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a b s t r a c t 

We show that a smooth giant voltage actuation of soft dielectric plates is not easily ob- 

tained in practice. In principle one can exploit, through pre-deformation, the snap-through 

behavior of their loading curve to deliver a large stretch prior to electric breakdown. How- 

ever, we demonstrate here that even in this favorable scenario, the soft dielectric is likely 

to first encounter the plate wrinkling phenomenon, as modeled by the onset of small- 

amplitude sinusoidal perturbations on its faces. We provide an explicit treatment of this 

incremental boundary value problem. We also derive closed-form expressions for the two 

limit cases of very thin membranes (with vanishing thickness) and of thick plates (with 

thickness comparable to or greater than the wavelength of the perturbation). We treat ex- 

plicitly examples of ideal dielectric free energy functions (where the mechanical part is of 

the neo-Hookean, Mooney–Rivlin or Gent form) and of dielectrics exhibiting polarization 

saturation. In addition to the expected buckling mode coming from the purely elastic case, 

we discover a second mode occurring at large voltages in extension. We find that plates 

always wrinkle anti-symmetrically, before the symmetric modes can be reached. Finally, 

we make the link with the classical results of the Hessian electro-mechanical instability 

criterion and of Euler buckling for an elastic column. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

When a soft dielectric plate is put under a large voltage applied to its faces, it expands in its plane. At first, the expansion

increases slowly and almost linearly with the voltage until, typically, a local maximum is reached. Then in theory, the

voltage drops suddenly, until it reaches a local minimum, rises again, to reach the same level it had at the earlier maximum,

and then continues to rise. In practice the voltage does not drop: it stays at the level of the first maximum while the

plate expands rapidly, until it starts increasing again with the stretch. The membrane is said to experience a snap-through

expansion ( An et al., 2015; Dorfmann and Ogden, 2014b; Li et al., 2017; Rudykh and Bhattacharya, 2012; Zhao and Suo, 2010 ).

This large and almost instantaneous extension is highly desirable in experiments but is rarely achieved because during

the snap-through the elastomer fails due to electric breakdown ( Blok and LeGrand, 1969; Huang et al., 2012b; Koh et al.,

2011 ). Graphically, the curve of the electric breakdown crosses the voltage-stretch curve before the snap-through portion is

completed. 

This undesirable outcome can be avoided in a number of ways, in principle ( Jiang et al., 2015; 2016; Koh et al., 2011; Li

et al., 2011a ). We could for instance try to design a dielectric material with a free energy density such that the snap-through
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Fig. 1. Principle of the snap-through giant actuation. Solid lines are the voltage-stretch curves for homogeneous loading at different levels of pre-stress ( ̄s = 

0 , 0 . 8 , . . . , 4 . 5 ), when the plate is modeled by the Gent ideal dielectric (here J m = 97 . 2 Dorfmann and Ogden, 2014b; Gent, 1996 ). Dotted line corresponds 

to the onset of snap-through instability. The dashed parts of the voltage-stretch curves are the theoretical response of the elastomer after the snap- 

through instability is triggered, which will not happen in practice. The blue dashed–dotted lines are hypothetical Electrical Breakdown curves. The situation 

described by E 
(3) 

BD is the most favorable, allowing the initially unstretched material to expand and experience a large snap-through from A to B. For E 
(2) 

BD , this 

will not be allowed, but a certain level of pre-stress (here s̄ = 0 . 8 , 1 . 5 ) will give a (smaller) snap-through transition (from C to D, from E to F, respectively). 

As the hypothetical E BD curve slides down further, this possibility will vanish eventually (see s̄ = 2 . 5 , 4 . 5 curves). For E 
(1) 

BD , no snap-through is possible. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sequence is completed prior to electrical breakdown. But it seems that such a material has not been synthesised yet. We

could pre-stretch the membrane so that the snap-through path is shifted below that of the un-stretched membrane. But in

that scenario the snap-through actuation gain is greatly reduced. Moreover, with larger pre-stretch, the corresponding path

might become increasing monotonic and the snap-through possibility will then disappear altogether. 

These possible events are summarised in Fig. 1 , where we take a Gent ideal dielectric with J m 

= 97 . 2 ( Dorfmann and

Ogden, 2014b; Gent, 1996 ) as a representative stiffening parameter of elastomers (a different value stretches or shrinks the

plots, but the essential results remain the same). The critical dimensionless electric field of the plate is E BD = V BD / (h 
√ 

μ/ε ) ,
where V BD is the voltage causing electrical breakdown of the elastomer and h is its current thickness. This material constant

E BD is also known as the dielectric strength ( Pelrine et al., 20 0 0 ). For an equal-biaxially stretched dielectric elastomer, E 0 BD =
λ−2 E BD , where E 0 BD is the nominal measure of E BD and λ is the in-plane stretch. This relation is displayed by the blue

dashed–dotted lines in Fig. 1 , for hypothetical values of the dielectric strength ( E BD = 0 . 5 , 20 , 40 ). 

In this paper we show that in any case, the snap-through scenario is derailed because the loading curve crosses that of

wrinkle formation . Indeed, several experiments ( Jiang et al., 2015; 2016; Liu et al., 2016; Plante and Dubowsky, 2006 ) have

shown that sinusoidal wrinkles appear in soft dielectric plates under high voltage, see examples in Fig. 2 . Here, we model

and predict how they will form. 

In Section 2 , we begin by recalling the equations governing the large deformation of a dielectric plate subject to pre-

stretch and voltage. 

We then rely on the theory of incremental deformations superposed on large actuation ( Bertoldi and Gei, 2011; Bortot

and Shmuel, 2018; Dorfmann and Ogden, 2010a; 2010b; Gei et al., 2012; Rudykh et al., 2014; Rudykh and deBotton, 2011; Su

et al., 2016 ) to solve the boundary value problem of small-amplitude sinusoidal wrinkles appearing on the mechanically-free

faces of the plate ( Section 3 ). 

This problem was treated earlier by Dorfmann and Ogden (2014a,c) and more recently, by Yang et al. (2017b) and

Díaz-Calleja et al. (2017) , but not in a fully analytical manner as here. Here, we present a general framework to solve

the boundary-value problem for a general free energy density. We manage to obtain analytical results in the case of the

Gent ideal dielectric, a model which exhibits the typical non-monotonic snap-through loading curve, see Fig. 1 , and also in

the cases of neo-Hookean and Mooney–Rivlin ideal dielectrics. Thanks to the Stroh formulation and the surface impedance
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Fig. 2. Experimental evidence of electro-mechanical wrinkling instability: (a) collapse of a thin film of the rubber-like material VHB 4 905/4 910 put under 

a large voltage ( Plante and Dubowsky, 2006 ); (b) wrinkling of a VHB 4910 membrane under high voltage ( Liu et al., 2016 ); (c) electric activation of acrylic 

elastomers ( Pelrine et al., 20 0 0 ). We estimate that the ratio of the initial plate thickness to the wrinkle wavelength is H/ L � 0 . 17 , 0 . 35 in Cases (a) and (b), 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

method ( Destrade, 2015 ), we obtain closed-form expressions for the dispersion equation. We are also able to separate the

symmetric and antisymmetric modes of buckling and to solve the dispersion equations in a numerically robust manner. 

Then in Section 4 we derive the explicit equations giving the thin-plate and the short-wave limits. Plotting the two

corresponding curves gives a narrow region where all physical plate dimensions and wrinkle wavelengths are located. We

find that it crosses all loading curves before the snap-through can be completed. 

In Section 5 , we present further results, for dielectric exhibiting polarization saturation, and for the specialization of our

analytical formulas to known results in classical Euler buckling theory for elastic columns. We also make the link with, and

extend the Hessian criterion of instability ( Zhao and Suo, 2007 ) for electro-elastic dielectrics of a certain thickness. 

Finally, Section 6 recapitulates the results and puts them into a wider context, thanks to the extension of the analysis to

a tri-axial pre-stretch conducted in the Appendix A . 

2. Large actuation 

We write the free energy density for the dielectric plate as � = �( F , E L ) , where F is the deformation gradient and E L is

the Lagrangian form of the electric field E : E L = F T E . We introduce the following complete set of invariants for an isotropic

incompressible dielectric ( Dorfmann and Ogden, 2005; 2006; Goshkoderia and Rudykh, 2017; Rudykh et al., 2014 ), 

I 1 = tr c , I 2 = tr ( c −1 ) , I 4 = E L · E L , I 5 = E L · c −1 E L , I 6 = E L · c −2 E L , (1)

where c = F T F is the right Cauchy–Green deformation tensor. 

In the appendix we present results for general materials, where in all generality � can be written as � =
�(I 1 , I 2 , I 4 , I 5 , I 6 ) . In the main text we specialize the results to the Gent ideal dielectric ( Gent, 1996; Huang et al., 2012a ),

which exhibits the snap-through response. Its free energy is 

�G = −μJ m 

2 

ln 

(
1 − I 1 − 3 

J m 

)
− ε 

2 

I 5 , (2) 

where μ is the initial shear modulus in the absence of electric field (in Pa), J m 

is the stiffening parameter (dimensionless)

and ε is the permitivity (in F/m). When J m 

→ ∞ , the neo-Hookean ideal dielectric ( Zhao and Suo, 2007 ) is recovered, 

�nH = 

μ

2 

( I 1 − 3 ) − ε 

2 

I 5 , (3) 

but that model does not provide snap-through loading behavior. 

We call H the initial thickness of the plate. We apply a voltage V on the faces of the plate. Then the only non-zero

component of the Lagrangian electric field is E L 2 = V/H, which we call E 0 . We call x 1 , x 3 the in-plane Eulerian principal axes

and x 2 the transverse axis, so that we have the following principal stretches and electric field components, 

λ1 = λ3 = λ, λ2 = λ−2 , E 1 = E 3 = 0 , E 2 = λ2 E 0 . (4)

Note that in the appendix we give results for a bi-axially stretched plate, when λ1 is not necessarily equal to λ3 . 

