the referential angle αr. The acute mode

numbersm indicate the number of wrinkles appearing on the inner face of the intact tube obtained by bending (respectively,
everting) a sector with exact radii ratio ρ�

αr
(respectively, ρ��

αr
). Sectors with radii ratio greater than ρ�

αr
(respectively, ρ��

αr
)

can be completely closed (everted) into an intact tube without wrinkling.

bending eversion

αr ρ�
αr

m ρ��
αr

m

π — — 0.423 14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2π/3 0.1193 8 0.518 13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

π/2 0.3092 9 0.5866 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

π/3 0.5295 9 0.6787 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

π/4 0.6445 10 0.7374 11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

π/6 0.7619 10 0.8079 11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

π/12 0.8808 10 0.8936 11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

π/36 0.9603 11 — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6. Numerical results for creases
Our treatment of small-amplitude wrinkles superimposed on large bending and unbending
presented in the previous section is rigorous and complete. However, it fails to predict the
behaviour actually observed in the laboratory when sectors are bent or unbent too severely: their
compressed side does buckle, but earlier than predicted by the incremental theory, and creases
develop instead of smooth sinusoidal wrinkles (figures 1 and 6).

This observation is well known and documented for the buckling of homogeneous solids, see
for example experimental pictures for the bending of blocks [5,20–23], of a cylinder [24] and of a
sector [9], the torsion of a cylinder [25] and of a tube [23], the eversion of a tube [23,26] and the
shear-box deformation of a block [23]. It has also been successfully captured by FE simulations,
see the seminal articles by Hong et al. [21], Hohlfeld & Mahadevan [24] and Cao & Hutchinson
[27,28] (the latter include a nonlinear post-bifurcation analysis and imperfection sensitivity). Note
that there are very few FE simulations of creases in cylindrical coordinates [26,29,30].

For our table-top experiments, we prepared a circular sector (Sector D ) of soft silicone of

height 58 mm, inner radius A = 35 mm, outer radius B = 72 mm (so that ρ = A/B = 0.486), and
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reference angle αr = π/3. We used superglue to attach two 70 × 70 mm2 squares of acrylic glass
to the end faces of the sectors to bend or unbend the sector by applying torques mostly, and
as little normal forces as possible. Here, the sector is not stretched axially (λz = 1) and the scaled
circumferential stretch λ defined in equation (2.7) coincides with λθ of equation (2.3). According to
the incremental analysis summarized in figure 5, for this sector we should expect nine wrinkles
to form in bending when αd = 0.9124π , and six in eversion when αd = −0.4372π . We collected

the results of the incremental stability analysis for Sector D on the last line of table 1.

In practice, we do not observe the formation of sinusoidal wrinkles in bending, but instead the
formation of about eight creases. Moreover, although these creases are regularly spaced, some of
them sometimes merge (period-doubling), depending on a given bending event. In unbending,
the surface of the sector does not buckle. In eversion, it buckles with a single deep crease in the
middle of the everted sector (figure 6). However, we note that a perfect unbending so that the
everted block has a circular shape is very hard to effect in practice.

To investigate numerically the formation of wrinkles/creases, we implemented FE models in
ABAQUS/Explicit. For computational efficiency, we considered a 2D sector only, as in any case
we are primarily interested in prismatic buckling. We chose a long time for the analysis to ensure a
quasi-static deformation. Because perfect incompressibility is not possible in ABAQUS/Explicit,
we used the neo-Hookean model with an initial bulk modulus 100 larger than the initial shear
modulus to achieve near-incompressibility. We used linear reduced integration quadrilateral
elements (CPE4R).

When a displacement is prescribed (say of a side of the sector from one location to another),
ABAQUS implements it as taking place along a straight line. Thus, if one applies a displacement
which deforms an undeformed sector into a closed tube (through bending or unbending), the
intermediate deformation is not in agreement with the deformation described by (2.1), (2.2) for
deforming an undeformed sector into a bent or unbent sector. To solve this problem, we thus
implemented a sequence of small displacements rather than a single large displacement. Here, to
ensure the sector was deformed along the ‘correct’ path, that is the path closest to that of the exact
solution given by (2.1), (2.2), we considered N deformations:

r = r(R), θ = i
κ

N
Θ and z = λzZ, (6.1)

for i = 1, 2, 3, . . . , N, where κ = π/αr for bending and κ = −π/αr for unbending. Here, the Nth
deformation is the deformation which closes the sector completely, while the deformation for
i < N refers to an intermediate deformation. For each of these deformations, we calculated the
deformed geometry at each node of the two end faces and the non-buckling face using equations
(2.2), (2.8) and (2.10). From here, we calculated the displacements necessary to go from the ith
deformation to the (i + 1)th deformation, resulting in a set of N displacements for each node.
Then we created N steps in ABAQUS, in each step imposing the calculated displacements at each
node of the two end faces and on the non-buckling face. In practice, we used about 100 steps. Zero
tractions boundary condition was used on the remaining surface where the buckling will occur.

