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a b s t r a c t 

We investigate the finite bending and the associated bending instability of an incompressible dielectric 

slab subject to a combination of applied voltage and axial compression, using nonlinear electro-elasticity 

theory and its incremental version. We first study the static finite bending deformation of the slab. We 

then derive the three-dimensional equations for the onset of small-amplitude wrinkles superimposed 

upon the finite bending. We use the surface impedance matrix method to build a robust numerical pro- 

cedure for solving the resulting dispersion equations and determining the wrinkled shape of the slab at 

the onset of buckling. Our analysis is valid for dielectrics modeled by a general free energy function. We 

then present illustrative numerical calculations for ideal neo-Hookean dielectrics. In that case, we pro- 

vide an explicit treatment of the boundary value problem of the finite bending and derive closed-form 

expressions for the stresses and electric field in the body. For the incremental deformations, we validate 

our analysis by recovering existing results in more specialized contexts. We show that the applied voltage 

has a destabilizing effect on the bending instability of the slab, while the effect of the axial load is more 

complex: when the voltage is applied, changing the axial loading will influence the true electric field in 

the body, and induce competitive effects between the circumferential instability due to the voltage and 

the axial instability due to the axial compression. We even find circumstances where both instabilities 

cohabit to create two-dimensional patterns on the inner face of the bent sector. 

© 2018 Elsevier Ltd. All rights reserved. 

1

 

t  

b  

a  

m  

t  

T  

i  

o  

w  

b  

r  

c  

t  

D

m

 

i  

v  

f  

s  

l  

l  

t  

a  

C  

a  

W  

s  

t  

v  

f  

s  

h

0

. Introduction 

An elastic rectangular slab can be bent into a cylindrical sec-

or under the application of moments on the lateral faces, and the

ending angle depends on the applied moments, the dimensions

nd the material properties of the slab. The finite bending defor-

ation of incompressible soft materials is well captured by the

heory of nonlinear elasticity ( Rivlin, 1949; Green and Zerna, 1954;

ruesdell and Toupin, 1960; Ogden, 1997 ). Generally speaking, the

nner surface of a bent slab is contracted circumferentially, and the

uter surface is stretched. Experimental observations indicate that

rinkles and creases will appear on the compressed surface of a

ent rubber slab if the circumferential stretch of the inner surface

eaches a critical value, i.e., the so-called bending instability oc-

urs ( Gent and Cho, 1999 ). This phenomenon can be predicted by

he theory of incremental nonlinear elasticity ( Triantafyllidis, 1980;

estrade et al., 2009a,b, 2014; Roccabianca et al., 2010 ). 
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Dielectric elastomers are novel smart materials with the abil-

ty to convert mechanical energy into electrical energy, and vice

ersa. Dielectric elastomers have attracted considerable attention

rom academia and industry alike because, compared with other

mart materials like electroactive ceramics and shape memory al-

oys, they have the advantages of fast response, high-sensitivity,

ow noise and large actuation strain, making them ideal candidates

o develop high-performance devices such as actuators, soft robots,

rtificial muscles, phononic devices and energy harvesters ( Bar-

ohen, 2004; Kim and Tadokoro, 2007; Rasmussen, 2012; Brochu

nd Pei, 2010; Galich and Rudykh, 2017; Getz and Shmuel, 2017;

u et al., 2018 ). Generally, a dielectric actuator is composed of a

oft elastomeric material sandwiched between two compliant elec-

rodes (typically, by brushing on carbon grease). Application of a

oltage across the thickness of the actuator generates electrostatic

orces, which lead to a reduction in the thickness and an expan-

ion in the area of the actuator. Based on this mechanism, various

ielectric devices have been designed to achieve giant actuation

trains ( Pelrine et al., 20 0 0; O’Halloran et al., 20 08; Zhang et al.,

017 ). 
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Fig. 1. Bending deformations in dielectric devices: (a) A strain sensor consisting of a stretchable dielectric sandwiched between two flexible ionic conductors attached to a 

straight finger: the bending of the finger stretches the sensor ( Sun et al., 2014 ); (b) A 4-finger dielectric gripper: this actuator induces voltage-driven bending to lift a rock 

( Bar-Cohen, 2002 ); (c) Bending variations of the soft body and fins of a soft electronic “fish” made of dielectric elastomer and ionically conductive hydrogel: the fish can swim 

at a fast speed driven by periodical bending deformations ( Li et al., 2017 ); (d) A dielectric actuator with a significant voltage-driven bending response ( Bar-Cohen, 2002 ). 
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To understand the electromechanical coupling effect and pre-

dict the nonlinear response of dielectric elastomers subject to elec-

tromechanical loadings, a nonlinear field theory is required. Ar-

guably, Toupin (1956) was the first to develop a general nonlin-

ear theory of electro-elasticity. Much effort has been devoted to

the development of this theory in the last two decades ( Ericksen,

2007; Suo et al., 2008; Liu, 2013; Dorfmann and Ogden, 2016 ),

driven by recent applications in the real-world. So far, several finite

deformations of dielectric structures have been investigated theo-

retically, including simple shear of a dielectric slab ( Dorfmann and

Ogden, 2005 ), in-plane homogeneous deformation of a dielectric

plate ( Dorfmann and Ogden, 2014a ), extension and inflation of a

dielectric tube ( Dorfmann and Ogden, 2006; Zhu et al., 2010 ) and

a multilayer dielectric tube ( Bortot, 2018 ), inflation of a dielectric

sphere ( Li et al., 2013; Dorfmann and Ogden, 2014b ) and of a mul-

tilayer dielectric sphere ( Bortot, 2017 ). 

Finite bending deformation is common in devices based on di-

electric elastomers, see examples in Fig. 1 , but little attention has

been devoted to the theoretical analysis of this deformation for di-

electric structures. Wissman et al. (2014) studied the pure bending

of a dielectric elastomer actuator which contains inextensible but

flexible frames. They simplified the kinematics by assuming plane

strain deformation and modeled the bending deformation using

elastic shell theory based on the principle of minimum potential

energy. Good agreement between theoretical and experimental re-

sults was achieved for a neo-Hookean constitutive law, but the pre-

diction is valid only for small strain deformation. Li et al. (2014) in-

vestigated the bending deformation of a dielectric spring-roll. The

allowable bending of the actuator was determined by considering

several failure models, including electromechanical instability, elec-

trical breakdown, and tensile rupture. There also, the small strain

assumption was adopted to simplify the problem. Only recently

was a theoretical study on the finite bending of a dielectric ac-
uator based on the three-dimensional nonlinear electro-elasticity

ade available ( He et al., 2017 ). There, the authors considered an

ctuator consisting of a hyperelastic layer and two pre-stretched

ielectric elastomer layers, which bends once a voltage is applied

hrough the thickness of the dielectric layer. That analysis was con-

erned with static finite bending under the plane strain assump-

ion but not with the associated bending instability. 

In this paper, we propose a theoretical analysis of finite bending

eformation and the associated bending instability of an incom-

ressible dielectric slab subject to the combined action of electrical

oltage and mechanical loads. We focus on how finite bending and

ending instability of a dielectric slab are influenced by tuning the

pplied voltage, the structural parameters and the axial compres-

ion. 

The paper is structured as follows. In Section 2 , we briefly recall

he general equations of the nonlinear theory of electro-elasticity

nd the associated linear incremental field theory ( Dorfmann and

gden, 2016 ). We then specialize the general theory to the prob-

ems of the finite bending and the linearized incremental motion

uperposed upon the bending of a dielectric slab modeled by any

orm of energy function ( Section 3 ). We arrange the governing in-

remental equations in the Stroh form and then use the surface

mpedance matrix method to obtain a robust numerical procedure

or deriving the bending and compression thresholds for the onset

f the instability. We find the corresponding wrinkled shape of the

lab when buckling occurs. In Section 4 , we present numerical cal-

ulations for an ideal neo-Hookean dielectric slab to elucidate the

nfluence of the applied voltage, of the structural parameters and

f the axial compression on the finite bending and the associated

uckling behavior. We show analytically that only moments are re-

uired to drive the large bending of the slab. We find that both

he applied voltage and the axial constraint pose a destabilizing ef-

ect on the slab, while these two effects compete with each other
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ecause compressing the slab will decrease the true electric field

n the solid. We also find under which circumstances can a two-

imensional buckling pattern happen, where circumferential and

xial wrinkles co-exist. Finally in Section 5 , we draw some conclu-

ions. 