Introducing the function ω = ω(λ, E 0 ) as 

ω = �(2 λ2 + λ−4 , 2 λ−2 + λ4 , E 2 0 , λ
4 E 2 0 , λ

8 E 2 0 ) , (5)
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Fig. 3. When put under voltage V and/or stress σ , a rectangular plate made of a soft dielectric and with faces covered by compliant electrodes deforms 

homogeneously (a) and (b). It can even deform so severely as to lose its stability and buckle into antisymmetric (c) or symmetric (d) modes of wrinkles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for a plate with no mechanical traction applied on the faces x 2 = ±h/ 2 , where h is the thickness of the deformed plate, we

find the following compact expression for the equi-biaxial nominal stress component required to maintain the deformation

( Dorfmann and Ogden, 2014a ): 

s = 

1 

2 

∂ω 

∂λ
, (6)

where s is the nominal stress applied along the in-plane directions. For example, for the Gent ideal dielectric we have

( Lu et al., 2012 ) 

s G = μ
λ − λ−5 

1 − (2 λ2 + λ−4 − 3) /J m 

− ελ3 E 2 0 , (7)

which we can easily invert to find the voltage V G = E 0 H. Here, a non-dimensional measure of V G is 

E 0 = 

V G 

H 

√ 

μ/ε 
= 

E 0 √ 

μ/ε 
= 

√ 

λ−2 − λ−8 

1 − (2 λ2 + λ−4 − 3) /J m 

− λ−3 s̄ , (8)

where s̄ = s G /μ is a non-dimensional measure of stress. We use this formula to plot the non-dimensional loading curves of

Fig. 1 , as well as the curve for the onset of snap-through, corresponding to d E 0 /dλ = 0 . 

Note that the electric displacement vector D = (0 , D, 0) , with D being the only non-zero component, is related to the

electric field through the formula 

D = −λ−1 
1 λ−1 

3 

∂ω 

∂E 0 
. (9)

In this paper we study the possibility of homogeneously deformed plates buckling inhomogeneously as sketched in Fig. 3 .

Typically, we find that the onset of these buckling modes is governed by a dispersion equation relating the critical stretch

λcr to the ratio of the plate thickness H by the wavelength of the wrinkles L . In effect, we find that it can be factorised into

the product of a dispersion equation for antisymmetric wrinkles and one for symmetric wrinkles, see Fig. 3 (c) and (d). 

3. Small-amplitude wrinkles 

We now linearize the governing equations and boundary conditions in the neighborhood of the large electro-elastic

deformation. We adopt the point of view that the existence of an incremental solution at an equilibrium state implies that

the second variation of the energy is not positive definite, and signals the onset of instability, at least in the linearized sense.

This connection has been established by several researchers over the years, see for instance the reviews by Sawyers (1996) or

Ogden (20 0 0) , or the more recent investigation by Chen et al. (2018) . 
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We introduce the following fields: u , the small-amplitude mechanical displacement; ˙ T 2 i , the incremental mechanical

traction on the planes x 2 = const.; and 

˙ D L , ˙ E L , the incremental electric displacement and electric field, respectively. These

fields are functions of x , the position vector in the current (actuated) configuration ( Dorfmann and Ogden, 2014c ). 

We focus on two-dimensional wrinkles , and thus take the fields to be functions of x 1 , x 2 only. This leads to (not shown

here) u 3 = 

˙ T 3 i = 

˙ E L 3 = 

˙ D L 3 = 0 . Because the updated, incremental version of the Maxwell equation Curl E L = 0 is curl ̇ E L = 0

( Dorfmann and Ogden, 2010a ), we can introduce the electric potential ϕ by 

˙ E L 1 = −∂ ϕ/∂ x 1 , ˙ E L 2 = −∂ ϕ/∂ x 2 . (10) 

We then seek solutions with sinusoidal shape along x 1 and amplitude variations along x 2 , in the form {
u 1 , u 2 , ˙ D L 2 , ˙ T 21 , ˙ T 22 , ϕ 

}
= � 

{ [
k −1 U 1 , k 

−1 U 2 , i 	, i 
21 , i 
22 , k 
−1 �

]
e i kx 1 

} 
, (11) 

where U 1 , U 2 , 	, 
21 , 
22 , � are functions of kx 2 only and k = 2 π/ L is the wavenumber. 

Our main result is that the governing equations can be put in the form 

η′ = i N η, (12) 

where 

η = 

[
U 1 U 2 	 
21 
22 �

]T = 

[
U S 

]T 
, (13) 

is the Stroh vector and the prime denotes differentiation with respect to kx 2 . Here U = 

[
U 1 U 2 	

]T 
, S =[


21 
22 �
]T 

are the generalised displacement and traction vectors, respectively, and N is the Stroh matrix. In the

appendix we show that N has the following block structure 

N = 

[
N 1 N 2 

N 3 N 1 

]
, (14) 

where the N i (i = 1 , 2 , 3) are real symmetric. We find that these 3 × 3 sub-matrices are 

N 1 = 

⎡ 

⎣ 

0 −1 0 

−1 0 0 

0 0 0 

⎤ 

⎦ , N 2 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 

c 
0 

d 

c 

0 0 0 

d 

c 
0 

d 2 

c 
− f 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, N 3 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

e 2 

g 
− 2(b + c) 0 − e 

g 

0 c − a 0 

− e 

g 
0 

1 

g 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (15) 

where a, b, c, d, e, f, g are electro-elastic moduli. Their general expression in terms of the free energy density � is given in

the appendix. For equi-biaxial deformations, they read 

a = 2 

[
λ2 (�1 + λ2 �2 ) + λ4 

(
�5 + (2 λ4 + λ−2 )�6 

)
E 2 0 

]
, 

b = 2 

{
(λ−4 − λ2 ) 

[
(λ−4 − λ2 )(�11 + 2 λ2 �12 + λ4 �22 ) − 2 λ4 (�15 + 2 λ4 �16 + λ2 �25 + 2 λ6 �26 ) E 

2 
0 

]
+ λ8 (�55 + 4 λ4 �56 + 4 λ8 �66 ) E 

4 
0 

}
+ (λ2 + λ−4 )(�1 + λ2 �2 ) + λ4 

[
�5 + 2(3 λ4 − λ−2 )�6 

]
E 2 0 , 

c = 2 λ−2 
[
λ−2 (�1 + λ2 �2 ) + λ4 �6 E 

2 
0 

]
, 

d = −2 λ2 
[
�5 + (λ4 + λ−2 )�6 

]
E 0 , 

e = 4 λ2 
[
(λ−4 − λ2 )(λ−4 �14 + �15 + λ4 �16 + λ−2 �24 + λ2 �25 + λ6 �26 ) 

−λ4 (λ−4 �45 + 2�46 + �55 + 3 λ4 �56 + 2 λ8 �66 ) E 
2 
0 − (�5 + 2 λ4 �6 ) 

]
E 0 , 

f = 2(λ2 �4 + �5 + λ−2 �6 ) , 

g = 4 λ4 
[
λ−8 �44 + 2 λ−4 �45 + 2�46 + �55 + 2 λ4 �56 + λ8 �66 

]
E 2 0 + 2(λ−4 �4 + �5 + λ4 �6 ) , (16) 

where �i = ∂ �/∂ I i and �i j = ∂ 2 �/∂ I i ∂ I j . 
Specializing to the Gent ideal dielectric, we find 

a = μ(2 λ2 W 

′ − λ4 E 
2 

0 ) , c = 2 μλ−4 W 

′ 
, 2 b = 4 μ(λ−4 − λ2 ) 2 W 

′′ + a + c, (17)

d = 

√ 

με λ2 E 0 , e = 2 d, f = g = −ε, (18) 

where 

W 

′ = 

1 

2 [ 1 − (2 λ2 + λ−4 − 3) /J m 

] 
, W 

′′ = 

1 

2 J m 

[ 1 − (2 λ2 + λ−4 − 3) /J m 

] 
2 
. (19) 
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The Stroh equation must be solved subject to the incremental boundary conditions on the faces of the plate of no me-

chanical traction and no electrical field, i.e., 

S (−kh/ 2) = 0 , S (kh/ 2) = 0 . (20)

Now because the Stroh matrix is constant, the resolution of (12) is straightforward. It reduces to an eigenvalue problem,

yielding a complete set of six linearly independent eigensolutions with exponential variations in x 2 . Then the boundary

conditions give a linear 6 × 6 homogeneous system of equations for the six unknowns U 1 ( ± h /2), U 2 ( ± h /2), 	( ± h /2), for

which the determinant must be zero: this is the dispersion equation. 

Using the usual matrix manipulations of plate acoustics (see Nayfeh, 1995 for instance), the six exponential solutions can

be decoupled into two sets of three (hyperbolic) trigonometric solutions, one corresponding to antisymmetric modes, the

other to symmetric modes, see sketches in Fig. 3 . The dispersion equation itself factorises into two corresponding equations.

In the appendix, we give those equations for an arbitrary tri-axial pre-stretch, for materials with free energies of the forms

� = W (I 1 ) − ε 

2 

I 5 , � = 

μ(1 − β) 

2 

(I 1 − 3) + 

μβ

2 

(I 2 − 3) − F (I 5 ) , (21)

where W and F are arbitrary functions (note that the Gent ideal dielectric belongs to the first type), and 0 ≤β ≤ 1 is a

constant. 

For the Gent ideal dielectric under an equi-biaxial pre-stretch (4) , we find the following explicit dispersion equation for

the anti-symmetric wrinkles : 

2 W 

′ [
p 1 (1 + p 2 2 ) 

2 tanh 

(
π p 1 λ

−2 H/ L 

)
− p 2 (1 + p 2 1 ) 

2 tanh 

(
π p 2 λ

−2 H/ L 

)]
= (p 2 2 − p 2 1 ) λ

8 E 
2 

0 tanh 

(
πλ−2 H/ L 

)
, (22)

where 

p 1 , 2 = 

λ3 + 1 

2 

√ 

1 + 2(λ − λ−2 ) 2 
W 

′′ 

W 

′ ± λ3 − 1 

2 

√ 

1 + 2(λ + λ−2 ) 2 
W 

′′ 

W 

′ . (23)

For symmetric wrinkles, the dispersion equation is the same except that tanh is replaced with coth everywhere. 

In the case of the neo-Hookean ideal dielectric (3) , we take J m 

→ ∞ and have W 

′ = 1 / 2 , W 

′′ = 0 , p 1 = λ3 , p 2 = 1 , so that

the dispersion equations simplify to [
tanh (λπH/ L ) 

tanh (λ−2 πH/ L ) 

]±1 

= 

(1 + λ6 ) 2 

4 λ3 
+ 

λ5 (1 − λ6 ) 

4 

E 
2 

0 , (24)

where the +1 ( −1 ) exponent corresponds to anti-symmetric (symmetric) wrinkles. 