To initiate the buckling of the contracted face, we added a sinusoidal geometry perturbation
of very small amplitude along that contour [27,29]. Effectively, the amplitude was three orders of
magnitude smaller than the radii.

The simulations revealed the spontaneous formation of creases, with no smooth transition
from the sinusoidal perturbation. The creases deepen quickly as the deformation progresses, and
their sides come into contact, consistent with the analysis for compression of a half-space [27].
There was also a spontaneous merging of some adjacent creases to form period-doubling patterns,
so that the number of final creases was often less than the number n of wrinkles that they emerged
from.

We conducted a mesh sensitivity analysis with respect to the onset of buckling, which was
identified by a drop in the elastic energy per unit thickness of the creased sector compared to
that in the smooth body [21]. We generally found that buckling occurred earlier every time the
mesh was made finer. The solution started to converge as the number of elements increased, but
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Figure 7. Red point line: convergence with the refinement of the mesh of the critical circumferential stretch of compression

for the formation of creases, here when bending Sector C . For comparison, the level of critical stretch is given for wrinkles
(red dashed line below). We see that creases occur at approximately 4% compression earlier than wrinkles. By contrast, creases
appear on the surface of a half-space compressed in plane strainmore than 10% compression earlier (upper black full line) than
wrinkles (lower dashed black line) [21]. (Online version in colour.)

eventually a very large number of elements was required to ascertain the limit, up to 240 000
elements (figure 7). We had to use a gradient of mesh refinement near the compressed face and
to book time on a high-end computer to perform these calculations. An alternative would have
been to add a thin coating of vanishing stiffness [24].

We also conducted a spectral analysis with respect to the linear sinusoidal perturbation, that is,
we performed the simulations for m = 2, 3, 4, . . . wrinkles, and kept the one for which the buckling

occurred the earliest. For most cases (with the exception of sector D in unbending), the number

of periods in the sinusoidal perturbation corresponding to earliest buckling was the same or close
to the number of wrinkles predicted by the linear analysis. We also note that the number m is
evident through the development of stress concentrations along the buckling faces in the lead up
to buckling, see the images in figure 8. We conclude that the incremental analysis tends to provide
a good indication of the optimal shape for the perturbation.

For the simulation of the physical Sector D , we used 183 750 elements. We found that

buckling occurred at its earliest in bending when m = 9 for the deformed angle αd = 0.842π ,
and m = 9 in unbending when αd = −0.374π , with period-doubling occurring at several locations
(figure 8).

For Sector C , we used 240 000 elements. We found that buckling corresponded to m = 7 in

bending when αd = 0.633π , and to m = 5 in unbending when αd = −0.392π , with period-doubling
occurring again.

The crease formations which occurred in our FE simulations are consistent with our table-top
experiments (at least with the bending experiment; the eversion experiment with its single crease
is not well captured by the modelling, which assumed a circular everted sector, a geometry which
is impossible to obtain in practice). But there are differences with the nonlinear stability analyses
of crease formation conducted previously.

For example, Hong et al. [21] showed that a semi-infinite body of neo-Hookean material creases
in plane strain at a critical amount of stretch equal to 0.65, which is 11% strain earlier than 0.54, the
critical stretch for wrinkles found by Biot [31]. Here, we found that for our sectors the difference
between crease onset and wrinkle onset was 4% or less. Also, half-space crease analysis does not
provide a wavelength for the crease, since there is no characteristic length in that context. Here
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C C

CC

D

D

D

D

(a)

(c) (d)

(b)

Figure 8. Finite-element solutions of bending and unbending immediately before and after buckling. From (a) to (d): bending

sector C , unbending sector C , bending sector D , unbending sector D . The colours correspond to the von Mises
stress level, from blue (low) to red (high). (Online version in colour.)

we note the agreement (or near agreement) between the number of creases in the FE simulations
and the number of wrinkles predicted by the linear analysis.