. Basic formulation 

In this section we propose a brief overview of the govern-

ng equations for finite electro-elasticity and its associated incre-

ental theory. Interested readers are referred to the textbook by

orfmann and Ogden (2016) for more detailed background on this

opic. 

.1. Finite electro-elasticity 

Consider a deformable continuous electrostatic body which, at

ime t 0 , occupies an undeformed, stress-free configuration B r , with

oundary ∂B r and outward unit normal vector N . Assume that the

ody is subject to a (true) electric field E , with an associated (true)

lectric displacement D . A material particle in B r labeled by its po-

ition vector X takes up the position x at time t , after a finite de-

ormation described by the mapping x = χ( X , t) , where χ is twice

ontinuously differentiable. As a result, the body deforms quasi-

tatically into the current configuration, which is denoted by B t ,

ith the boundary ∂B t and the outward unit normal vector n . The

eformation gradient tensor is F = ∂ x /∂ X , with Cartesian com-

onents F iα = ∂ x i /∂ X α . The initial volume element d δ and the de-

ormed volume element d � of the solid are related by d δ = J d �, 

here J = det F is the local volume ratio. 

Throughout this paper we consider incompressible dielectric

lastomers, for which the internal constraint J ≡ 1 holds at all

imes. According to the theory of nonlinear electro-elasticity, by in-

roducing an augmented free energy function � = �( F , D l ) , which

s defined in the reference configuration, the governing equations

f the body can be obtained as 

 = 

∂�

∂ F 
− p F −1 

, E l = 

∂�

∂ D l 

, (1)

here T = F −1 τ is the total nominal stress, with τ being the total

auchy stress tensor, p is a Lagrange multiplier associated with the

ncompressibility constraint, which can be determined from the

oundary conditions, and the nominal electric field E l = F T E and

he nominal electric displacement D l = F −1 D are the Lagrangian

ounterparts of E and D , respectively. The superscripts ‘ −1’ and ‘T’

hroughout this paper denote the inverse and transpose of a ten-

or, respectively. 

Specifically, for an isotropic, incompressible, electro-elastic ma-

erial, � can be expressed in terms of the following five invari-

nts 

I 1 = tr c , I 2 = tr 
(
c −1 

)
, I 4 = D l · D l , 

I 5 = D l · c D l , I 6 = D l · c 2 D l , (2) 

here c = F T F is the right Cauchy-Green deformation tensor.

ombined with Eq. (1) , the Cauchy stress τ = F T and the electric

eld E = F −T E l are found as 

= 2�1 b + 2�2 

(
I 1 b − b 

2 
)

− p I + 2�5 D � D 

+2�6 ( D � b D + b D � D ) , (3) 

 = 2 

(
�4 b 

−1 
D + �5 D + �6 b D 

)
, (4) 

here I is identity tensor, b = F F T is the left Cauchy-Green de-

ormation tensor and the shorthand notation �m 

= ∂ �/∂ I m 

(m =
 , 2 , 4 , 5 , 6) is adopted here and henceforth. 
In the absence of body forces, free charges and currents, and

pplying the ‘quasi-electrostatic approximation’, the equations of

quilibrium read 

iv τ = 0 , curl E = 0 , div D = 0 , (5)

here ‘div’ and ‘curl’ are the divergence and curl operators defined

n the deformed configuration, respectively. 

In this paper, we consider an initially stress-free dielectric slab,

ith flexible electrodes glued to its upper and bottom surfaces,

hich is bent into a circular sector by the combined action of elec-

ric voltage and mechanical loadings. In this case, the electric field

n the body is distributed radially in the deformed configuration

nd there is no exterior electric field in the surrounding vacuum.

hen the fields must satisfy the following boundary conditions on

he bent surfaces, 

n = t a , E × n = 0 , D · n = q e , (6)

here t a is the prescribed mechanical traction per unit area of ∂B t ,

nd q e is the surface charge density on ∂B t . 

.2. Incremental motions 

We now superimpose an infinitesimal incremental deformation

˙  along with an infinitesimal increment in the electric displace-

ent ˙ D l . Hereinafter, dotted variables represent incremental quan-

ities. The incremental form of the aforementioned equations can

e obtained by Taylor expansions. Hence, the linearized incremen-

al forms of the constitutive relations in Eq. (1) read 

˙ 
 0 = A 0 H + �0 

˙ D l0 + p H − ˙ p I , ˙ E l0 = �T 
0 H + K 0 

˙ D l0 , (7)

here ˙ T 0 = F ˙ T , ˙ E l0 = F −T ˙ E l and 

˙ D l0 = F ˙ D l are the ‘push for-

ard’ versions of ˙ T , ˙ E l and 

˙ D l , respectively, H = grad u is the

isplacement gradient, with u ( x , t) = ˙ x ( X , t) being the incremen-

al mechanical displacement, and A 0 , �0 and K 0 are, respectively,

ourth-, third- and second-order tensors, with Cartesian compo-

ents defined by 

 0 piq j = A 0 q jpi = F pαF qβ
∂ 2 �

∂ F iα∂ F jβ
, �0 piq = �0 ipq = F pαF −1 

βq 

∂ 2 �

∂ F iα∂ D lβ
,

 0 i j = K 0 ji = F −1 
αi 

F −1 
β j 

∂ 2 �

∂ D lα∂ D lβ
. (8) 

The above defined tensors are the so-called ‘electro-elastic

oduli tensors’, which are fully determined once the energy func-

ion � and biasing fields F and D l are prescribed. 

It is worth noting here that we have the connection 

 0 jilk − A 0 i jlk = 

(
τ jl + pδ jl 

)
δik − ( τil + pδil ) δ jk , (9) 

hich can be established by using the incremental form of the

ymmetry condition of the Cauchy stress F T = ( T F ) T . 

The incremental forms of the equilibrium equations in (5) are 

iv ̇  T 0 = 0 , curl ˙ E l0 = 0 , div ̇  D l0 = 0 . (10)

In addition, the incremental incompressibility constraint rela-

ion reads 

iv u = tr H = 0 . (11) 

Accordingly, the incremental forms of the boundary conditions

6) are 

˙ 
 

T 

0 n = 

˙ t A 0 , ˙ E l0 × n = 0 , ˙ D l0 · n = 

˙ q e , (12)

here ˙ t A 0 and ˙ q e are the incremental mechanical traction and

urface charge density per unit area of ∂B t , respectively. 
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Fig. 2. Sketch of a dielectric slab with a voltage applied across its thickness subject to finite bending. 
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3. Finite bending and associated stability analysis 

3.1. Finite bending deformation 

We consider an initially undeformed dielectric slab of length

L , thickness H and width A , with two flexible electrodes (carbon

grease for example) glued onto its top and bottom faces. We as-

sume the electrodes to be so thin and soft that their mechanical

role can be ignored during the deformation. 

The width and length aspect ratios of the slab are A / H and L / H ,

respectively. The slab originally occupies the region 

0 ≤ X 1 ≤ H, −A 

2 

≤ X 2 ≤ A 

2 

, 0 ≤ X 3 ≤ L, (13)

as depicted in Fig. 2 (a). With the application of a voltage through

the thickness and of mechanical loads (later calculations show that

only moments are needed for the bending), the slab bends into the

current region 

r a ≤ r ≤ r b , −ϕ 

2 

≤ θ ≤ ϕ 

2 

, 0 ≤ z ≤ l, (14)

as depicted in Fig. 2 (b), through the following bending deformation

( Green and Zerna, 1954; Ogden, 1997 ) 

r = 

√ 

d + 

2 X 1 

ω 

, θ = 

ωX 2 

λz 
, z = λz X 3 , (15)

where ( X 1 , X 2 , X 3 ) and ( r, θ , z ) are the rectangular Cartesian and

cylindrical coordinates in the reference and deformed configura-

tions, with orthogonal bases ( J 1 , J 2 , J 3 ) and ( j r , j θ , j z ), respectively.

In Eq. (15) , d and ω are constants to be determined, λz is the axial

principal stretch, which is taken to be prescribed, l, r a , r b and ϕ
are the length, inner and outer radii and the bending angle of the

deformed sector, respectively, given by 

l = λz L, r a = 

√ 

d , r b = 

√ 

d + 

2 H 

ω 

, ϕ = 

ωA 

λz 
. (16)

Then the deformation gradient has the following components in

the J i 
⊗ 

j α(i = 1 , 2 , 3 and α = r, θ, z) basis, 

F = 

⎡ 

⎣ 

λ−1 λ−1 
z 0 0 

0 λ 0 

0 0 λz 

⎤ 

⎦ , (17)

with λ = ωr/λz being the circumferential principal stretch. Com-

bining Eqs. (16) and (17) , we establish the following relationships,

ω = 

λ2 
z 

(
λ2 

b 
− λ2 

a 

)
, ϕ = 

λz 

(
λ2 

b 
− λ2 

a 

)
A 

, (18)

2 H 2 H 
here λa = ωr a /λz , λb = ωr b /λz are the circumferential stretches

f the inner and outer surfaces of the deformed sector, respectively.