Note that these equations recover the purely elastic buckling criterion when E 0 = 0 ( Ogden and Roxburgh, 1993 ). 

We now plot the dispersion curves for the Gent ideal dielectric as the plate is loaded homogeneously by an increasing

voltage. 

When E 0 = 0 , see Fig. 4 (a), we recover the purely mechanical case. The lower/dashed (upper/full) curve corresponds to

symmetric (anti-symmetric) buckling. We see that in extension ( λ> 1), the plate is always stable, whereas in contraction

( λ< 1), it buckles antisymmetrically, with λcr � 1 when H/ L is small (thin plate, long wavelength) and λcr � 0 . 661 when

H/ L is large (thick plate, short wavelength). Note that here “large” and “thick” simply mean that the plate initial thickness

H is of the order of the wavelength L . 

When E 0 = 0 . 2 , see Fig. 4 (b), the landscape is the same, with the curves slightly shifted upwards. The plate only buckles

in contraction. 

When E 0 = 0 . 4 , see Fig. 4 (c), we see that, in addition to contractile buckling, the possibility of wrinkling in extension has

now emerged. The plate buckles anti-symmetrically when λ reaches a critical value λcr between 2.65 (thin-plate limit) and

2.81 (short-wavelength limit), depending on the ratio H/ L . 

Similarly, when E 0 = 0 . 6 , Fig. 4 (d) shows that the plate wrinkles anti-symmetrically in extension when λ reaches a crit-

ical value λcr between 1.65 (thin-plate limit) and 1.78 (short-wave limit), depending on the ratio H/ L . 

From this rapid analysis, we conclude that it is unnecessary to study the dispersion equation in detail for the Gent ideal

dielectric, and that the thin-plate and short-wave limits suffice to find global, wavelength-independent critical stretches of

wrinkling in extension. 

4. Thin-plate and short-wave instabilities 

In the previous section, we saw that put under a sufficiently large voltage, a dielectric plate wrinkles anti-symmetrically

in extension. Depending on the ratio H/ L of thickness to wavelength, the plate wrinkles at a critical stretch located in

between a lower bound, corresponding to the limit for thin plates H/ L → 0 and an upper bound, the limit for short wave-

lengths H/ L → ∞ . In this section we present explicit expressions for these two limits. 

First, the thin-plate limit can be found with the asymptotic behavior of tanh as its argument is small in the dispersion

Eq. (22) for the Gent ideal dielectric. However, we can in fact give the thin plate limit in the most general case. Using the
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Fig. 4. Dispersion curves for electrically loaded ( E 0 = 0 . 0 , 0 . 2 , 0 . 4 , 0 . 6 ) dielectric plates: critical stretch ratio λcr of compression (lower curves) and of 

extension (upper curves) against the initial thickness to wavelength ratio H/ L . (a) and (b): for low voltages, the plate can wrinkle only in compression. (c) 

and (d): for higher voltages, the dielectric plate can wrinkle in extension, see the thick upper line, corresponding to anti-symmetric wrinkles. Then, the 

critical stretch is located between its limit values in the thin-plate ( H/ L → 0 ) and short-wave ( H/ L → ∞ ) limits. 

 

 

 

 

 

 

 

 

results of Shuvalov (20 0 0) , it is easy to show that the buckling condition when H/ L → 0 is simply 

det N 3 = 0 , (25) 

where N 3 is the Stroh sub-matrix given in Eq. (15) . It factorises to give (a − c)(b + c) = 0 , and the anti-symmetric mode

corresponds to a − c = 0 . Combining Eqs. (5) and (6) , we find that a − c = (λ/ 2) ∂ ω/∂ λ, so that anti-symmetric buckling is

equivalent to 

∂ω 

∂λ
= 0 . (26) 

Comparing with Eq. (6) , we see that in general, the loading curve E 0 − λ with no pre-stress ( s = 0 ) is in fact the buckling

limit for plates of vanishing thickness. This makes sense from a mechanical point of view: a purely elastic membrane with

vanishing thickness buckles as soon as it is contracted ( λcr = 1 . 0 ); a dielectric membrane with vanishing thickness can first

be stretched by applying a voltage, to λ = λ0 , say, and then it will buckle as soon as it is contracted, so that λcr = λ0 now. 

Here the equation reads 

λ−2 − λ−8 

1 − (2 λ2 + λ−4 − 3) /J m 

= E 
2 

0 . (27) 

Next the short-wave limit is found from Eq. (22) by replacing tanh with 1, its value as H/ L → ∞ . After some re-

arrangement, we find that it reads as 

2 λ(λ9 + λ6 + 3 λ3 − 1) W 

′ + 4(λ6 − 1) 2 W 

′′ = λ9 (1 + λ3 ) E 
2 

0 

√ 

1 + 2(λ − λ−2 ) 2 
W 

′′ 

W 

′ . (28) 

For example, when E 0 = 0 . 6 (and J m 

= 97 . 2 ) we find that the roots to this equation are λcr = 0 . 665 in contraction and

λcr = 1 . 78 in extension, as reported on Fig. 4 (d). Note that the purely elastic case ( E = 0 ) is consistent with the surface
0 
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Fig. 5. How the snap-through actuation is counter-acted by plate instabilities. Solid lines are the voltage-stretch curves for homogeneous loading at dif- 

ferent levels of pre-stress ( ̄s = 0 , 0 . 8 , . . . , 4 . 5 ), when the plate is modeled by the Gent ideal dielectric (here J m = 97 . 2 , Dorfmann and Ogden, 2014b; Gent, 

1996 ). Their intersection with the black dashed line shows where a snap-through should start. However, the non-prestressed plate ( s = 0 ) will meet the 

buckling zone found between the thin-plate and the short-wave limit curves on its way from A to B. Similarly for the s̄ = 0 . 8 pre-stressed plate. Only the 

s̄ = 1 . 5 pre-stressed plate might be able to experience a snap-through transition from E to F. Inset: experimental voltage (kV) – stretch data digitized from 

Huang et al. (2012b) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

stability criterion of an elastic Gent material ( Destrade and Scott, 2004 ), giving λcr = 0 . 661 here. For the neo-Hookean ideal

dielectric of Eq. (3) , the equation simplifies to 

λ9 + λ6 + 3 λ3 − 1 = λ8 (1 + λ3 ) E 
2 

0 . (29)

Note that Dorfmann and Ogden (2014a,c) studied the surface instability of an ideal neo-Hookean dielectric, but it was

charge-controlled instead of voltage-controlled as here. 

In the purely elastic case ( E 0 = 0 ), the equation above recovers the critical stretch ratio of surface instability for a half-

space under equi-biaxial strain as λcr = 0 . 6 6 6 , a result which can be traced back to the works of Green and Zerna (1954) ,

Flavin (1963) , and Biot (1963a) . 

Now the two Eqs. (27) and (28) delineate a region in the E 0 − λ landscape of Fig. 1 where a given plate is going to buckle

in contraction when subject to compressive forces and/or wrinkle in extension when subject to a sufficiently large voltage

E 0 . The precise value of the corresponding λcr depends on H/ L but the region between the two curves is narrow enough to

draw general conclusions. 

In Fig. 5 we plot the loading curves for the same Gent ideal dielectric ( J m 

= 97 . 2 ) used to generate the plots of Fig. 1 ,

together with the curves for the thin-plate and short-wave limits. We see that the snap-through scenario is not going to

unfold completely for the s = 0 curve: as soon as E 0 reaches its maximum (A) and the plate starts expanding with voltage

remaining fixed at that value, we enter the wrinkling zone between the thin-plate and the short-wave limits. The same

is true for the s = 0 . 8 pre-stressed plate, as again, the snap-through from C to D hits the wrinkling zone and cannot be

completed. Only the s = 1 . 5 pre-stressed plate might be able to achieve a snap-through from E to F without wrinkling. 

For plates subject to sufficiently large pre-stress ( s = 2 . 5 , 4 . 5 ), the snap-through, thin-plate and short-wave instabilities

are avoided, and the plates can deform until they fail by electrical breakdown. 

In Fig. 4 , we saw that plates buckle in contraction only when E 0 is small (e.g., E 0 = 0 . 0 , 0 . 2 , see Fig. 4 (a) and (b)), and

then in contraction and in extension for sufficiently large voltage (e.g., E 0 = 0 . 4 , 0 . 6 , see Fig. 4 (c) and (d)). The critical voltage

where the wrinkling in extension is first expressed is determined by 

∂ E 0 
∂λ

= 0 , where E 0 = 

√ 

λ−2 − λ−8 

1 − (2 λ2 + λ−4 − 3) /J m 

(30)

corresponds to the E − λ loading curve with no pre-stress ( s = 0 ). 
0 
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Fig. 6. A dielectric with polarisation saturation: solid lines are the voltage-stretch curves for homogeneous loading at different levels of pre-stress ( ̄s = 

0 , 0 . 6 , 1 . 0 , 1 . 5 ). The non-prestressed plate ( s = 0 ) will meet the buckling zone found between the thin-plate and the short-wave limit curves on its way 

from A to B. The pre-stressed plates might be able to avoid buckling, depending on their thickness. Inset: polarisation saturation of the electric displacement 

with the electric field for the corresponding model ( Liu et al., 2012 ). 

 

 

 

 

 

 

 

 

 

 

In our calculation ( J m 

= 97 . 2 ), Eq. (30) has two real roots E 0 = 0 . 69 and E 0 = 0 . 28 . The former corresponds to the voltage

at point A (onset of snap-through at the local maximum of the curve) and the latter to the voltage at the local minimum of

the curve, see Fig. 5 . 

Finally, we inserted experimental results in Fig. 5 on actual voltage-stretch curves due to Huang et al. (2012b) . They do

show that plates can be stretched by voltage a little bit further than the onset of snap-through suggests, by going beyond

the maximum of the curve, and that pre-stretch allows for further absolute stretch of the plate by voltage, although the

relative gain is affected by the pre-stretch, see Huang et al. (2012b) for a more detailed discussion. 

5. Further results 

5.1. Plate wrinkling for dielectrics with polarization saturation 

Many dielectrics exhibit the phenomenon of polarization saturation , in the sense that the electric displacement D in-

creases monotonically with the electric field E but with an asymptotic upper bound D s , say ( Li et al., 2012; 2011b; Liu et al.,

2012 ). This characteristic can be captured by the following form of energy density, 

� = 

μ(1 − β) 

2 

(I 1 − 3) + 

μβ

2 

(I 2 − 3) − D 

2 
s 

ε 
ln 

( 

cosh 

( 

ε 

√ 

I 5 

D s 

) ) 

, (31) 

where D s > 0 and 0 ≤β ≤ 1 are constants. Then the electric displacement D is related to the electric field E through (see Eq.