In conclusion, the incremental stability provides valuable information on the loss of stability
for the large bending or unbending of a circular sector. It will also be quite straightforward to
extend it to material models other than Mooney–Rivlin. Finally, it provides the basis for the study
of coated materials where sinusoidal wrinkles are expected to dominate [27].
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Appendix A: Proofs of existence and uniqueness; thin-wall expansions

(a) Existence and uniqueness
We assume that the strain-energy function W satisfies the strong ellipticity condition. As shown by
Ogden [17], it amounts to

λ

λ2 − 1
Ŵ′(λ) > 0 and λ2Ŵ′′ + 2λ

λ2 + 1
Ŵ′(λ) > 0. (A 1)

From these inequalities, respectively, we deduce that

Ŵ′(λ) � 0 (as λ � 1) and Ŵ′′(1) > 0. (A 2)

Finally, by integrating the second inequality (A 1)2 we deduce that, in a right neighbourhood of 0,

λ2

λ2 + 1
|Ŵ′(λ)| > c,

for some positive constant c, from which follows that

lim
λ→0+

λ2|Ŵ′(λ)| ≥ c > 0. (A 3)

We now investigate the existence and uniqueness of a positive root to (2.10)2, which we recall
here: ∫λb

λa

Ŵ′(s)
κ − s2 ds = 0. (A 4)

First, assume that κ ∈ [−2π/αr, 0[. Then λ2
a > (1 − ρ2)|κ|/ρ2 and λ ∈ [λb, λa]. It follows that if

λb ≥ 1 or λa ≤ 1, then the integrand has the same sign over the entire range of integration and
hence (A 4) does not admit a solution. Hence, we must have λb < 1 < λa, or, using (2.8),√

(1 − ρ2)|κ|
ρ

< λa <

√
1 + (1 − ρ2)|κ|

ρ
.

To prove the existence of a root for (A 4) we set

λ∗ = max

{√
(1 − ρ2)|κ|

ρ
, 1

}

and define the function f as

f : y ∈
[
λ∗,

√
1 + (1 − ρ2)|κ|

ρ

]
�→

∫ y

√
ρ2y2+(1−ρ2)κ

Ŵ′(s)
κ − s2 ds.

Next, as
√

ρ2y2 + (1 − ρ2)κ < 1 < y for all y ∈ Dom(f ) and κ − y2 is negative, from (A 1)1 we
conclude that

f ′(y) = 1
κ − y2

⎡
⎣Ŵ′(y) − Ŵ′(

√
ρ2y2 + (1 − ρ2)κ)

y√
ρ2y2 + (1 − ρ2)κ

⎤
⎦< 0,
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whence f is a decreasing function. For |κ| ≤ ρ2/(1 − ρ2), from (A 2)1 we deduce that

f (λ∗) = f (1) =
∫ 1

√
ρ2+(1−ρ2)κ

Ŵ′(s)
κ − s2 ds > 0

and for |κ| > ρ2/(1 − ρ2), from (A 3) we deduce that

f (λ∗) = f

(√
(1 − ρ2)|κ|

ρ

)
=

∫√
(1−ρ2)|κ|/ρ

0

Ŵ′(s)
κ − s2 ds = +∞.

At the other end of the interval where f is defined we have, as a consequence of (A 2)1,

f

(√
1 + (1 − ρ2)|κ|

ρ

)
=

∫(√1+(1−ρ2)|κ|
)
/ρ

1

Ŵ′(λ)
κ − s2 ds < 0.

In conclusion, f has exactly one zero in its domain and so, when κ ∈ [−2π/αr, 0[, equation (A 4)
admits a unique root in the range ]λ∗,

√
1 + (1 − ρ2)|κ|/ρ[.

We assume now that 0 < κ < 1. If 0 < λa <
√

κ , then the integrand in (A 4) is strictly negative
and the equation does not admit a solution. Thus we must have

√
κ < λb < 1 < λa, or using (2.8),

κ < 1 < λa <

√
1 − (1 − ρ2)κ

ρ
.

Consider the function g defined as

g : y ∈
[

1,

√
1 − (1 − ρ2)κ

ρ

]
�→

∫ y

√
ρ2y2+(1−ρ2)κ

Ŵ′(s)
κ − s2 ds.