Now assume that the nominal electric field and electric dis-

lacement in the reference configuration are transverse, 

 l = 

[
E 0 0 0 

]T 
, D l = 

[
D 0 0 0 

]T 
, (19)

here E 0 and D 0 are the only non-zero components of the nom-

nal electric field and electric displacement, respectively. Then the

rue electric field and electric displacement in the deformed con-

guration are 

 = F −T E l = 

[
E r 0 0 

]T 
, D = F D l = 

[
D r 0 0 

]T 
, (20)

here E r = λλz E 0 = E 0 ωr and D r = λ−1 λ−1 
z D 0 = D 0 / (ωr) . The

axwell equation (5) 3 reads 

∂D r 

∂r 
+ 

1 

r 
D r = 

1 

r 

∂(rD r ) 

∂r 
= 0 , (21)

howing that D 0 is a constant. Notice, however, that E 0 is not a

onstant. 

According to Eq. (2) , the invariants are 

 1 = λ2 + λ−2 λ−2 
z + λ2 

z , I 2 = λ−2 + λ2 λ2 
z + λ−2 

z , 

 4 = D 

2 
0 , I 5 = λ−2 λ−2 

z D 

2 
0 , I 6 = λ−4 λ−4 

z D 

2 
0 . (22)

rom Eqs. (3) and (4) , we further obtain the non-zero components

f the Cauchy stress τ and of the electric field E as 

τrr = 2 λ−2 λ−2 
z �1 + 2 

(
λ−2 + λ−2 

z 

)
�2 + 2 λ−2 λ−2 

z D 

2 
0 �5 

+4 λ−4 λ−4 
z D 

2 
0 �6 − p, 

θθ = 2 λ2 �1 + 2 

(
λ−2 

z + λ2 λ2 
z 

)
�2 − p, 

τzz = 2 λ2 
z �1 + 2 

(
λ−2 + λ2 λ2 

z 

)
�2 − p, (23)

 r = 2 

(
λ2 λ2 

z �4 + �5 + λ−2 λ−2 
z �6 

)
D r 

= 2 

(
λλz �4 + λ−1 λ−1 

z �5 + λ−3 λ−3 
z �6 

)
D 0 . (24)

At this stage we note that the energy function has only three

ndependent variables: λ, λz and D 0 . Introducing a reduced energy

unction W defined by 

 ( λ, λz , D 0 ) = �( I 1 , I 2 , I 4 , I 5 , I 6 ) . (25)

Eqs. (23) and (24) can be rewritten compactly as 

rr − τθθ = −λ
∂W 

∂λ
, (26)

 0 = λ−1 λ−1 
z E r = 

∂W 

∂D 0 

. (27)
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For the considered deformation, the equilibrium Eq. (5) 1 re-

uces to the radial component equation 

∂τrr 

∂r 
+ 

1 

r 
( τrr − τθθ ) = 0 . (28) 

Combining Eqs. (26) and (28) and using the relation d λ/λ =
 r/r enables us to rewrite the principal stress components τ rr and

θθ as 

rr = W + K, (29) 

θθ = λ
∂W 

∂λ
+ τrr = λ

∂W 

∂λ
+ W + K, (30)

here K is a constant to be determined from the boundary con-

itions. Here the inner and outer surfaces at r a and r b are free of

echanical tractions, so that 

rr (r a ) = τrr (r b ) = 0 . (31)

hen the constant K can be obtained as 

 = −W ( λa , λz , D 0 ) = −W ( λb , λz , D 0 ) , (32)

nd the connection between λa , λb , λz and D 0 can be established

s 

 ( λa , λz , D 0 ) − W ( λb , λz , D 0 ) = 0 . (33)

According to Eq. (5) 2 , the electric field can be expressed as

 = −grad φ, where φ is the electric potential, with the only non-

ero radial electric field component given by E r = −d φ/d r . We de-

ote the electric voltage difference between the inner and outer

urfaces as V = φa − φb , which, with the help of Eqs. (18) 1 and

27) , can be obtained as 

 = 

∫ r b 

r a 

λλz 
∂W 

∂D 0 

d r = 

λ2 
z 

ω 

∫ λb 

λa 

λ
∂W 

∂D 0 

d λ = 

2 H 

λ2 
b 

− λ2 
a 

∫ λb 

λa 

λ
∂W 

∂D 0 

d λ. 

(34) 

q. (34) provides the equilibrium relation between the constants

, D 0 , λa , λb and λz , once the energy function of the material is

pecified. 

Then by solving the Eqs. (18) 2 , (33) and (34) , λa , λb and D 0 

an be determined once V , ϕ, λz and A / H are given. Eventually the

nner and outer radii of the deformed sector r a and r b , the constant

 and the circumferential principal stretch of arbitrary point in the

ector λ can be derived as 

 a = 

λa λz 

ω 

= 

λa 

ϕ 

A , r b = 

λb λz 

ω 

= 

λb 

ϕ 

A , ω = 

λz ϕ 

A 

, λ = 

ω r 

λz 
. 

(35) 

As a result, the configuration and the distributions of stretches

f the deformed sector are fully determined. Finally, the required

pplied axial force F N and the moment M n about the origin on the

ateral faces θ = ±ωA/ (2 λz ) can be determined as 

 N = λz L 

∫ r b 

r a 

τθθ d r = 

2 HL 

λ2 
b 

− λ2 
a 

∫ λb 

λa 

τθθ d λ = μHL F N , 

 n = λz L 

∫ r b 

r a 

rτθθ d r = 

4 H 

2 L 

λz 

(
λ2 

b 
− λ2 

a 

)2 

∫ λb 

λa 

λτθθ d λ = μH 

2 L M n , 

(36) 

here μ is the initial mechanical shear modulus, F N and M n 

re dimensionless measures of the axial force and moment, re-

pectively. Note that from Eq. (28) we have the relation τθθ =
 (rτrr ) / ( d r) , thus Eq. (36) 1 reads 
 N = 

2 HL 

λ2 
b 

− λ2 
a 

∫ r b 

r a 

τθθ d r = 

2 HL 

λ2 
b 

− λ2 
a 

[ r b τrr (r b ) − r a τrr (r a ) ] , (37)

hich identically equals to zero due to the boundary condition

31) . Hence, only moments are required to bend the slab. 

.2. Small-amplitude wrinkle 

We now superimpose a small harmonic inhomogeneous defor-

ation on the underlying deformed configuration of the sector, to

odel the onset of wrinkling on the inner curved face. 

We start with the components of the incremental displacement

nd the incremental electric displacement in the form 

 i = u i (r, θ, z) , ˙ D l0 i = 

˙ D l0 i (r, θ, z) . (38)

hen the incremental displacement gradient reads 

 = 

⎡ 

⎢ ⎣ 

∂u r 
∂r 

1 
r 

(
∂u r 
∂θ

− u θ

)
∂u r 
∂z 

∂u θ
∂r 

1 
r 

(
∂u θ
∂θ

+ u r 

)
∂u θ
∂z 

∂u z 
∂r 

1 
r 

∂u z 
∂θ

∂u z 
∂z 

⎤ 

⎥ ⎦ 

, (39) 

n the j α � j β (α, β = r, θ, z) basis, and the incompressibility con-

ition Eq. (11) for the incremental motion reads 

iv u = tr H = 

∂u r 

∂r 
+ 

1 

r 

(
∂u θ

∂θ
+ u r 

)
+ 

∂u z 

∂z 
= 0 . (40)

rom Eq. (10) 2 , we introduce an incremental electric potential ˙ φ, 

nd the components of the incremental electric field are 

˙ 
 l0 r = −∂ ˙ φ

∂r 
, ˙ E l0 θ = −1 

r 

∂ ˙ φ

∂θ
, ˙ E l0 z = −∂ ˙ φ

∂z 
. (41)

Now the electro-elastic moduli tensors A 0 , �0 and K 0 can

e evaluated according to Eq. (8) , with non-zero components

isted in Appendix A. Then the components of the incremen-

al stress and electric fields are expanded as ( Wu et al.,

017 ) 