(9) and Fig. 6 ), 

D = D s tanh (εE/D s ) . (32) 

The nominal stress required to effect an equi-biaxial stretch with a transverse electrical field is found from Eq. (6) as 

s = μ(1 − β)(λ − λ−5 ) + μβ(λ3 − λ−3 ) − λD s E 0 tanh 

(
λ2 εE 0 / D s 

)
. (33) 

We introduce the following quantities 

s = s/μ, E 0 = E 0 
√ 

ε/μ, D s = D s / 
√ 

με , (34) 

to obtain the non-dimensional version of this equation as 

s = (1 − β)(λ − λ−5 ) + β(λ3 − λ−3 ) − λD s E 0 tanh 

(
λ2 E 0 / D s 

)
. (35) 

For a given level of pre-stress s , it gives an implicit relationship between the voltage and the stretch, which we solve to plot

the E 0 − λ curves of Fig. 6 . For these plots we took β = 0 . 2 and D s = 4 
√ 

5 (corresponding to k = 1 / 4 and D s / 
√ 

C 1 ε = 10 in
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the paper by Liu et al., 2012 ). We also plot the curve for the onset of snap-through, found by differentiating implicitly Eq.

(35) and taking d E 0 /dλ = 0 . 

We note that, as outlined above, the thin-plate limit corresponds to this equation in the absence of pre-stress, i.e., when

s = 0 . Since the energy density (31) is of the form (21) 2 , we can make use of the results found using this choice of energy

(see appendix, (106) ), to obtain the short-wave limit as 

p 3 
[
λ−2 (1 − β) + β

]
(λ3 + 1 + 3 λ−3 − λ−6 ) − (λ + λ−2 ) E 0 D s tanh 

(
λ2 E 0 / D s 

)
= 0 , (36)

where 

p 3 = 

√ 

D s 

2 λ2 E 0 
sinh 

(
2 λ2 E 0 

D s 

)
, (37)

is the imaginary part of the third eigenvalue of the corresponding Stroh matrix. 

We plotted the thin-plate limit and short-wave limit curves in Fig. 6 . We can see that when the material is not under

mechanical pre-stress ( s = 0 ), snap-through does not occur, as the wrinkling zone between the thin-plate and short-wave

instabilities is reached before it can be completed. However, we can also see that the plate may avoid buckling when it is

pre-stressed, and potentially achieve snap-through, depending on the thickness of the material. 

5.2. Correction to the thin-plate buckling equation 

Finally, we can exploit the exact dispersion equations to establish approximations to the dispersion equations when the

plate is thin. For this exercise, we specialise the analysis to the Mooney–Rivlin ideal dielectric model, with free energy density

� = 

μ(1 − β) 

2 

(I 1 − 3) + 

μβ

2 

(I 2 − 3) − ε 

2 

I 5 , (38)

where β (0 ≤β ≤ 1) is a constant. Note that the neo-Hookean ideal dielectric (3) corresponds to β = 0 . 

In this case, the dispersion equation for anti-symmetric wrinkles (the first to appear) reads 

tanh (λπH/ L ) 

tanh (λ−2 πH/ L ) 
= 

(λ2 β + 1 − β)(1 + λ6 ) 2 + E 
2 

0 λ
8 (1 − λ6 ) 

4 λ3 [ 1 + β(λ2 − 1) ] 
, (39)

which reduces to Eq. (24) for β = 0 . At the zero-th order in H/ L , we have the thin-plate equation Eq. (26) , here: 

E 0 
2 = (1 − β + βλ2 )(λ−2 − λ−8 ) . (40)

This equation has one root (low values of E 0 ) or two roots (higher E 0 ) for λ, which we call λ0 . 

The next order in H/ L is order two. With some manipulations of Eq. (39) , we find the following correction, 

λ = λ0 − 2 

3 

[
λ3 

0 (1 − β + βλ2 
0 ) 

3 βλ2 
0 

+ (1 − β)(4 − λ6 
0 
) 

]
( πH/ L ) 

2 
. (41)

This expression is valid for both the smallest root of the thin-plate equation (corresponding to buckling in contraction)

and the largest root (wrinkling in extension under a large voltage), when it exists. That latter case is a departure from the

purely elastic case ( λ0 ≡ 1), where there is no loss of stability in extension ( Beatty and Pan, 1998 ). For the neo-Hookean

ideal dielectric (3) , we take β = 0 and the expression reduces to 

λ = λ0 − 2 

3 

[
λ3 

0 

4 − λ6 
0 

]
( πH/ L ) 

2 
. (42)

Finally, λ0 = 1 in the purely elastic case, and from Eq. (41) we recover the Euler solution for the buckling of a slender

plate under equi-biaxial load: λ = 1 − (2 / 9)(πH/ L ) 2 , see Biot (1963b) , Sawyers (1996) , or Beatty and Pan (1998) for the

connection with the classical formula of the corresponding critical end thrust (see also Yang et al., 2017b ). 

This type of expansion in H/ L can be performed for any free energy by using the Stroh matrix, see Shuvalov (20 0 0) for

details. It allows us to link our stability analysis to that based on the Hessian criterion. That stability criterion is

based on minimising the free energy once it has been expanded in terms of the plate thickness up to the first power

( Zurlo et al., 2017 ). It corresponds to the onset of snap-through d E 0 / d λ = 0 , and of compression-induced failure ( De Tom-

masi et al., 2011 ). For instance, take the neo-Hookean ideal dielectric (3) : in the absence of a pre-stress, the onset of snap-

through/Hessian criterion occurs when ( Zhao and Suo, 2007 ) 

λ = 2 

1 / 3 � 1 . 26 , E 0 = 

√ 

3 

2 

4 / 3 
� 0 . 69 . (43)

However, Eq. (42) will not work here because the denominator of the correction would be zero. By carefully re-doing the

expansion in this special case, we find the first correction to this criterion in terms of the plate thickness to be of order one
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Fig. 7. Critical stretch λcr versus the initial thickness to wavelength ratio H/ L for the anti-symmetric instability modes of a neo-Hookean ideal dielectric 

plate (left: E 0 = 0 . 6 , right: E 0 = 

√ 

3 / 2 4 / 3 � 0 . 69 ). Black: exact solutions from the analytical dispersion Eq. (24) and red: Euler buckling approximations from 

Eq. (42) (left) and Eq. (44) 1 (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 8. Dispersion critical curves for an equi-biaxially stretched neo-Hookean ideal dielectric square plate with initial side L and thickness H , in terms 

of its slenderness H / L , for two levels of voltage: E 0 = 0 . 6 (left) and E 0 = 

√ 

3 / 2 4 / 3 � 0 . 69 (right), the value given by the Hessian criterion. The integer n 

gives the number of half-periods across the plate. We see that the plate can buckle/wrinkle in contraction ( λcr ≤ λ0 ) and in extension ( λcr ≥ ˆ λ0 ). The plate 

always buckles/wrinkles anti-symmetrically with one half-period only ( n = 1 , thick black curves). The other modes ( n > 1 and symmetric modes) are never 

reached. 

 

 

 

 

 

 

 

 

 

for the stretch (and the next term is of order three) and of order two for the voltage (and the next term is of order three).

Explicitly, 

λ = 2 

1 / 3 ± 2 

1 / 6 

3 

(πH/ L ) � 1 . 26 ± 1 . 18(H/ L ) , 

E 0 = 

√ 

3 

2 

4 / 3 
− 2 

1 / 3 

3 

3 / 2 
(πH/ L ) 2 � 0 . 69 − 2 . 39(H/ L ) 2 . (44) 

Fig. 7 shows the dispersion curves obtained by the exact Eq. (24) and the Euler column buckling approximations (42) and

(44) 1 of a neo-Hookean plate. When E 0 < 0 . 69 (left figure), Eq. (41) has two real roots, and the λcr − H/ L curves for the thin

plate are approximated quadratically. For the case of the Hessian instability criterion ( E 0 = 

√ 

3 / 2 4 / 3 ), Eq. (41) has a single

real root, and the λcr − H/ L curves are approximated linearly for small thicknesses. 

The figures confirm the special character of the Hessian criterion to study stability. Prior to reaching the maximum in

the voltage-stretch loading curve (for example when E 0 = 0 . 6 , as in Fig. 7 (a)), a thin membrane will buckle when subject

to a small amount of contraction ( λcr slightly smaller than λ0 = 1 . 1 in Fig. 7 (a)), but can be stretched by a large amount

before it wrinkles in extension (the stretch has to reach a value slightly larger than λ0 = 1 . 62 ). At the Hessian criterion

( E 0 = 0 . 69 ), a thin membrane can only be contracted or stretched by a small amount before it buckles or wrinkles ( λcr is

close to λ = 2 1 / 3 for both buckling and wrinkling). 
0 
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6. Conclusions 

6.1. Results of the current paper 

Motivated by experimental evidence, we presented a theoretical investigation on the wrinkling modes of instability of

a dielectric plate subject to the combined action of electrical voltage in thickness and in-plane equi-biaxial pre-stresses,

based on nonlinear electroelasticity and the associated incremental theory. We derived the dispersion equation and decou-

pled it into explicit antisymmetric and symmetric modes. We recovered classical elastic results of plate buckling when the

voltage is absent. For specific energy functions (Gent and neo-Hookean ideal dielectrics, Mooney–Rivlin dielectric with po-

larization saturation), we obtained the thin-plate and short-wave limits analytically. Our numerical calculations show that

plates subject to small-to-moderate voltage require contractile loadings to buckle. For larger applied voltage, the plates can

buckle/wrinkle in both contraction and extension, with the critical stretch confined between the thin-plate and short-wave

limits. In either case, we found that plates bifurcate anti-symmetrically first and that the symmetric mode is never attained.

We determined the threshold value of the voltage where the buckling in extension is first encountered. For thin plates, we

extended the Hessian criterion ( Zhao and Suo, 2007 ) to account for thickness terms. 

6.2. Lateral boundary conditions: wrinkling, buckling 

So far we have not specified the lateral boundary conditions that can be applied on the end faces of the plate, located at

x 1 = 0 , � 1 and x 3 = 0 , � 3 , say. Instead we wrote our general solution in terms of the wrinkles’ wavelength L , because it can

handily be specialized to several scenarios. 