With the aid of (A 2)1, we deduce in turn that

g′(y) = 1
κ − y2

⎡
⎣Ŵ′(y) − Ŵ′(

√
ρ2y2 + (1 − ρ2)κ)

y√
ρ2y2 + (1 − ρ2)κ

⎤
⎦< 0,

g

(√
1 − (1 − ρ2)κ

ρ

)
=

∫(√1−(1−ρ2)κ
)
/ρ

1

Ŵ′(s)
κ − s2 ds < 0, g(1) =

∫ 1

√
ρ2+(1−ρ2)κ

Ŵ′(s)
κ − s2 ds > 0.

From these, we conclude that g has exactly one zero in its domain and so equation (A 4) admits
a unique solution

λa ∈
]

1,

√
1 − (1 − ρ2)κ

ρ

[
. (A 5)

Finally in the case κ > 1, it is easy to show that equation (A 4) admits a solution only if λa <

1 < λb <
√

κ , or using (2.8),
λ� < λa < 1,

where

λ� =
√

max
{

0, 1 − (1 − ρ2)κ
ρ2

}
.

Then we consider the function h defined as

h : y ∈ [λ�, 1] �→
∫√

ρ2y2+(1−ρ2)κ

y

Ŵ′(s)
κ − s2 ds.

Assume first that 0 < κ < 1/(1 − ρ2). Then, with the aid of (A 2)1, we find that

h(λ�) = h

(√
1 − (1 − ρ2)κ

ρ

)
=

∫ 1

√
1−(1−ρ2)κ/ρ

Ŵ′(s)
κ − s2 ds < 0.
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Conversely, when κ ≥ 1/(1 − ρ2), we have λ� = 0 and, in view of (A 3), we deduce that

lim
y→0+

h(y) =
∫√

(1−ρ2)κ

0

Ŵ′(s)
κ − s2 ds = −∞.

Owing to (A 2)1, we have

h(1) =
∫√

ρ2+(1−ρ2)κ

1

Ŵ′(s)
κ − s2 ds > 0

and

h′(y) = 1
κ − y2

⎡
⎣Ŵ′(

√
ρ2y2 + (1 − ρ2)κ)

y√
ρ2y2 + (1 − ρ2)κ

− Ŵ′(y)

⎤
⎦> 0.

It follows that h has exactly one zero in its domain and thus equation (A 4) admits a unique
solution

λa ∈
⎤
⎦
√

max
{

0,
1 − (1 − ρ2)κ

ρ2

}
, 1

⎡
⎣ . (A 6)

Finally, it is worth noting that from (A 5) and (A 6) λa → 1 as κ → 1. On the other hand,
from (2.8) and (A 1)1 we readily deduce that the unique root to equation (A 4) with λa = 1 is
κ = 1. In other words, the axial stretching (2.4) with κ = 1 is the only admissible homogeneous
deformation.

(b) Thin-walled sectors
For thin sectors, we perform an asymptotic analysis in the small thickness parameter ε > 0 defined
as: ε = 1 − ρ � 1.

First, we rewrite the left-hand side of (A 4) as a function F of ε, specifically

F(ε) =
∫√

(1−ε)2λ2
a+ε(2−ε)κ

λa

Ŵ′(λ)
κ − λ2 dλ.

Expanding F(ε) as a Maclaurin series in ε up to the fifth order, substituting into the equation
f (λb) = 0 and dropping a common factor ε, yields the equation

Ŵ′(λa) + F(1)ε + F(2)ε2 + F(3)ε3 + F(4)ε4 + O(ε5) = 0, (A 7)

where

F(1) = 1

λ2
a

[(2λ2
a − κ)Ŵ′(λa) − λa(λ2

a − κ)Ŵ′′(λa)],

F(2) = 1

λ4
a

[(6λ4
a − 7λ2

aκ + 3κ2)Ŵ′(λa) − λa(4λ4
a − 7λ2

aκ + 3κ2)Ŵ′′(λa) + λ2
a(λ2

a − κ)2Ŵ′′′(λa)],

F(3) = 1

24λ6
a

[3(8λ6
a − 16λ4

aκ + 15λ2
aκ

2 − 5κ3)Ŵ′(λa) − 3λa(6λ6
a − 16λ4

aκ + 15λ2
aκ

2 − 5κ3)Ŵ′′(λa)