˙ T 0 rr = ( A 01111 + p ) 
∂u r 

∂r 
+ A 01122 

1 

r 

(
∂u θ

∂θ
+ u r 

)
+ A 01133 

∂u z 

∂z 

+�0111 
˙ D l0 r − ˙ p , 

˙ T 0 θθ = A 01122 
∂u r 

∂r 
+ ( A 02222 + p ) 

1 

r 

(
∂u θ

∂θ
+ u r 

)
+ A 02233 

∂u z 

∂z 

+�0221 
˙ D l0 r − ˙ p , 

˙ T 0 zz = A 01133 
∂u r 

∂r 
+ A 02233 

1 

r 

(
∂u θ

∂θ
+ u r 

)
+ ( A 03333 + p ) 

∂u z 

∂z 

+�0331 
˙ D l0 r − ˙ p , 

˙ T 0 rθ = A 01212 
∂u θ

∂r 
+ ( A 01221 + p ) 

1 

r 

(
∂u r 

∂θ
− u θ

)
+ �0122 

˙ D l0 θ , 

˙ T 0 rz = A 01313 
∂u z 

∂r 
+ ( A 01331 + p ) 

∂u r 

∂z 
+ �0133 

˙ D l0 z , 

˙ T 0 θ r = A 02121 
1 

r 

(
∂u r 

∂θ
− u θ

)
+ ( A 01221 + p ) 

∂u θ

∂r 
+ �0122 

˙ D l0 θ , 

˙ T 0 θz = A 2323 
1 

r 

∂u z 

∂θ
+ (A 02332 + p) 

∂u θ

∂z 
, 

˙ T 0 zr = A 03131 
∂u r 

∂z 
+ (A 01331 + p) 

∂u z 

∂r 
+ �0133 

˙ D l0 z , 

˙ T 0 zθ = A 03232 
∂u θ

∂z 
+ (A 02332 + p) 

1 

r 

∂u z 

∂θ
, (42) 
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 l0 r , 

(43) 

incremental Maxwell Eq. (10) 3 reduce to 

(44) 

(45) 

faces θ = ±ωA/ (2 λz ) and z = 0 , l, while the two surfaces r = r a , r b 
ant. The boundary conditions for the incremental fields are 

at θ = ±ωA/ (2 λz ) , 

at z = 0 , λz L, 

at r = r a , r b . (46) 

t al., 2016b ) 

u θ = U θ (r) sin ( nθ ) cos ( kz ) , 

˙ φ = �(r) cos ( nθ ) cos ( kz ) , 

˙ T 0 rθ = �rθ (r) sin ( nθ ) cos ( kz ) , 

˙ D l0 r = �r (r) cos ( nθ ) cos ( kz ) , (47) 

 respectively. Then from the incremental constitutive equations (42), 

(48) 

erential and axial wrinkles of the sector, respectively ( Destrade et al., 

 zero simultaneously. 

 dielectric sector can be rearranged to yield the following first-order 

 ) 

(49) 

S 
]T 

, (50) 

r r�rθ r�rz �
]T 

), G is the so-called Stroh matrix, which has the 

(51) 

ing components 
and 

˙ E l0 r = −∂ ˙ φ

∂r 
= �0111 

∂u r 

∂r 
+ �221 

1 

r 

(
∂u θ

∂θ
+ u r 

)
+ �0331 

∂u z 

∂z 
+ K 011 

˙ D

˙ E l0 θ = −1 

r 

∂ ˙ φ

∂θ
= �0122 

[
1 

r 

(
∂u r 

∂θ
− u θ

)
+ 

∂u θ

∂r 

]
+ K 022 

˙ D l0 θ , 

˙ E l0 z = −∂ ˙ φ

∂z 
= �0133 

(
∂u r 

∂z 
+ 

∂u z 

∂ r 

)
+ K 033 

˙ D l0 z , 

according to Eq. (7) . 

Finally, the incremental forms of equilibrium Eq. (10) 1 and the 

∂ ˙ T 0 rr 

∂r 
+ 

1 

r 

∂ ˙ T 0 θ r 

∂θ
+ 

˙ T 0 rr − ˙ T 0 θθ

r 
+ 

∂ ˙ T 0 zr 

∂z 
= 0 , 

∂ ˙ T 0 rθ
∂r 

+ 

1 

r 

∂ ˙ T 0 θθ

∂θ
+ 

˙ T 0 θ r + 

˙ T 0 rθ
r 

+ 

∂ ˙ T 0 zθ
∂z 

= 0 , 

∂ ˙ T 0 rz 

∂r 
+ 

1 

r 

∂ ˙ T 0 θz 

∂θ
+ 

∂ ˙ T 0 zz 

∂z 
+ 

˙ T 0 rz 

r 
= 0 , 

and 

∂ ˙ D l0 r 

∂r 
+ 

1 

r 

(
∂ ˙ D l0 θ

∂θ
+ 

˙ D l0 r 

)
+ 

∂ ˙ D l0 z 

∂z 
= 0 , 

respectively. 

We assume that the sector is under end thrust at the lateral 

remain traction-free and the applied voltage is taken to be a const

u θ = 

˙ T 0 θ r = 

˙ T 0 θz = 0 

u z = 

˙ T 0 zr = 

˙ T 0 zθ = 0 

˙ T 0 rr = 

˙ T 0 rθ = 

˙ T 0 rz = 

˙ φ = 0 

3.3. Stroh formulation 

We seek solutions of equations in Section 3.2 in the form ( Su e

u r = U r (r) cos ( nθ ) cos ( kz ) , 

u z = U z (r) cos ( nθ ) sin ( kz ) , 

˙ T 0 rr = �rr (r) cos ( nθ ) cos ( kz ) , 

˙ T 0 rz = �rz (r) cos ( nθ ) sin ( kz ) , 

where n and k are the circumferential and axial wave numbers,

(43) and the incremental boundary conditions (46) 1, 2 , we have 

n = 

2 λz qπ

ωA 

= 

4 qπ

λz 

(
λ2 

b 
− λ2 

a 

) H 

A 

, k = 

mπ

λz L 
(q, m = 0 , 1 , 2 , . . . ) , 

where the positive integers q and m give the numbers of circumf

2009b; Balbi et al., 2015 ). It should be noticed that they cannot be

Then Eqs. (40) –(45) that govern the incremental motion of the

differential system ( Destrade et al., 2009a,b, 2014; Balbi et al., 2015

d 

d r 
η(r) = 

1 

r 
G (r) η(r) , 

where 

η(r) = 

[
U r U θ U z r�r r�rr r�rθ r�rz �

]T = 

[
U 

is the Stroh vector (with U = 

[
U r U θ U z r�r 

]T 
and S = 

[
r�r

following block structure 

G = 

[
G 1 G 2 

G 3 G 4 

]
, 

where the four 4 × 4 sub-blocks G , G , G and G have the follow
1 2 3 4 



Y. Su et al. / International Journal of Solids and Structures 158 (2019) 191–209 197 

G

 0 0 

 

2 
0 − n 

γ12 

�0122 

K 022 

 

1 
γ13 

− kr 
γ13 

�0133 

K 033 

0122 

 022 

kr 
γ13 

�0133 

K 033 
ξ2 

⎤ 

⎥ ⎥ ⎦ 

, 

G

( �0111 − �0221 ) 
n ( �0111 − �0221 ) 
kr ( �0111 − �0331 ) 

−K 011 

⎤ 

⎥ ⎦ 

, 

G (52) 

H

γ

γ

ξ

ξ

β

β

κ 13 − τrr ) 
2 

γ13 

]
, 

κ 122 − A 01133 + p ) , 

κ

κ

κ (53) 

 of the connections 

A (54) 

w mulation is given in Appendix B . 