For instance we may assume that the lateral dimensions of the plate are large enough to ignore the actual boundary

conditions on the end faces, and that the only relevant boundary conditions are those applying on the upper and lower

faces. This assumption can be used to model loaded plates with a high number of wrinkles, see experimental examples in

Fig. 2 . 

We may also assume that the plate has finite lateral dimensions, say it is a square of initial side length L . 

To a given low-to-moderate voltage E 0 corresponds a single actuation stretch λ0 , say. Here the plate buckles in contrac-

tion, when λ = λcr ≤ λ0 . In practical terms, it means that if we place frictionless walls at x 1 = 0 , λ0 L, and at x 3 = 0 , λ0 L, we

can push them with equal force against the plate until its side length is λcr L, where it buckles. The corresponding wrinkles

produce no incremental displacement nor traction in the x 3 direction, so that sliding contact is ensured with the walls at

x 3 = 0 , λ0 L . A short analysis of the incremental fields of the solution (not reproduced here) reveals that both the normal dis-

placement u 1 and the shear traction 

˙ T 12 are proportional to sin ( kx 1 ). It follows that the incremental boundary condition of

sliding contact with the walls at x 1 = 0 , λcr L is fully satisfied when kλcr L = nπ, where n is an integer. We may then replace

the H/ L term in the dispersion equations with nλ−1 
cr H/ (2 L ) . Hence we used the plate slenderness ratio H / L as a variable to

plot Fig. 8 , where we solved the dispersion Eq. (24) for a neo-Hookean ideal dielectric for n = 1 , 2 , 3 in turn. We see that

the n = 1 anti-symmetric mode is always the first one met, in contraction and in extension, so that the plate buckles in a

half-period pattern, see sketch 4(a) by Yang et al. (2017b) . 

For higher voltages, a second, larger activation stretch occurs, at λ = ̂

 λ0 , say. Under those voltages, the plate can buckle

in contraction ( λcr ≤ λ0 ) as above, and also in extension ( λcr ≥ ˆ λ0 ). At x 1 = 0 , λcr L, we can apply sliding conditions again, or

alternatively, incremental dead-load conditions: ˙ T 11 = 

˙ T 12 = 0 (by adjusting the incremental Lagrange multiplier ˙ p ). We can-

not have u 1 = 0 and u 2 = 0 simultaneously there, but we can have u 1 = 0 and u 2 (0) = u 2 (λcr L ) . In that case, the end faces

both rise or dip during wrinkling by the same amount, which can be absorbed in the analysis by a superposed translation.

Again, we find that the plate wrinkles anti-symmetrically in a half-period pattern. 

For the Hessian voltage, we have λ0 = ̂

 λ0 = 2 1 / 3 and the plate can buckle in the neighborhood of λcr both in contraction

and in extension with a half-period pattern ( n = 1 ). We find from Eq. (44) that the critical stretch is then approximated as 

λcr = 2 

1 / 3 ± 2 

5 / 6 

12 

(πH/L ) � 1 . 26 ± 0 . 466(H/L ) , 

E 0cr = 

√ 

3 

2 

4 / 3 
− 1 

2 

7 / 3 3 

3 / 2 
(πH/L ) 2 � 0 . 69 − 0 . 377(H/L ) 2 . (45)

6.3. Connections with existing results 

In the main part of the paper, we presented theoretical and numerical calculations with respect to equi-biaxially de-

formed plates, but our strategy is readily extended to general tri-axial deformations, see the Appendix. In what follows,

we specialise the general results to specific deformations and materials to compare and contrast our results with those of

others. 

Dorfmann and Ogden (2010b) derived the incremental equations of electro-elasticity and used them to obtain the cri-

terion of surface instability for a class of dielectric models which includes the neo-Hookean model (by taking α = 0 in

their Eq. (109)). They assumed the dielectric half-space to be immersed in a uniform external electric field and took plane

strain conditions. In a later paper ( Dorfmann and Ogden, 2014a ), they extended the analysis to plates with finite thickness
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under equi-biaxial stretch, as here, and considered both the cases of plates immersed in a uniform external field and of

electrode-covered plates. In those two investigations, the authors took the Lagrangian electric displacement to be a con-

stant, in contrast to our study, where we take the Lagrangian electric field E 0 to be constant. It follows that we cannot make

a direct connection with their results and only give the counterpart explicit dispersion equations below. 

Hence, for a neo-Hookean ideal dielectric plate stretched equi-biaxially , we found the explicit dispersion equations and

surface wrinkling bifurcation criterion as Eqs. (24) and (29) , respectively, which we recall below as [
tanh (πλH/ L ) 

tanh (πλ−2 H/ L ) 

]±1 

= 

(1 + λ6 ) 2 

4 λ3 
+ 

λ5 (1 − λ6 ) 

4 

E 
2 

0 , (46) 

(where the +1 / −1 exponent corresponds to anti-symmetric/symmetric wrinkles), and 

λ9 + λ6 + 3 λ3 − 1 = λ8 (1 + λ3 ) E 
2 

0 . (47) 

As shown with the dispersion curves of Fig. 4 , these equations are robust and easy to solve numerically, while the deter-

minantal equation of Dorfmann and Ogden (2014a) is probably ill-conditioned, as it presents instability and a merging of

symmetric and anti-symmetric modes. 

For a neo-Hookean ideal dielectric plate in plane strain , we take λ1 = λ, λ2 = 1 /λ, λ3 = 1 in Appendix Eq. (97) , to find the

dispersion equations as [
tanh (πλH/ L ) 

tanh (πλ−1 H/ L ) 

]±1 

= 

(1 + λ4 ) 2 

4 λ2 
+ 

λ2 (1 − λ4 ) 

4 

E 
2 

0 , (48) 

and the surface instability equation ( H/ L → ∞ ) as 

λ6 + λ4 + 3 λ2 − 1 = λ4 (1 + λ2 ) E 
2 

0 . (49) 

Here the main difference with the equi-biaxial case is that the plane-strain voltage-stretch curve is monotone: 

E 0 = 

√ 

1 − λ−4 − λ−1 s . (50) 

Because this equation corresponds to the thin-plate limit, it follows that there is now only one possibility of buckling, as to

a given voltage corresponds a single actuation stretch λ0 . Here the plate can only buckle in contraction, when λ = λcr ≤ λ0 .

Díaz-Calleja et al. (2017) took the same set-up as Dorfmann and Ogden (2014a) (in equi-biaxial strain), and also took the

electric displacement as constant, so that again, we cannot compare our results to theirs directly. They used an extended

Mooney–Rivlin model and an Ogden model in turn, and obtained the dispersion equation as a 6 × 6 determinant, not de-

coupled into symmetric and anti-symmetric modes. Their numerical results do not seem to reveal an extensional mode of

wrinkling, and seem to present numerical instabilities. 

Fu et al. (2018) recently studied the localized necking of ideal neo-Hookean dielectric plates in plane strain. They ex-

panded the bifurcation criterion of Dorfmann and Ogden (2014a) in terms of kH , similar to our analysis in Section 5.2 . In an

effort to model the initiation of necking in tension, they focused on the symmetric mode of wrinkling. We can also provide

such an expression by expanding in a Maclaurin series the bifurcation criterion (48) with the −1 exponent, but there is little

value in pursuing this avenue, simply because, as we saw, the symmetric modes are never arrived at, as they are always

preceded by anti-symmetric modes. 

Finally, Yang et al. (2017b) looked at the buckling of ideal dielectric plates in plane strain. However, when they specialized

their results to the neo-Hookean case, they chose for simplicity to not consider the increments in the electrical fields, only

in the mechanical fields. As a result they obtained the following dispersion relation, see their Eqs. 69 ) and ( (70) , [
tanh (πλH/ L ) 

tanh (πλ−1 H/ L ) 

]±1 

= 

(1 + λ4 ) 2 + λ4 (1 + λ4 ) E 
2 

0 

4 λ2 + 2 λ6 E 
2 

0 

. (51) 

The numerical resolution of this equation for the anti-symmetric case shows that it brings little difference compared to the

dispersion curve of the exact Eq. (48) for plates subject to small voltages (up to E 0 = 0 . 5 , say). However, for larger applied

voltage, the difference is quite dramatic, as the equation above under-estimates the critical stretch by at least 15% for thin

plates. Also, their equation has roots when E 0 > 1 , which is not allowed according to (50) , see also Yang et al. (2017a) . The

conclusion is that we must keep all increments (mechanical, electrical, and coupled) to solve the boundary value problem. 

6.4. Limitations 

Our study is restricted in several ways and can be improved upon. 

For example we did not consider viscosity ( Hong, 2011; Park and Nguyen, 2013 ) in any way, although there is strong

evidence to support its role in the problem of electro-mechanical instability. 

We also discarded the possibility of the wrinkles wavefront being oriented at a different angle instead of being normal

to x . It could very well be that the first wrinkles to develop are oblique ( Carfagna et al., 2017 ). Further, it could also be the
1 
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case that wrinkles with a wavefront normal to x 2 develop. They might even be compatible with our wrinkles and combine

to create a two-dimensional pattern ( Yin et al., 2018 ). 

Finally, the present incremental theory framework does not seem appropriate to initiate necking ( Fu et al., 2018 ) of a thin

plate under large voltage. Our analysis predicts that the n = 2 symmetric mode in extension (which is the perfect precursor

to necking) can never be attained, as the plate has already reached the bifurcation criterion for the n = 1 anti-symmetric

mode, where the linearized theory breaks down. Clearly a nonlinear treatment is required to capture necking. 
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Appendix A 

Here, we give the general expressions for the electro-acoustic moduli and the derivation of the Stroh matrix. The ap-

pendix is self-contained and some equations from the main text are repeated. 

A1. Electro-acoustic moduli 

We use the push-forward versions of the incremental constitutive equations when the free energy is of the form � =
�( F , E L ) ( Dorfmann and Ogden, 2014c ): 

˙ T = A 0 L + �0 
˙ E L + p L − ˙ p I , ˙ D L = −�T 

0 L − K 0 
˙ E L , (52)

where ˙ T is the push-forward version of the incremental mechanical traction, ˙ E L and 

˙ D L are the push-forward versions

of the incremental electric field and electric displacement, respectively, L = grad u is the gradient of the small-amplitude

mechanical displacement u , p is the Lagrange multiplier due to the incompressibility condition, with ˙ p its increment, and

A 0 , �0 and K 0 are fourth-, third- and second-order tensors, respectively, the so-called electro-acoustic moduli . 