+ 6λ2
a(λ2

a − κ)3Ŵ′′′(λa) − λ3
a(λ2

a − κ)3Ŵ(iv)(λa)],

F(4) = 1

120λ8
a

[3(40λ8
a − 120λ6

aκ + 183λ4
aκ

2 − 130λ2
aκ

3 + 35κ4)Ŵ′(λa)

− λa(96λ8
a − 360λ6

aκ + 539λ4
aκ

2 − 390λ2
aκ

3 + 105κ4)Ŵ′′(λa)

+ 3λ2
a(12λ8

a − 50λ6
aκ + 79λ4

aκ
2 − 56λ2

aκ
3 + 9κ4)Ŵ′′′(λa)

− 2λ3
a(4λ8

a − 17λ6
aκ + 27λ4

aκ
2 − 19λ2

aκ
3 + 5κ4)Ŵ(iv)(λa)

+ λ4
a(λ8

a − 4λ6
aκ + 6λ4

aκ
2 − 4λ2

aκ
3 + κ4)Ŵ(v)(λa)].
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Next, we expand λa in terms of ε to the fourth order,

λa = λ
(0)
a + λ

(1)
a ε + λ

(2)
a ε2 + λ

(3)
a ε3 + λ

(4)
a ε4 + O(ε5),

where the λ(i) are determined, in turn, as follows.
Substituting the expansion of λa into the previous expansion (A 7) and equating to zero, the

coefficients of each power in the resulting expression, we obtain first, at zero order, that Ŵ′(λ(0)
a ) =

0, and hence, by (A 2)2, that λ
(0)
a = 1.

Using this result in the first-order term, we then obtain

[ 1
2 (κ − 1) + λ

(1)
a ]Ŵ′′(1) = 0

and because Ŵ′′(1) > 0, we deduce that λ
(1)
a = (1 − κ)/2.

Then, the second-order term yields

[
λ

(2)
a + 5

12
(κ − 1)

]
Ŵ′′(1) + (κ − 1)2

24
Ŵ′′′(1) = 0.

The resulting expression for λa, up to the second order in ε, is therefore

λa = 1 + 1
2

(1 − κ)ε + 1 − κ

24

[
10 − Ŵ′′′(1)

Ŵ′′(1)
(1 − κ)

]
ε2 + O(ε3).

However, by virtue of the universal result: Ŵ′′′(1)/Ŵ′′(1) = −3 (see for example [32]), the above
formula reduces to

λa = 1 − 1
2 (1 − κ)ε + 1

24 (1 − κ)(13 − 3κ)ε2 + O(ε3).

Proceeding in a similar way (and omitting the lengthy details), we obtain, up to the fourth
order in ε,

λa = 1 + 1
2

(1 − κ)ε + 1
24

(1 − κ)(13 − 3κ)ε2 − 1
48

(1 − κ)(3κ2 + 8κ − 27)ε3 + 1
5760

(1 − κ)

×
[
45κ3 − 363κ2 − 1813κ + 3667 + (1 − κ)2 2(15κ − 23)Ŵ(iv)(1) − 3(1 − κ)Ŵ(v)(1)

Ŵ′′(1)

]
ε4 + O(ε5).

Note, in particular, that the results are independent of the strain energy function up to order ε3.

Appendix B: Algorithms for the analysis of the Stroh problem
Here, we outline two numerically robust methods to obtain the numerical solution of the Stroh
problem (4.1).

The first one is called the compound matrix method. In this method, we let η(1), η(2) be two
linearly independent solutions of (4.1), and use them to generate the six compound functions
φ1 = 〈η1, η2〉, φ2 = 〈η1, η3〉, φ3 = i〈η1, η4〉, φ4 = i〈η2, η3〉, φ5 = 〈η2, η4〉, φ6 = 〈η3, η4〉, where 〈ηi, ηj〉 ≡
η

(1)
i η

(2)
j − η

(2)
i η

(1)
j . Now, computing the derivatives of φi with respect to r yields the so-called

compound equations

dφ

dr
= 1

r
A(r)φ(r), (B 1)
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Table 3. Numerical implementation of the impedance and compound matrix methods.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Define reference geometry, e.g.αr andρ

DO For different mode numbers m=1,2,3...