S (55) 

presented in Eq. (50) , because it will turn out to be the most practical 

f  to a constant voltage applied to the bent faces of the sector. For the 

c orfmann and Ogden, 2014a; Su et al., 2016a; 2016b ) instead of voltage- 

c er efficiency in the scheme. In other words, η and G in Eq. (49) should 

b

η

0 0 0 0 0 0 0 

1 0 0 0 0 0 0 

0 1 0 0 0 0 0 

0 0 0 0 0 0 1 

0 0 0 1 0 0 0 

0 0 0 0 1 0 0 

0 0 0 0 0 1 0 

0 0 1 0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (56) 

w r 

]T 
. Then the traction-free boundary conditions at the two surfaces r a , 

r

S (57) 
 1 = 

⎡ 

⎢ ⎢ ⎣ 

−1 −n −kr 0 

n ( γ12 −τrr ) 
γ12 

γ12 −τrr 

γ12 
0 0 

kr ( γ13 −τrr ) 
γ13 

0 0 0 

ξ1 − nτrr 

γ12 

�0122 

K 022 
0 0 

⎤ 

⎥ ⎥ ⎦ 

, G 2 = 

⎡ 

⎢ ⎢ ⎣ 

0 0

0 

1
γ1

0 0

0 

n 
γ12 

�
K

 3 = 

⎡ 

⎢ ⎣ 

κ11 κ12 κ13 −
κ12 κ22 κ23 −
κ13 κ23 κ33 −

�0111 − �0221 n ( �0111 − �0221 ) kr ( �0111 − �0331 ) 

 4 = 

⎡ 

⎢ ⎣ 

1 − n ( γ12 −τrr ) 
γ12 

− kr ( γ13 −τrr ) 
γ13 

ξ1 

n − γ12 −τrr 

γ12 
0 − nτrr 

γ12 

�0122 

K 022 

kr 0 0 0 

0 0 0 0 

⎤ 

⎥ ⎦ 

. 

ere 

12 = A 01212 −
�2 

0122 

K 022 

, γ21 = A 02121 −
�2 

0122 

K 022 

, γ23 = A 02323 , 

13 = A 01313 −
�2 

0133 

K 033 

, γ31 = A 03131 −
�2 

0133 

K 033 

, γ32 = A 03232 , 

1 = −
(

�0122 

K 022 

n 

2 

γ12 

+ 

�0133 

K 033 

k 2 r 2 

γ13 

)
τrr , 

2 = −
(

n 

2 

K 022 

+ 

�2 
0122 

K 

2 
022 

n 

2 

γ12 

+ 

k 2 r 2 

K 033 

+ 

�2 
0133 

K 

2 
033 

k 2 r 2 

γ13 

)
, 

12 = 

1 

2 

(
A 01111 + A 02222 − 2 A 01122 − 2 A 01221 + 

2�2 
0122 

K 022 

)
, 

13 = 

1 

2 

(
A 01111 + A 03333 − 2 A 01133 − 2 A 01331 + 

2�2 
0133 

K 033 

)
, 

11 = 2(γ12 − τrr + β12 ) + n 

2 

[
γ21 − ( γ12 − τrr ) 

2 

γ12 

]
+ k 2 r 2 

[
γ31 − ( γ

12 = n 

(
γ12 + γ21 + 2 β12 − τ 2 

rr 

γ12 

)
, κ13 = kr ( A 01111 + A 02233 − A 01

22 = 2 n 

2 (γ12 − τrr + β12 ) + γ21 − ( γ12 − τrr ) 
2 

γ12 

+ k 2 r 2 γ32 , 

23 = nkr ( A 01111 + A 02233 + A 02332 − A 01122 − A 01133 + 2 p ) , 

33 = 2 k 2 r 2 ( γ13 − τrr + β13 ) + n 

2 γ23 . 

It should be noticed that to derive Eqs. (49) –(53) , we made use

 01221 + p = A 01212 − τrr , A 01331 + p = A 01313 − τrr , 

hich result from Eqs. (8) 1 and (9) . The derivation of the Stroh for

Now the incremental boundary conditions (46) 3 read 

 (r a ) = S (r b ) = 0 . 

Note that we chose to write the components of η in the order 

or those boundary value problems where the electric field is due

ase where the sector is charge-controlled ( Keplinger et al., 2010; D

ontrolled, the places of r � and � must be swapped in η for great

e replaced with 

ˆ η and 

ˆ G , respectively, where 

ˆ = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

U r 

U θ

U z 

�
r�rr 

r�θθ

r�zz 

r�

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

[
ˆ U 

ˆ S 

]
= R η, ˆ G = RGR 

−1 
, R = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 

0 

0 

0 

0 

0 

0 

0 

ith 

ˆ U = 

[
U r U θ U z �

]T 
and 

ˆ S = 

[
r�rr r�rθ r�rz r�

 b , Eq. (55) should be modified as 

ˆ 
 (r a ) = 

ˆ S (r ) = 0 . 
b 
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xtended to the case of a charge-controlled sector. Our calculations (not 

the literature when the slab is reduced to a half-space ( Dorfmann and 

, especially for thick slabs. Over the years, several algorithms such as 

e state space method ( Wu et al., 2017 ) have been adopted to overcome 

e matrix method ( Destrade et al., 2009a,b, 2014; Balbi et al., 2015 ) is 

btaining the dispersion equation. 

r, r a ) 

r, r a ) 

]
, which is defined as the matrix such that 

(58) 

(59) 

(60) 

ed as 

(61) 

(62) 

ential equation 

(63) 

(64) 

on (64) from r a to r b and tune the bending angle until the following 

(65) 

(66) 

 angle ϕc can be determined, and so can the critical value of the inner 

n on the outer face of the sector can be determined as 

1 − Q 14 Q 21 Q 33 

4 − Q 14 Q 23 Q 32 

, 

4 − Q 14 Q 22 Q 31 

4 − Q 14 Q 23 Q 32 

, 

t

1 − Q 13 Q 21 Q 32 

1 − Q 13 Q 21 Q 32 

, (67) 

ed. 

and introduce the 8 × 8 matricant M (r, r b ) = 

[
M 1 (r, r b ) M 2 (r, r b ) 

M 3 (r, r b ) M 4 (r, r b ) 

]

(68) 
As a result, the method presented in this paper can be easily e

presented here) show that we then recover the same results as in 

Ogden, 2010b ). 

3.4. The surface impedance matrix method 

The inhomogeneous differential system (49) is stiff numerically

the compound matrix method ( Shmuel and deBotton, 2013 ) and th

the stiffness of this equation. Here the so-called surface impedanc

employed to build a robust and efficient numerical procedure for o

We introduce the 8 × 8 matricant M (r, r a ) = 

[
M 1 (r, r a ) M 2 (

M 3 (r, r a ) M 4 (

η(r) = M (r, r a ) η(r a ) , 

with the obvious condition that 

M (r a , r a ) = I 8 ×8 . 

Use of the incremental boundary condition S ( r a ) = 0 gives 

S (r) = z a (r, r a ) U (r) , 

where z a ( r, r a ) is the conditional impedance matrix, which is defin

z a (r, r a ) = M 3 (r, r a ) M 

−1 
1 (r, r a ) . 

Substituting Eq. (60) into Eq. (49) gives 

d 

d r 
U = 

1 

r 
G 1 U + 

1 

r 
G 2 z 

a U , 
d 

d r 
( z a U ) = 

1 

r 
G 3 U + 

1 

r 
G 4 z 

a U . 

Elimination of U from Eq. (62) yields the following Riccati differ

d z a 

d r 
= 

1 

r 
( −z a G 1 − z a G 2 z 

a + G 3 + G 4 z 
a ) , 

with the initial condition 

z a (r a , r a ) = 0 , 

which follows from Eqs. (59) and (61) . 

Then we integrate Eq. (63) numerically with the initial conditi

target condition is satisfied 

det z a (r b , r a ) = 0 , 

which results from the boundary 

S (r b ) = z a (r b , r a ) U (r b ) = 0 . 

The conclusion is that, for a given voltage V , the critical bending

circumferential stretch λa , which we denote by λc . 

It follows from Eq. (66) that the ratios of the incremental motio

t θ = 

U θ (r b ) 

U r (r b ) 

= 

Q 11 Q 24 Q 33 + Q 13 Q 21 Q 34 + Q 14 Q 23 Q 31 − Q 11 Q 23 Q 34 − Q 13 Q 24 Q 3

Q 12 Q 23 Q 34 + Q 13 Q 24 Q 32 + Q 14 Q 22 Q 33 − Q 12 Q 24 Q 33 − Q 13 Q 22 Q 3

t z = 

U z (r b ) 

U r (r b ) 

= 

Q 11 Q 22 Q 34 + Q 12 Q 24 Q 31 + Q 14 Q 21 Q 32 − Q 11 Q 24 Q 32 − Q 12 Q 21 Q 3

Q 12 Q 23 Q 34 + Q 13 Q 24 Q 32 + Q 14 Q 22 Q 33 − Q 12 Q 24 Q 33 − Q 13 Q 22 Q 3

 � = 

�(r b ) 

U r (r b ) 

= 

Q 11 Q 23 Q 32 + Q 12 Q 21 Q 33 + Q 13 Q 22 Q 31 − Q 11 Q 22 Q 33 − Q 12 Q 23 Q 3

Q 12 Q 23 Q 34 + Q 13 Q 24 Q 32 + Q 14 Q 22 Q 33 − Q 12 Q 23 Q 31 − Q 12 Q 23 Q 3

where the shorthand notation Q i j = z a 
i j 
(r b , r a )(i, j = 1 , 2 , 3 , 4) is us

On the other hand, we can also start at the outer surface r = r b 

such that 

η(r) = M (r, r ) η(r ) , 
b b 
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w

M (69) 

ferential equation for the other conditional impedance matrix z b ( r, r b ), 

a

(70) 

(71) 

differential equation for the z a ( r, r a ) conditional impedance matrix, we 

c ith the following initial conditions 

U (72) 

t deformed sector and corresponding buckling pattern. 