The electro-acoustic moduli tensors are given in terms of the first and second derivatives of the energy density function

� with respect to the deformation gradient F and the Lagrangian form of the electric field E L = F T E , where E is the electric

field. Using the invariants given in the main body of the paper, we obtain the following expressions for the components of

the moduli tensors, 

A 0 jilk = 4 

{
�11 b i j b kl + �22 (I 1 b − b 

2 ) i j (I 1 b − b 

2 ) kl 

+ �12 

[
b i j (I 1 b − b 

2 ) kl + b kl (I 1 b − b 

2 ) i j 

]
− �15 (b i j E k E l + b kl E i E j ) 

−�16 

[
b i j (E k ( b 

−1 
E ) l + ( b 

−1 
E ) k E l ) + b kl (E i ( b 

−1 
E ) j + ( b 

−1 
E ) i E j ) 

]
−�25 

[
E i E j (I 1 b − b 

2 ) kl + E k E l (I 1 b − b 

2 ) i j 

]
− �26 

[
(I 1 b − b 

2 ) i j (E k ( b 

−1 
E ) l 

+( b 

−1 
E ) k E l ) + (I 1 b − b 

2 ) kl (E i ( b 

−1 
E ) j + ( b 

−1 
E ) i E j ) 

]
+ �55 E i E j E k E l 

+ �56 

[
E i E j (E k ( b 

−1 
E ) l + ( b 

−1 
E ) k E l ) + E k E l (E i ( b 

−1 
E ) j + ( b 

−1 
E ) i E j ) 

]
+�66 (E i ( b 

−1 
E ) j + ( b 

−1 
E ) i E j )(E k ( b 

−1 
E ) l + ( b 

−1 
E ) k E l ) 

}
+2 

{
�1 δik b jl + �2 

(
2 b i j b kl − b il b jk − b ik b jl + δik (I 1 b − b 

2 ) jl 
)

+ �5 (δ jl E i E k + δ jk E i E l + δil E j E k ) 

+ �6 

[
b −1 

ik 
E j E l + b −1 

il 
E j E k + b −1 

jk 
E i E l + b −1 

jl 
E i E k + δ jk (E i ( b 

−1 
E ) l + ( b 

−1 
E ) i E l ) 

+ δil (E j ( b 

−1 
E ) k + ( b 

−1 
E ) j E k ) + δ jl (E i ( b 

−1 
E ) k + ( b 

−1 
E ) i E k ) 

]}
, (53)

�0 jik = 4 

{
b i j 

[
�14 ( bE ) k + �15 E k + �16 ( b 

−1 
E ) k 

]
+ (I 1 b − b 

2 
) i j 

[
�24 ( bE ) k + �25 E k + �26 ( b 

−1 
E ) k 

]
− E i E j 

[
�45 ( bE ) k + �55 E k + �56 ( b 

−1 
E ) k 

]
−
(
E i ( b 

−1 
E ) j + ( b 

−1 
E ) i E j 

)[
�46 ( bE ) k + �56 E k + �66 ( b 

−1 
E ) k 

]}
− 2 

[
�5 (δ jk E i + δik E j ) + �6 (δik ( b 

−1 
E ) j + δ jk ( b 

−1 
E ) i + b −1 

ik 
E j + b −1 

jk 
E i ) 
]
, (54)
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K 0 i j = 4 

{
�44 ( bE ) i ( bE ) j + �55 E i E j + �66 ( b 

−1 
E ) i ( b 

−1 
E ) j 

+ �45 

[
( bE ) i E j + E i ( bE ) j 

]
+ �46 

[
( bE ) i ( b 

−1 
E ) j + ( b 

−1 
E ) i ( bE ) j 

]
+�56 

[
E i ( b 

−1 
E ) j + ( b 

−1 
E ) i E j 

]}
+ 2 

(
�4 b i j + �5 δi j + �6 b 

−1 
i j 

)
, (55) 

where b = F F T is the left Cauchy–Green deformation tensor, �i j = ∂ 2 �/∂ I i ∂ I j and �i = ∂ �/∂ I i , for i, j = 1 , 2 , 4 , 5 , 6 . 

These expressions are derived from the derivatives of the invariants with respect to the deformation gradient F and to

the Lagrangian electric field E L . The non-zero first derivatives are as follows, 

∂ I 1 
∂F iα

= 2 F iα, 
∂ I 2 
∂F iα

= 2(I 1 F iα − c αγ F iγ ) , 

∂ I 5 
∂F iα

= −2 c −1 
αγ E Lγ F −1 

δi 
E Lδ, 

∂ I 6 
∂F iα

= −2 

(
c −2 
αγ E Lγ F −1 

δi 
E Lδ + c −1 

αγ E Lγ c −1 
δp 

F −1 
pi 

E Lδ
)
, 

∂ I 4 
∂E Lα

= 2 E Lα, 
∂ I 5 
∂E Lα

= 2 c −1 
αγ E Lγ , 

∂ I 6 
∂E Lα

= 2 c −2 
αγ E Lγ , (56)

the non-zero second derivatives with respect to F are 

∂ 2 I 1 
∂ F iα∂ F kβ

= 2 δik δαβ, 

∂ 2 I 2 
∂ F iα∂ F kβ

= 2 

(
2 F iαF kβ − F iβF kα + δik (I 1 δαβ − c αβ ) − b ik δαβ

)
, 

∂ 2 I 5 
∂ F iα∂ F kβ

= 2 E Lγ E Lδ

(
c −1 
αβ

F −1 
γ k 

F −1 
δi 

+ c −1 
βγ

F −1 
αk 

F −1 
δi 

+ c −1 
αγ F −1 

δk 
F −1 
βi 

)
, 

∂ 2 I 6 
∂ F iα∂ F kβ

= 2 

[ 
c −2 
αβ

F −1 
γ k 

F −1 
δi 

+ c −2 
βγ

F −1 
αk 

F −1 
δi 

+ c −2 
αγ F −1 

δk 
F −1 
βi 

+ c −1 
αβ

(
c −1 
γ q F 

−1 
qk 

F −1 
δi 

+ c −1 
δq 

F −1 
qi 

F −1 
γ k 

)
+ c −1 

βγ

(
c −1 
αq F 

−1 
qk 

F −1 
δi 

+ c −1 
δq 

F −1 
qi 

F −1 
αk 

)
+ c −1 

αγ

(
c −1 
δq 

F −1 
qk 

F −1 
βi 

+ c −1 
βq 

F −1 
qi 

F −1 
δk 

+ c −1 
βδ

b −1 
ik 

)] 
E Lγ E Lδ, (57) 

the non-zero second derivatives with respect to E L are 

∂ 2 I 4 
∂ E Lα∂ E Lβ

= 2 δαβ, 
∂ 2 I 5 

∂ E Lα∂ E Lβ
= 2 c −1 

αβ
, 

∂ 2 I 6 
∂ E Lα∂ E Lβ

= 2 c −2 
αβ

, (58) 

and the mixed second derivatives are 

∂ 2 I 5 
∂ F iα∂ E Lβ

= −2 

(
c −1 
αβ

F −1 
γ i 

+ c −1 
αγ F −1 

βi 

)
E Lγ , 

∂ 2 I 6 
∂ F iα∂ E Lβ

= −2 

[ 
c −2 
αγ F −1 

βi 
+ c −2 

αβ
F −1 
γ i 

+ F −1 
pi 

(
c −1 
αγ c −1 

βp 
+ c −1 

αβ
c −1 
γ p 

)] 
E Lγ . (59) 

Note that some of these derivatives were first derived by Rudykh et al. (2014) . 

A2. Two-dimensional wrinkles in transverse electric field 

We look for two-dimensional solutions to the incremental equations so that u = u (x 1 , x 2 ) only. Then ˙ p , ˙ D L and 

˙ E L are

also functions of x 1 , x 2 only. Although we do not show it here, we find that this leads to u 3 = 0 , ˙ D L 3 = 0 and 

˙ E L 3 = 0 for our

problem of principal wrinkles in a transverse electrical field. Because curl ˙ E L = 0 , we can introduce the electric potential ϕ
and write that 

˙ E L 1 = −ϕ , 1 , ˙ E L 2 = −ϕ , 2 . (60) 

The push-forward versions of the incremental constitutive equations then have the following non-zero entries, 

˙ T 11 = (A 01111 + p) u 1 , 1 + A 01122 u 2 , 2 − �0112 ϕ , 2 − ˙ p , 

˙ T 12 = (A 01221 + p) u 1 , 2 + A 01212 u 2 , 1 − �0211 ϕ , 1 , 

˙ T 21 = (A 01221 + p) u 2 , 1 + A 02121 u 1 , 2 − �0211 ϕ , 1 , 

˙ T 22 = (A 02222 + p) u 2 , 2 + A 01122 u 1 , 1 − �0222 ϕ , 2 − ˙ p , (61) 
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and 

˙ D L 1 = −�0211 (u 1 , 2 + u 2 , 1 ) + K 011 ϕ , 1 , 

˙ D L 2 = −�0112 u 1 , 1 − �0222 u 2 , 2 + K 022 ϕ , 2 , (62)

because all other components of the electro-elastic moduli are zero. Here A 0 jilk , �0 jik and K 0 ij are given by Eqs. (53), (54) and

(55) , respectively. 

The equilibrium equations in the incremental case, div ̇ T = 0 and div ̇ D L = 0 , are then as follows, 

˙ T 11 , 1 + 

˙ T 21 , 2 = 0 , ˙ T 12 , 1 + 

˙ T 22 , 2 = 0 , ˙ D L 1 , 1 + 

˙ D L 2 , 2 = 0 , (63)

which together with the incompressibility condition, 

div u = u 1 , 1 + u 2 , 2 = 0 , (64)

fully describe the incremental motion. 