DO For all deformations κ < π/αr in bending (or κ > −π/αr in unbending and eversion)

n= mπ/(καr);

Findλa andλb;

**************************** In case of the compound matrix method approach***************************

Integrate the compound matrical differential equation
dφ
dr

= 1
r
Aφ on r ∈ (a, b) with

the boundary conditionφ(a)= φ1(a)[1, 0, 0, 0, 0, 0]T;

IFφ6(b)= 0 (ORφ6(b) is monotonic function of κ and changes its sign) THEN

Obtain critical values of κ ,αd andλa in bending (orλb in unbending and eversion);

BREAK

END IF

**************************** In case of the impedance matrix method approach***************************

Integrate the Riccati equation
d
dr
za = 1

r
[zaG2za + i(G1)†za − izaG1 + G3] on r ∈ (a, b)

with the boundary condition za(a)=
(
0 0

0 0

)
;

IF det za(b)= 0 (OR det za(b) is monotonic function of κ and start to plummet) THEN

Obtain critical values of κ ,αd andλa in bending (orλb in unbending and eversion);

Integrate the Riccati equation
d
dr
zb = 1

r
[zbG2zb + i(G1)†zb − izbG1 + G3] together

with the
d
dr
U= 1

r
[iG1U − G2U] on r ∈ (b, a) using boundary conditions

zb(b)=
(
0 0

0 0

)
and U(b)= U(b)[1,−za11(b)/z

a
12(b)]

T to obtain the mechanical

displacement field across the thickness of a given sector;

BREAK

END IF

END DO

END DO

Determine the acute mode number among all considered modesm= 1, 2, 3..., for which critical stret-
chesλa (bending) orλb (unbending and eversion) are the highest. This allows to predict for a given
sector when the buckling will occur and in howmany wrinkles it will result.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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where φ = (φ1, . . . , φ6)T and A, the compound matrix, has the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−σrr

α
0 − 1

α
0 0 0

−κ12 0 −n
(

1 − σrr

α

)
−n 0 0

−κ22 n −
(

2 − σrr

α

)
0 n 0

κ11 n
(

1 − σrr

α

)
0

(
2 − σrr

α

)
n
(

1 − σrr

α

)
− 1

α

−κ12 0 −n
(

1 − σrr

α

)
−n 0 0

0 −κ12 κ11 −κ22 −κ12
σrr

α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The compound equations (B 1) must be integrated numerically, starting with the initial condition
φ(a) = φ1(a)[1, 0, 0, 0, 0, 0]T, and aiming at the target condition φ6(b) = 0, according to (4.4). In
passing, note that A is clearly singular, as in the straightening problem (noticed by [7,8]) and
in the bending of a straight block (unnoticed [2–5]). However, it turns out that the singularity of
the matrix does not affect the efficiency of the integration scheme.

The second approach is called the surface impedance matrix method. In this method, we define

the matricant solution matrix M(r, rc) =
(

M1(r,rc) M2(r,rc)
M3(r,rc) M4(r,rc)

)
to (4.1) such as η(r) = M(r, rc)η(rc) (clearly

M(rc, rc) is the identity matrix). Here, rc can be either ra or rb, depending on what is most
convenient. This allows us to write the initial boundary conditions in the simple form zc(rc) = 0,
where zc = −iM3(r, rc)M1(r, rc)−1 is called the conditional impedance matrix. Now from the Stroh
formalism (4.1), we can derive two relevant equations

d
dr

zc = 1
r

[zcG2zc + i(G1)†zc − izcG1 + G3] and
d
dr

U = 1
r

[iG1U − G2zcU], (B 2)

where Gi (i = 1, 2, 3) are subblocks of matrix G from (4.1). The numerical integration of equation
(B 2)1, a differential Riccati equation, for rc = ra with initial condition za(ra) = 0, allows us to find
the critical eigenvalues, i.e. critical deformation angles and stretches, of the Stroh problem (4.1)
upon satisfaction of the boundary condition on the other face of the sector, which is det za(rb) =
0 (the latter one is equivalent to V(rb)/U(rb) = −za

11(rb)/za
12(rb) = −za

21(rb)/za
22(rb)). Next, the

corresponding eigenvectors of the Stroh problem (4.1) are obtained through the simultaneous
numerical integration of the two equations (B 2) for rc = rb, with initial condition zb(rb) = 0 and
U(rb) = U(rb)[1, −za

11(rb)/za
12(rb)]T.

Table 3 gives a detailed numerical algorithm to solve the impedance and compound matrix
equations.
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