4

an dielectric model: 

W (73) 

w e deformation. 

4

ϕ  (74) 

w ltage and electric vector, 

V (75) 

from Eq. (74) . Then the dimensionless stresses and electric field in the 

s

τ
2 
b 

− λ2 
(
λ2 

a + λ2 
b 

)
2 λ2 

, (76) 

E (77) 

4

 and outer surfaces λa and λb versus the bending angle ϕ for different 

a lot the distributions of circumferential stretch λ and stress τ θθ in the 

s an see from Eq. (74) that the length aspect ratio L / H does not affect 

t  axial constraint and the initial configuration of the slab are fixed as 

λ oordinate r = ( r − r a ) / ( r b − r a ) is introduced. 

e ( V = 0 ), the slab bends with λa decreasing and λb increasing from 

1 hile the outer face stretches ( Fig. 4 a), a result which is independent of 

t  slightly bent sector are larger than 1 and hence, every circumferential 

e nts are increased, the bending angle increases, and the inner surface 

e ched at all times ( Fig. 4 c). Note that for a bent sector, τ θθ depends on 

r tor is always compressive while that of the outer part is always tensile, 

s

red to drive the bending of the dielectric slab. The effect of the applied 

v g ( ϕ = 1 , 2 , 3 ) of the dielectric slab with λz = 1 , A/H = 3 is presented 

i hich suggests that the application of the voltage makes the slab easier 

t ectric slab thins down, making the slab easier to be bent. As a result, 

t ab undergoing plane strain deformation, the maximal electric field V 

a ds to 1, the slab becomes be ultra-thin, and the moment drops to zero 

(

ith the obvious condition that 

 (r b , r b ) = I 8 ×8 . 

Following the same procedure, we can also obtain a Riccati dif

s 

d z b 

d r 
= 

1 

r 

(
−z b G 1 − z b G 2 z 

b + G 3 + G 4 z 
b 
)
. 

The corresponding form of Eq. (62) 1 is 

d 

d r 
U = 

1 

r 
G 1 U + 

1 

r 
G 2 z 

b U . 

With the critical stretch λc obtained by integrating the Riccati 

an now integrate simultaneously Eqs. (70) and (71) from r b to r a w

 (r b ) = U(r b ) 
[
1 t θ t z t �

]T 
, z b (r b , r b ) = 0 , 

o determine the full distribution of the incremental field U in the 

. Numerical results and discussion 

For illustration, we now consider the so-called ideal neo-Hooke

 = 

μ

2 

(
λ2 + λ−2 λ−2 

z + λ−2 
z − 3 

)
+ 

1 

2 ε 
λ−2 λ−2 

z D 

2 
0 , 

here ε is the permittivity of the solid, which is independent of th

.1. Static deformation 

In this case Eqs. (18) 2 , (33) and (34) reduce to 

 = 

λz 

(
λ2 

b 
− λ2 

a 

)
2 

A 

H 

, λ2 
a λ

2 
b λ

2 
z = D 

2 

0 + 1 , V = 

2 D 0 

λ2 
z 

(
λ2 

b 
− λ2 

a 

) ln 

λb 

λa 
,

here we are using the following non-dimensional measures of vo

 = 

V 

H 

√ 

ε 

μ
, D 0 = 

D 0 √ 

με 
. 

For given V , ϕ, λz and A / H, λa , λb and D 0 can be determined 

olid follow from Eqs. (27) , (29), (30) and (32) as 

rr (λ) = 

τrr 

μ
= 

(
λ2 − λ2 

a 

)(
λ2 − λ2 

b 

)
2 λ2 

, τ θθ (λ) = 

τθθ

μ
= 

3 λ4 − λ2 
a λ

 r = E r 

√ 

ε 

μ
= λ−1 λ−1 

z D 0 . 

.1.1. Effect of the voltage 

In Fig. 3 we plot the circumferential stretches of the bent inner

pplied voltages V = 0 , 0 . 5 , 0 . 7 , based on Eq. (74) . In Fig. 4 , we p

ector and the bending shapes for several given ϕ and V . We c

he bending deformation of the slab. Here in the calculation the

z = 1 , A/H = 3 , and the non-dimensional measure of the radial c

It can be seen from Fig. 3 that when there is no applied voltag

. Hence, the inner face of the sector contracts circumferentially w

he value of ϕ. With the application of voltage, both λa and λb of a

lement in the sector is stretched ( Fig. 4 b). If the bending mome

ventually contracts circumferentially, and the outer surface is stret

 almost linearly, the transverse stress of the inner part of the sec

eparated by a neutral axis corresponding to τ θθ = 0 . 

We learn from Eq. (37) that only mechanical moments are requi

oltage V on the moment M n needed to trigger a specific bendin

n Fig. 5 a. We can see clearly that M n decreases as V increases, w

o be bent. Theoretically, as the applied voltage increases, the diel

he moment needed for the bending decreases. For a dielectric sl

pplied cannot exceed the value 1 ( Fig. 5 b). As the electric field ten

 Fig. 5 a). 
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Fig. 3. Plots of λa , λb − ϕ for dielectric slabs with λz = 1 , A/H = 3 subject to voltage V = 0 , 0 . 5 , 0 . 7 , respectively. 

Fig. 4. Bending of dielectric slabs which are three times wider than thick, with no axial compression ( λz = 1 , A/H = 3 ) and subject to various bending angles and voltage 

loadings: (a) ϕ = 0 . 5 , V = 0 ; (b) ϕ = 0 . 5 , V = 0 . 7 ; (c) ϕ = 4 , V = 0 . 7 . The top, middle and bottom rows correspond to the circumferential stretch, circumferential stress 

distributions, and bending shapes, respectively. 

red by the stretch λz on the finite bending of a dielectric slab with 

V
 

≥ 1) axial loads produce different effects on the bending deformation 

on the bending: when the slab is bent slightly, every circumferential 

 ϕ increases to a sufficiently large value, the inner part of the sector 

 Conversely, for a pre-stretched, slightly bent slab, every circumferential 
4.1.2. Effect of the axial compression 

Figs. 6–9 illustrate the effect of the axial constraint as measu

 = 0 , A/H = 3 . We see that compressive ( λz < 1) and tensile ( λz

( Fig. 6 ). A compressive loading has a similar effect as a voltage V 

element in the sector is stretched ( Fig. 7 b); as the bending angle

contracts circumferentially, and the outer part is stretched ( Fig. 7 c).
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ϕ

ϕ

ϕ

λ
Fig. 5. (a) Plots of M n − V for several specific bending angles ϕ = 1 , 2 , 3 of a dielectric slab which is three times wider than thick, and no axial compression ( λz = 1 , A/H = 

3 ); (b) Nonlinear response of a dielectric slab subject to a voltage. 

Fig. 6. Plots of λa , λb − ϕ for fixed axial compressions λz = 0 . 8 , 1 , 1 . 4 of dielectric slabs with V = 0 , A/H = 3 . 

e
 

increases, and eventually, the outer part of the solid will be stretched 

a he distribution of circumference stress τ θθ depends almost linearly on 

r asier to be bent. 