A3. Stroh formulation 

We look for solutions that are harmonic in the x 1 -direction, i.e., solutions of the form {
u 1 , u 2 , ˙ D L 2 , ˙ T 21 , ˙ T 22 , ϕ 

}
= �{ [k −1 U 1 , k 

−1 U 2 , i 	, i 
21 , i 
22 , k 
−1 �

]
e i kx 1 } , (65)

where U 1 , U 2 , 	, 
21 , 
22 and � are functions of kx 2 only, and k = 2 π/ L is the wavenumber. We can then rewrite the full

problem in Stroh form, i.e., as 

η′ = i N η, (66)

where 

η = 

[
U 1 U 2 	 
21 
22 �

]T = 

[
U S 

]T 
, (67)

is the Stroh vector, the prime denotes differentiation with respect to kx 2 , and N is the Stroh matrix, which can be partitioned

as 

N = 

[
N 1 N 2 

N 3 N 

† 
1 

]
, (68)

where † denotes the Hermitian operator. We derived the Stroh matrix N as follows. 

First, substituting u 1 and u 2 into the incompressibility condition, (64) , gives 

U 

′ 
2 = −i U 1 , (69)

the second line of the Stroh equation. We then substitute the expression for ˙ D L 2 into Eq. (62) 2 and using (69) we get the

following expression for �′ , 

�′ = i 

[
�0112 − �0222 

K 022 

U 1 + 

1 

K 022 

	

]
, (70)

i.e., the last line of the Stroh equation. Similarly, we can then get an expression for U 

′ 
1 

by using ˙ T 21 in Eq. (61) 3 , so that 

U 

′ 
1 = i 

[
−(A 01221 + p) 

A 02121 

U 2 + 

1 

A 02121 


21 + 

�0211 

A 02121 

�

]
, (71)

which is the first line of the Stroh equation. 

In order to get the remaining three equations, we use the equilibrium equations Eqs. (63) . We first find an expression for

˙ p by rearranging the expression (61) 4 for ˙ T 22 , and then substitute this into (61) 1 and use (70) and (63) 1 to find the fourth

line of the Stroh equation as follows, 


′ 
21 = −i 

{[
A 01111 + A 02222 − 2 A 01122 + 2 p − (�0112 − �0222 ) 

2 

K 022 

]
U 1 + 
22 − (�0112 − �0222 ) 

K 022 

	

}
. (72)

Similarly, we use (61) 2 , (71) and (63) 2 to find the fifth Stroh equation as 


′ 
22 = i 

{[
(A 01221 + p) 2 

A 02121 

− A 01212 

]
U 2 − (A 01221 + p) 

A 02121 


21 − �0211 

(A 01221 + p 

A 02121 

− 1 

)
�

}
. (73)

Finally, to get an equation for 	′ , we use (62) 1 , (71) and (63) 3 so that, 

	′ = i 

{
�0211 

[
1 − (A 01221 + p) 

A 02121 

]
U 2 + 

�0211 

A 02121 


21 + 

(
(�0211 ) 

2 

A 02121 

− K 011 

)
�

}
. (74)
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We can then write these six equations in the Stroh matrix form. Adopting the following shorthand notation, 

a = A 01212 , c = A 02121 , 2 b = A 01111 + A 02222 − 2 A 01122 − 2 A 01221 , 

d = �0211 , e = �0222 − �0112 , f = K 011 , g = K 022 , 
(75) 

we find the partitions of the Stroh matrix, N 1 , N 2 and N 3 , as follows, 

N 1 = 

[ 

0 −1 + τ22 /c 0 

−1 0 0 

0 dτ22 /c 0 

] 

, N 2 = 

[ 

1 /c 0 d/c 
0 0 0 

d/c 0 d 2 /c − f 

] 

, 

N 3 = 

[ −2(b + c − τ22 ) + e 2 /g 0 −e/g 

0 −a + (c − τ22 ) 
2 /c 0 

−e/g 0 1 /g 

] 

, (76) 

where we have also made use of the connection A 01221 + p = A 02121 − τ22 (see Chadwick, 1997 or Shams et al., 2011 ). 

In particular, in this paper, we solve a problem where there is no electric field external to the plate, and so τ22 = 0 in

the expressions above. 

In general, the expressions (75) read as follows, 

a = 2 

[
λ2 

1 �1 + λ2 
1 λ

2 
3 �2 + λ2 

1 λ
2 
3 E 

2 
0 

(
�5 + (λ−2 

1 + 2 λ2 
1 λ

2 
3 )�6 

)]
, 

2 b = 4 

{(
λ2 

1 − λ−2 
1 λ−2 

3 

)[(
λ2 

1 − λ−2 
1 λ−2 

3 

)(
�11 + 2 λ2 

3 �12 + λ4 
3 �22 

)
+ 2 λ2 

1 λ
2 
3 E 

2 
0 ( �15 

+2 λ2 
1 λ

2 
3 �16 + λ2 

3 �25 + 2 λ2 
1 λ

4 
3 �26 

)]
+ λ4 

1 λ
4 
3 E 

4 
0 

(
�55 + 4 λ2 

1 λ
2 
3 �56 + 4 λ4 

1 λ
4 
3 �66 

)}
+2 

{(
λ2 

1 + λ−2 
1 λ−2 

3 

)(
�1 + λ2 

3 �2 

)
+ λ2 

1 λ
2 
3 E 

2 
0 

[
�5 + 2(3 λ2 

1 λ
2 
3 − λ−2 

1 )�6 

]}
, 

c = 2 

[
λ−2 

1 λ−2 
3 �1 + λ−2 

1 �2 + λ2 
3 E 

2 
0 �6 

]
, 

d = −2 λ1 λ3 

[
�5 + (λ−2 

1 + λ2 
1 λ

2 
3 )�6 

]
E 0 , 

e = 4 λ1 λ3 

[
(λ−2 

1 λ−2 
3 − λ2 

1 )(λ
−2 
1 λ−2 

3 �14 + �15 + λ2 
1 λ

2 
3 �16 + λ−2 

1 �24 + λ2 
3 �25 + λ2 

1 λ
4 
3 �26 ) 

−λ2 
1 λ

2 
3 E 

2 
0 (λ

−2 
1 λ−2 

3 �45 + 2�46 + �55 + 3 λ2 
1 λ

2 
3 �56 + 2 λ4 

1 λ
4 
3 �66 ) − (�5 + 2 λ2 

1 λ
2 
3 �6 ) 

]
E 0 , 

f = 2(λ2 
1 �4 + �5 + λ−2 

1 �6 ) , 

g = 4 

[
λ−4 

1 λ−4 
3 �44 + 2 λ−2 

1 λ−2 
3 �45 + 2�46 + �55 + 2 λ2 

1 λ
2 
3 �56 + λ4 

1 λ
4 
3 �66 

]
λ2 

1 λ
2 
3 E 

2 
0 

+2(λ−2 
1 λ−2 

3 �4 + �5 + λ2 
1 λ

2 
3 �6 ) . (77) 

We can non-dimensionalise both the Stroh constants and entries of η by introducing the following dimensionless mod-

uli, 

a = a/μ, b = b/μ, c = c/μ, τ 22 = τ22 /μ, 

d = d/ 
√ 

με , e = e/ 
√ 

με , f = f/ε, g = g/ε, 
(78) 

and dimensionless fields, 

U i = U i , 
2 i = 
2 i /μ, 	 = 	/ 
√ 

με , � = �
√ 

ε/μ, (79) 

for i = 1 , 2 , where X denotes a dimensionless measure of X , and μ and ε are the initial shear modulus and initial permit-

tivity of the dielectric material, 

μ = 2(�1 + �2 ) | I 1 = I 2 =3 ,I 4 = I 5 = I 6 =0 , ε = −2(�4 + �5 + �6 ) | I 1 = I 2 =3 ,I 4 = I 5 = I 6 =0 . (80) 

The finite fields can also be non-dimensionalized by introducing 

E 0 = E 0 
√ 

ε/μ, D = D/ 
√ 

με , I α = (ε/μ) I α (α = 4 , 5 , 6) . (81)

Once a is replaced by μa , b by μb , etc., the equations of equilibrium can be re-written in their non-dimensional form

η′ = i N η. For the rest of the appendix, the overline notation is understood everywhere, and all quantities are non-dimensional .

A4. Method of resolution for plates 

Since N has constant entries, we look for solutions to (66) in the form, 

η(kx 2 ) = η0 e i qkx 2 , (82) 

which results in an eigen-problem for the eigenvalues q and eigenvectors η0 of the matrix N , 

( N − q I ) η0 = 0 . (83) 
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The characteristic equation associated with this eigen-problem is 

cgq 6 + [2 bg + c f − (d − e ) 2 ] q 4 + [2 b f + ag + 2 d(d − e )] q 2 + a f − d 2 = 0 . (84)

This equation is bi-cubic in q and does not depend on the Cauchy stress τ 22 for any choice of energy density function. 

After calculating the eigenvalues q j and eigenvectors η( j ) , j = 1 , 2 , . . . , 6 , for the Stroh matrix N , we can construct the

solution to (66) for a plate of electroelastic material, 

η(kx 2 ) = 

[
U (kx 2 ) 
S (kx 2 ) 

]
= 

6 ∑ 

j=1 

c j η
( j) e i q j kx 2 , (85)

where c j for j = 1 , 2 , . . . , 6 are arbitrary constants to be determined from the boundary conditions. The eigenvalues come in

conjugate pairs because the bicubic has real coefficients. We specialise the analysis to free energies for which the q j are pure

imaginary, and so we write them as q j = i p j and q j+3 = −i p j for j = 1 , 2 , 3 , where p 1 , p 2 , p 3 are real. Then the eigenvectors

are also conjugate pairs, η( j) = η( j+3) for j = 1 , 2 , 3 . 

The incremental equations must be solved subject to the boundary conditions of no incremental mechanical tractions

and no incremental electric field on the faces of the plate, i.e., S (kh/ 2) = S (−kh/ 2) = 0 . Using this boundary condition and

(85) , we can write the following matrix equation, 

[
S (kh/ 2) 

S (−kh/ 2) 

]
= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

F 1 E 
−
1 

F 2 E 
−
2 

F 3 E 
−
3 

F 4 E 
+ 
1 

F 5 E 
+ 
2 

F 6 E 
+ 
3 

G 1 E 
−
1 

G 2 E 
−
2 

G 3 E 
−
3 

G 4 E 
+ 
1 

G 5 E 
+ 
2 

G 6 E 
+ 
3 

H 1 E 
−
1 

H 2 E 
−
2 

H 3 E 
−
3 

H 4 E 
+ 
1 

H 5 E 
+ 
2 

H 6 E 
+ 
3 

F 1 E 
+ 
1 

F 2 E 
+ 
2 

F 3 E 
+ 
3 

F 4 E 
−
1 

F 5 E 
−
2 

F 6 E 
−
3 

G 1 E 
+ 
1 

G 2 E 
+ 
2 

G 3 E 
+ 
3 

G 4 E 
−
1 

G 5 E 
−
2 

G 6 E 
−
3 

H 1 E 
+ 
1 

H 2 E 
+ 
2 

H 3 E 
+ 
3 

H 4 E 
−
1 

H 5 E 
−
2 

H 6 E 
−
3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

c 1 
c 2 
c 3 
c 4 
c 5 
c 6 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= 0 , (86)

where F j = η( j) 
4 

is the fourth component, G j = η( j) 
5 

is the fifth component, and H j = η( j) 
6 

is the sixth component of the

eigenvector η( j ) , and E ±
j 

= e ±p j kh/ 2 
, for j = 1 , 2 , . . . , 6 . We also note that since q j+3 = −q j , we have E ±

j+3 
= E ∓

j 
, for j = 1 , 2 , 3 .

For our choices of free energy densities, we find that F j+3 = F j , G j+3 = −G j , H j+3 = H j , for j = 1 , 2 , 3 . Then some simple

linear manipulations ( Nayfeh, 1995 ) of the matrix result in two 3 × 3 blocks, the antisymmetric and symmetric modes, and

its determinant factorises as follows, ∣∣∣∣∣
F 1 C 1 F 2 C 2 F 3 C 3 
G 1 S 1 G 2 S 2 G 3 S 3 
H 1 C 1 H 2 C 2 H 3 C 3 

∣∣∣∣∣×
∣∣∣∣∣

F 1 S 1 F 2 S 2 F 3 S 3 
G 1 C 1 G 2 C 2 G 3 C 3 
H 1 S 1 H 2 S 2 H 3 S 3 

∣∣∣∣∣ = 0 , (87)

where C j = cosh (p j kh/ 2) and S j = sinh (p j kh/ 2) . Here the antisymmetric mode is described by the determinant on the left,

and the symmetric mode by the one on the right. We then get the following expressions for the dispersion equations in

general , 

hspace ∗ −6 pt G 1 (F 3 H 2 − F 2 H 3 ) tanh (p 1 kh/ 2) + G 2 (F 1 H 3 − F 3 H 1 ) tanh (p 2 kh/ 2) + G 3 (F 2 H 1 − F 1 H 2 ) tanh (p 3 kh/ 2) = 0 , 

(88)

for the antisymmetric mode and, 

G 1 (F 3 H 2 − F 2 H 3 ) coth (p 1 kh/ 2) + G 2 (F 1 H 3 − F 3 H 1 ) coth (p 2 kh/ 2) + G 3 (F 2 H 1 − F 1 H 2 ) coth (p 3 kh/ 2) = 0 , (89)

for the symmetric mode. The quantity kh can be expressed as kh = 2 πλ−1 
1 

λ−1 
3 

H/ L , where H is the initial thickness of the

plate and L is the wavelength of the wrinkles, two quantities that are easy to measure experimentally. 

A5. Examples 

Of course, solving the bicubic (84) is quite cumbersome in the general case, but for some special forms of the free energy

density, it simplifies quite a lot. Hence, for generalized neo-Hookean ideal dielectrics , which are such that 

� = W (I 1 ) − ε 

2 

I 5 , (90)

where W is an arbitrary function of I 1 only, we find that it factorises as 

(q 2 + 1) 

{
q 4 + 

[
1 + λ4 

1 λ
2 
3 + 2(λ3 

1 λ3 − λ−1 
1 λ−1 

3 ) 2 
W 

′′ 
W 

′ 

]
q 2 + λ4 

1 λ
2 
3 

}
= 0 . (91)

Here we call q 1 and q 2 the two roots of the factorized biquadratic with positive imaginary part. 

Now we define all six eigenvalues and the three real numbers p j by 

q 1 = −q 4 = i p 1 , q 2 = −q 5 = i p 2 , q 3 = −q 6 = i (p 3 = 1) . (92)
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The real quantities p 1 , p 2 are such that 

p 2 1 p 
2 
2 = λ4 

1 λ
2 
3 , p 2 1 + p 2 2 = 1 + λ4 

1 λ
2 
3 + 2(λ3 

1 λ3 − λ−1 
1 λ−1 

3 ) 2 
W 

′′ 
W 

′ . (93)

Solving for real positive p 1 , p 2 gives 

p 1 , 2 = 

λ2 
1 λ3 + 1 

2 

√ 

1 + 2(λ1 − λ−1 
1 

λ−1 
3 

) 2 
W 

′′ 
W 

′ ± λ2 
1 λ3 − 1 

2 

√ 

1 + 2(λ1 + λ−1 
1 

λ−1 
3 

) 2 
W 

′′ 
W 

′ . (94) 

The six eigenvectors are 

η(1) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−i p 1 

1 

−i p 1 λ1 λ3 E 0 

2(1 + p 2 1 ) 
W 

′ 

λ2 
1 
λ2 

3 

+ λ2 
1 λ

2 
3 E 

2 
0 

2 i 
(λ4 

1 λ
2 
3 + p 2 1 ) 

p 1 λ2 
1 
λ2 

3 

W 

′ 

−λ1 λ3 E 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, η(2) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−i p 2 

1 

−i p 2 λ1 λ3 E 0 

2(1 + p 2 2 ) 
W 

′ 

λ2 
1 
λ2 

3 

+ λ2 
1 λ

2 
3 E 

2 
0 

2 i 
(λ4 

1 λ
2 
3 + p 2 2 ) 

p 2 λ2 
1 
λ2 

3 

W 

′ 

−λ1 λ3 E 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

η(3) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 

0 

i 
λ1 λ3 E 0 
i λ1 λ3 E 0 

−1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, η(4) = η(1) , η(5) = η(2) , η(6) = η(3) . (95) 

From these expressions we deduce the dispersion equation for anti-symmetric buckling (88) in the form 

2 W 

′ [p 1 (1 + p 2 2 ) 
2 tanh 

(
π p 1 λ

−1 
1 λ−1 

3 H/ L 

)
− p 2 (1 + p 2 1 ) 

2 tanh 

(
π p 2 λ

−1 
1 λ−1 

3 H/ L 

)]
= (p 2 2 − p 2 1 ) λ

4 
1 λ

4 
3 E 

2 
0 tanh 

(
πλ−1 

1 λ−1 
3 H/ L 

)
. (96) 

Here we can take H/ L → 0 and H/ L → ∞ to establish explicit expressions for the thin-plate and the short-wave limits, as

in the main text. The equation is valid for any plate made of a generalized neo-Hookean ideal dielectric (90) , subject to a

bi-axial pre-stretch λ1 , λ3 . 

For example, for a neo-Hookean ideal dielectric, we have W 

′ = 1 / 2 , W 

′′ = 0 , p 1 = 1 , p 2 = λ2 
1 
λ3 , and the dispersion equa-

tions simplify to [
tanh (πλ1 H/ L ) 

tanh (πλ−1 
1 

λ−1 
3 

H/ L ) 

]±1 

= 

(1 + λ4 
1 λ

2 
3 ) 

2 

4 λ2 
1 
λ3 

+ 

(1 − λ4 
1 λ

2 
3 ) λ

2 
1 λ

3 
3 

4 

E 2 0 . (97) 

In the short wavelength limit ( H/ L → ∞ ), we find that it can be rearranged as (
λ2 

1 λ3 

)3 + 

(
λ2 

1 λ3 

)2 + 3 

(
λ2 

1 λ3 

)
− 1 = 

(
1 + λ2 

1 λ3 

)
λ4 

1 λ
4 
3 E 

2 
0 , (98) 

and we check that the left hand-side is the cubic established by Flavin (1963) for the surface stability of a purely elastic

half-space. 

Another example of free energy density for which it is possible to make good progress is defined by the following class,

� = 

μ(1 − β) 

2 

(I 1 − 3) + 

μβ

2 

(I 2 − 3) − F (I 5 ) , (99) 

where F is an arbitrary function of I 5 only and 0 ≤β ≤ 1. Then we find that the characteristic equation Eq. (84) factorises

fully, as 

(q 2 + 1)(q 2 + λ4 
1 λ

2 
3 ) 
[
(2 λ2 

1 λ
2 
3 E 

2 
0 F 

′′ + F ′ ) q 2 + F ′ 
]

= 0 . (100) 

The six eigenvalues can again be written in terms of three real numbers p j , 

q 1 = −q 4 = i p 1 , q 2 = −q 5 = i p 2 , q 3 = −q 6 = i p 3 , (101) 

where 

p 1 = 1 , p 2 = λ2 
1 λ3 , p 3 = 

√ 

F ′ 
2 λ2 

1 
λ2 

3 
F ′′ E 2 

0 
+ F ′ 

. (102) 
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We find that the corresponding eigenvectors are 

η(1) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

i 

−1 

−2 i λ1 λ3 F 
′ E 0 

−2 λ2 
1 λ

2 
3 F 

′ E 2 0 − 2 λ−2 
1 

κ

−i λ2 
3 (λ

2 
1 + λ−2 

1 
λ−2 

3 
) κ

λ1 λ3 E 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, η(2) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

i λ1 

−λ−1 
1 

λ−1 
3 

2 i λ2 
1 λ3 F 

′ E 0 
−2 λ1 λ3 F 

′ E 2 0 − λ−1 
1 

λ3 (λ
2 
1 + λ−2 

1 
λ−2 

3 
) κ

−2 i λ−1 
1 

κ

E 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

η(3) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

0 

−2 i F ′ 

−2 p 3 λ1 λ3 F 
′ E 0 

−2 i λ1 λ3 F 
′ E 0 

p 3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, η(4) = η(1) , η(5) = η(2) , η(6) = η(3) . (103)

where 

κ = λ−2 
3 + β(1 − λ−2 

3 ) . (104)

We then find that the antisymmetric mode for the thin-plate limit , a − c = 0 , in this case reads 

2 λ2 
1 F 

′ E 2 0 + κ(λ2 
1 − λ−2 

1 λ−2 
3 ) = 0 , (105)

and that the short-wave limit , H/ L → ∞ , is as follows, 

p 3 κ(λ3 
1 + λ1 λ

−1 
3 + 3 λ−1 

1 λ−2 
3 − λ−3 

1 λ−3 
3 ) − 2 λ2 

1 (λ1 + λ−1 
1 λ−1 

3 ) F ′ E 2 0 = 0 . (106)
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