4

ting Eq. (73) into Eqs. (A .1) –(A .3) as 

A A 02121 = A 02222 = A 02323 = μλ−2 , 

A �0111 = 2�0122 = 2�0133 = 2 D r , 

K (78) 

4

ing only ( λz = 1 ), a case which has been previously investigated ex- 

p eoretically ( Triantafyllidis, 1980; Destrade et al., 2009a,b; Roccabianca 

e stability for different axial mode numbers m = 0 − 5 of elastic slabs 

w les when the stretch of the inner surface λa reaches the highest point 

o  with decreasing critical stretch λc as m increases and the buckling 

m ferential wrinkles occur at the onset of instability. For instance, a slab 

w n the circumferential stretch of the inner surface of the sector reaches 

λ  1 . 43 , 4 . 23 , 5 . 72 , respectively. Notice that the perturbation decays dra- 

m er face is several orders of magnitude larger than that on the outer 

f

 , the critical stretch λc and the critical bending angle ϕc as functions of 

t onds a different value of the critical stretch λc and a series of branches 

c  value is meaningful, thus the other curves below the highest curve are 
lement of the solid is contracted ( Fig. 8 b); then as ϕ increases, λb

gain for a sufficiently large ϕ ( Fig. 8 c). Notice that in both cases, t

 . We can see from Fig. 9 that stretching the slab makes the solid e

.2. Stability analysis 

The corresponding material parameters are obtained by substitu

 01111 = A 01212 = A 01313 = μλ−2 λ−2 
z + D 

2 
r , 

 03131 = A 03232 = A 03333 = μλ−2 
z , 

 011 = K 022 = K 033 = ε −1 . 

.2.1. Pure elastic problem 

First, we consider the purely elastic slab ( V = 0 ) under bend

erimentally ( Gent and Cho, 1999; Roccabianca et al., 2010 ) and th

t al., 2010 ). Fig. 10 exhibits numerical results for the bending in

ith A/H = 1 , 3 and 4, and L/H = 10 , respectively. The solid buck

f the λc − q curve. We find that the bending instability occurs

ode with m = 0 always occurs first, indicating that only circum

ith A/H = 1 , 3 , 4 buckles in modes q = 2 , 7 , 10 and m = 0 whe

c = 0 . 56091 , 0 . 5614 , 0 . 56135 and the bending angle reaches ϕ c =
atically along the radius, and that the displacement on the inn

ace. 

Fig. 11 reports the critical number of circumferential wrinkles q

he aspect ratio A / H . For a given A / H , each mode number q corresp

an be obtained by taking q = 1 , 2 , 3 , . . . However only the highest
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Fig. 7. Purely elastic bending of a dielectric slab which is three times wider than thick ( V = 0 , A/H = 3 ) for various bending angles and axial compression ratios: (a) 

ϕ = 0 . 5 , λz = 1 ; (b) ϕ = 0 . 5 , λz = 0 . 7 ; (c) ϕ = 3 , λz = 0 . 7 . The top, middle and bottom rows show the variations through the thickness of the circumferential stretch and of 

the stress distributions, and the resulting bending shapes, respectively. 

es, the mode number q increases, indicating that more wrinkles appear 

ngle ϕc increases linearly as A / H increases. For a slab with sufficiently 

 a tube without encountering any instability ( Fig. 11 b). In the half-space 

ds to the threshold value of surface instability of a compressed elastic 

itical stretch λc varies significantly as A / H varies. While for a slab with 

8. 

ding instability of a dielectric slab. Fig. 12 presents plots of λc versus q 

shapes when instability occurs for dielectric slabs with A/H = 3 , L/H = 

 axial deformation of the bending deformation as a 15% contraction 

buckling mode is (m, q ) = (0 , 7) , (0 , 8) , (1 , 1) , (1 , 1) , (1 , 0) and (1,0), 

 cases where the applied voltage is small, only circumferential wrinkles 

de number q increases as the voltage increases ( Fig. 12 a and b). As the 

occur simultaneously ( m 	 = 0, q 	 = 0) at the onset of bending instability 

tric slabs subject to sufficiently large voltage, a slight bending will drive 

g occurs ( (m 	 = 0 , q = 0) , see Fig. 12 e and f). It should be mentioned 

ccurs and the critical moment M nc needed to drive the instability for 

ied voltage V changes. It can be seen that both ϕ c and M nc decrease 

s the dielectric slab more susceptible to fail. One may expect that ϕ c 

value of instability of a compressed elastic slab ( Dorfmann and Ogden, 

ured by the axial stretch ratio λz , on the bending instability of dielectric 

of dielectric slabs with A/H = 3 , L/H = 1 . 5 and subject to V = 0 . 3 and 

rresponding ϕc and M nc when buckling occurs. For each of the cases 

 , (1 , 1) , (1 , 1) , (1 , 0) and (1,0), respectively. We can see that decreasing 
not presented in the λc − A/H plot. We observe that as A / H increas

as instability occurs for a more slender slab. The critical bending a

large width aspect ratio A / H ( > 4.46), the structure can be bent into

limit ( A / H → 0), the critical stretch is λc = 0 . 5437 , which correspon

slab ( Biot, 1965; Destrade et al., 2009b ). When A / H is small, the cr

sufficiently large A / H, λc reaches a horizontal asymptote λc ≈ 0.561

4.2.2. Effect of the voltage 

We now consider the effect of the applied voltage V on the ben

for a range of modes m = 0 − 5 and the corresponding wrinkling 

1 . 5 and subject to V = 0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 7 , 0 . 76 . Here we fix the

( λz = 0 . 85 ). For each of the cases (a)–(f) shown in Fig. 12 , the 

respectively. The critical stretch λc increases as V increases. For the

occur (m = 0 , q 	 = 0) when bending buckling happens, and the mo

voltage increases further, both circumferential and axial wrinkles 

( Fig. 12 c and d) and combine to give a 2D pattern. Finally, for dielec

the instability of the structure and in this case, only axial wrinklin

that the maximal number of axial wrinkles is one ( m = 0 , 1 ). 

We extract the critical bending angle ϕc when the instability o

the cases presented in Fig. 12 , and plot them in Fig. 13 as the appl

as V increases, indicating that the application of the voltage make

and M nc will be zero for a critical λzc , corresponding the critical 

2014a; Biot, 1963 ). 

4.2.3. Effect of the axial constraint 

Here, we investigate the effect of the axial compression, as meas

slabs. Fig. 14 displays numerical results for the bending instability 

λz = 1 , 0 . 9 , 0 . 8 , 0 . 75 , 0 . 7 , 0 . 63 , respectively. Fig. 15 presents the co

(a)-(f) shown in Fig. 14 , the buckling mode is (m, q ) = (0 , 9) , (0 , 8)
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Fig. 8. Purely elastic bending of a dielectric slab which is three times wider than thick ( V = 0 , A/H = 3 ) for various bending angles and axial elongation ratios: (a) ϕ = 

0 . 5 , λz = 1 ; (b) ϕ = 0 . 5 , λz = 1 . 4 ; (c) ϕ = 2 . 5 , λz = 1 . 4 . The top, middle and bottom rows show the variations through the thickness of the circumferential stretch and of 

the stress distributions, and the resulting bending shapes, respectively. 

Fig. 9. Plots of M n − λz for bending angle ϕ = 1 , 2 , 3 of a dielectric slab with V = 0 , A/H = 3 . 

t d voltage V on the bending buckling behavior of dielectric slabs, i.e., 

t ial wrinkles occur first and eventually only axial wrinkles exist as λz 

d compression is small, the mode number q decreases as λz increases 

(  Fig. 12 a and b). Due to the competition mechanisms of the effects of V 

z curves are non-monotone. On the one hand, decreasing λz increases 

t d, which consequently increases the stability of the structure. On the 
he axial stretch ratio has a similar effect as increasing the applie

he critical stretch λc increases as λz decreases, and circumferent

ecreases to a sufficiently small value. Note that when the axial 

 Fig. 14 a and b), which is different from the case of increasing V (

and λz on the bending instability of the structure, the ϕ c , M nc − λ
he thickness of the slab and thus decreases the true electric fiel
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Fig. 10. Elastic bending instability of a dielectric slab with fixed axial compression ( V = 0 , λz = 1 ) for various width aspect ratios: (a) A/H = 1 ; (b) A/H = 3 ; (c) A/H = 4 

and fixed length aspect ratio L/H = 10 . The top row shows plots of the critical circumferential stretch λc versus the number of circumferential wrinkles q for a range of 

axial modes m = 0 − 5 . The bottom row shows the corresponding wrinkling shapes when instability occurs. The highest point of λc − q curves for each ease is marked by 

cross, representing the onset of the instability. In this case the m = 0 plot is always on top and there are no axial wrinkles, only circumferential. 

Fig. 11. (a) Critical circumferential mode number q and (b) stretch λc (evaluated at the inner face of the bent sector r a ) and critical bending angle ϕc versus width aspect 

ratio A / H of an elastic slab ( V = 0 ) under bending only ( λz = 1 ) at the onset of buckling. 
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Fig. 12. Bending instability of compressed dielectric slabs which are 3 times wider and 1.5 times taller than thick ( A/H = 3 , L/H = 1 . 5 , λz = 0 . 85 ) and subject to increasing 

voltages: (a) V = 0 ; (b) V = 0 . 2 ; (c) V = 0 . 4 ; (d) V = 0 . 6 ; (e) V = 0 . 7 ; (f) V = 0 . 76 . The top rows are plots of λc versus q for a range of modes m = 0 − 5 and bottom 

rows are the corresponding wrinkling shapes when instability occurs. In cases (a) and (b), circumferential wrinkles occurs and in cases (e) and (f), axial wrinkles occurs 

whereas in cases (c) and (d), a two-dimensional (circumferential and axial) pattern emerges. 

Fig. 13. Effect of the applied voltage V on the critical values of bending angle ϕc and moment M nc for dielectric slabs with A/H = 3 , L/H = 1 . 5 , λz = 0 . 85 . 
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Fig. 14. Bending instability of dielectric slabs with A/H = 3 , L/H = 1 . 5 , V = 0 . 3 and subject to (a) λz = 1 ; (b) λz = 0 . 9 ; (c) λz = 0 . 8 ; (d) λz = 0 . 75 ; (e) λz = 0 . 7 ; (f) 

λz = 0 . 63 . The top rows are plots of λc versus q for a range of modes m = 0 − 5 and bottom rows are the corresponding wrinkling shapes when instability occurs. In cases 

(a) and (b), circumferential wrinkles occurs and in cases (e) and (f), axial wrinkles occurs whereas in cases (c) and (d), a two dimensional (circumferential and axial) pattern 

emerges. 

Fig. 15. Effect of the axial compression, as measured by the axial stretch ratio λz , on the critical values of bending angle ϕc and moment M nc for dielectric slabs with 

A/H = 3 , L/H = 1 . 5 , V = 0 . 3 . 
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o xial direction and has a destabilizing influence on the slab. As a result, 

ϕ es ( Fig. 15 ), indicating that the voltage V plays a major role when the 

s λz presents the dominant influence when the structure is dramatically 

c

5

mation and the associated bending instability of an incompressible di- 

e l moments. We derived the three-dimensional equations governing the 

s eformation of the slab for a general form of energy function. In partic- 

u s biasing fields in the slab for ideal neo-Hookean dielectric materials. 

W chose a state vector accordingly to rewrite the incremental governing 

e dance matrix method to obtain numerically the bending threshold for 

t en bending instability occurs. 

pression on the finite bending deformation. We showed that the length 

a n of the slab. The applied voltage increases the circumferential stretch 

i  slab is stretched. The moments needed to drive the specific bending of 

t cation of the voltage makes the slab easier to bend. We found that the 

c tage, while on the contrary, every circumferential element in a slightly 

b retch increases, the moments needed to drive a specific bending of the 

s asier to bend. In any case, the circumferential stretch deforms linearly 

a art of the sector is always compressive while that of the outer part is 

a

voltage and axial constraint on the instability of a dielectric slab. We 

o f the deformed shell, as well as the wrinkled shape when the bending 

i problem to validate our analysis. Theoretically, the application of the 

v i.e., make the slab more susceptible to wrinkling instability. The two 

e ressive loads leads to a decrease in the true electric field in the body. 

T all, while the constraint becomes dominant when the compression is 

s

 wrinkles in a bent and axially compressed dielectric slab. We did not 

l inkles. This is certainly the case in the in-plane compression of an elastic 

h rinkles predicted by the linearised buckling analysis of Biot ( λc = 0 . 54 ), 

i ever, recent Finite Element simulations show that in bending , creases 

o eir number and wavelength can be predicted by the linearized analysis 

(  as a good approximation for predicting the onset and wavelength of 

b nalysis is required to settle this question. 

ctric elastomers with free sides (e.g. Plante and Dubowsky, 2006; Liu 

e

 side of a slab to a rigid, conducting substrate, as done by Wang and 

Z en different from the one studied here, where both sides were free of 

t

A

oral Fellowship from the Irish Research Council (no. GOIPG/2016/712) 

a  11621062 ). MD thanks Zhejiang University for funding a research 

v  from the Shenzhen Scientific and Technological Fund for R&D (no. 

J

A

mpute the non-zero components of the instantaneous electro-elastic 

m llows ( Wu et al., 2017; Dorfmann and Ogden, 2010a ) 
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, 
ther hand, decreasing λz makes the structure easier to fail in the a

c and M nc increase first and then decrease to zero, as λz decreas

tructure is only slightly compressed, while the axial compression 

ompressed. 

. Conclusions 

We presented a theoretical analysis of the finite bending defor

lectric slab subject to a combined action of voltage and mechanica

tatic finite bending deformation and the associated incremental d

lar, we studied explicit expressions of the radially inhomogeneou

e took the electric loading to be voltage-controlled and so we 

quation in the Stroh differential form. We used the surface impe

he onset of the instability and the wrinkled shape of the shell wh

We first studied the effects of the applied voltage and axial com

spect ratios of the slab L / H does not affect the bending deformatio

n the body so that every circumferential element in a slightly bent

he slab decrease as the voltage increases, indicating that the appli

ompressive axial constraint has a similar effect as the applied vol

ent slab, subject to axial pre-stretch, is contracted. As the axial st

lab decrease, indicating that the axial pre-stretch makes the slab e

long the radial direction and the transverse stress of the inner p

lways tensile. 

We then investigated the combined influences of the applied 

btained the critical circumferential stretch on the inner surface o

nstability occurs. We recovered the results of the purely elastic 

oltage and the axial constraint both play a destabilizing effect, 

ffects compete with each other, and an increase in the axial comp

he applied voltage plays the main role when the constraint is sm

ufficiently large. 

In this article we focused on the formation of small-amplitude

ook at post-buckling behavior or if creases might have preceded wr

alf-space , where creases form much earlier ( λc = 0 . 65 ) than the w

.e. with more than 10% strain difference ( Hong et al., 2009 ). How

ccur only a few percent of strain earlier than wrinkles, and that th

 Sigaeva et al., 2018 ). Hence we argue that our analysis is justified

uckling, although of course a fully multi-physics Finite Element A

Moreover, wrinkles have indeed been observed in loaded diele

t al., 2016 ). 

To create creases in a dielectric membrane, one could glue one

hao (2013) , but the corresponding boundary value problem is th

raction. 
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ppendix A. Non-zero electro-elastic moduli 

Here we use the incremental theory of electro-elasticity to co

oduli with respect to the specific deformation gradient (17) , as fo
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Appendix B. Derivation of the Stroh formulation 

First, rewriting Eq. (40) by using solutions (47) gives 
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These are the first four lines of the Stroh formulation. 

Substituting Eqs. (42) 1, 2, 6, 8 , (43) 2, 3 and (47) into Eq. (44) 1 and

(r�rr ) 
′ = 

1 

r 
[ κ11 t U r + κ12 U θ + κ13 U z − (�0111 − �0221 ) r�r + r�rr 

−n (γ12 − τrr ) 

γ12 

r �rθ − kr (γ13 − τrr ) 

γ13 

r �rz + ξ1 �

]
. 
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Similarly, substituting Eqs. (42) 1, 2, 4, 6, 9 , (43) 2 and (47) into

q. (44) 2 and using Eqs. (B.1) and (B.2) gives 

(r�rθ ) ′ = 

1 

r 
[ κ12 U r + κ22 U θ + κ23 U z − n (�0111 − �0221 ) r�r 

+ n (r�rr ) − γ12 − τrr 

γ12 

r�rθ − nτrr 

γ12 

�0122 

K 022 

�

]
. (B.6) 

Then substituting Eqs. (42) 1, 3, 7 and (47) into Eq. (44) 3 and us-

ng Eq. (B.1) , we obtain 

(r�rz ) 
′ = 

1 

r 
[ κ13 U r + κ23 U θ + κ33 U z − kr(�0111 − �0331 ) r�r 

+ kr (r �rr ) ] . (B.7) 

Finally, from Eqs. (43) 1 and (47) and using Eq. (B.1) , we have 

′ = 

1 

r 
[ (�0111 − �0221 ) U r + n (�0111 − �0221 ) U θ

+ kr(�0111 − �0331 ) U z − K 011 r�r ] . (B.8) 

Now we can write Eqs. (B.1) –(B.8) in the Stroh matrix form, as

resented in Eq. (49) . 
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