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a b s t r a c t

Due to their unique electromechanical coupling properties, soft electro-active (SEA) res-
onators are actively tunable, extremely suitable, and practically important for designing
the next-generation acoustic and vibration treatment devices. In this paper, we investigate
the electrostatically tunable axisymmetric vibrations of SEA tubes with different geometric
sizes. We consider both axisymmetric torsional and longitudinal vibrations for an
incompressible SEA cylindrical tube under inhomogeneous biasing fields induced by radial
electric voltage and axial pre-stretch. We then employ the state-space method, which
combines the state-space formalism in cylindrical coordinates with the approximate
laminate technique, to derive the frequency equations for two separate classes of
axisymmetric vibration of the tube subjected to appropriate boundary conditions. We
perform numerical calculations to validate the convergence and accuracy of the state-
space method and to illuminate that the axisymmetric vibration characteristics of SEA
tubes may be tuned significantly by adjusting the electromechanical biasing fields as well
as altering the tube geometry. The reported results provide a solid guidance for the proper
design of tunable resonant devices composed of SEA tubes.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Compared with traditional piezoelectric materials, soft electro-active (SEA) materials, besides exhibiting the exotic
capability of high-speed electrical actuation with strains greater than 100% [1], also possess many other excellent electro-
mechanical properties such as low actuation voltage, high fracture toughness and high energy density [2,3]. These charac-
teristics therefore have received considerable academic and industrial interests, and found widespread applications ranging
from actuators, sensors and energy harvesters to biomedical and flexible electronic devices [4e8]. It is generally accepted that
electric stimuli can affect the electromechanical characteristics of SEA materials in a rapid and reversible way, which in turn
provides an effective approach to tune the vibration and wave characteristics of SEA structures and devices. Consequently,
SEA materials can be ideally applied to the manufacturing of high-performance vibration and wave devices such as tunable
resonators and acoustic/elastic waveguides [9e13].
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Strong nonlinearity and electromechanical coupling of SEA materials are two important aspects in developing a general
continuum mechanics framework. Early development of the nonlinear theory of electro-elasticity can be tracked back to the
seminal works of Toupin [14,15] for static and dynamic analyses of finitely deformed elastic dielectrics. Later on, Tiersten [16]
extended Toupin0s formulations to further incorporate thermal effects and developed a thermo-electro-elastic coupled theory
by applying the laws of continuum physics to a well-defined macroscopic model. Due to the development of various smart
materials and structures as well as their extensive application prospects, a general nonlinear continuum theory for electro-
magneto-mechanical couplings has been regularly reformulated since the 1980s [17,18]. During this period, particular efforts
have been made on finite element formulations of multifield coupling problems and micromechanics analysis of smart
composites. In recent decades, the appearance of SEA materials capable of large deformations on the market [19e22] has
again promoted re-interpretations, improvements and applications of nonlinear electro-elasticity [23e27]. Note that a
nonlinear continuum framework accounting for the nonlinear interaction between mechanical and electromagnetic fields,
which is well documented in the monograph by Dorfmann and Ogden [27], is appropriate for the analysis of electro-active
and magneto-active materials undergoing large deformations [28e32]. Although soft electro-active and magneto-active
materials possess mathematical similarities in their modeling, their physical mechanisms are different. In SEA materials,
the polarization is generated by an electric field and thus the induced electrostatic stresses deform the materials [33]. In soft
magneto-active materials mixed with magnetically active particles, it is the interaction of an external magnetic field with the
composite that modifies the overall stiffness and results in large deformations [28].

In many practical applications, the performance of intelligent systems composed of SEA materials usually depends on the
biasing fields induced by, for instance, pre-stretch, internal pressure and electric stimuli. On the one hand, the biasing fields
may lead to instability and even failure of the SEA systems [29,31,33e37]. On the other hand, they can be exploited to actively
control vibrations and waves in SEA devices. For example, experiments on a lightweight push-pull acoustic transducer
consisting of dielectric elastomer (DE) films for sound generation in advanced audio systems [38] showed that the push-pull
driving can suppress harmonic distortion. Hosoya et al. [39] fabricated and investigated a hemispherical breathing mode
loudspeaker using a DE actuator, while Lu et al. [40] demonstrated experimentally an electrostatically tunable duct silencer
using external control signals. Earlier, Dubois [41] had used an electric biasing field to tune the resonance frequency of
dielectric electro-active polymer (DEAP) membranes, a procedure which requires no external actuators or variable elements,
and had observed a 77% resonant frequency reduction from the initial value. Moreover, Zhang et al. [42] put forward a vi-
bration damper to achieve vibration attenuation by applying alternating oppositely phased voltages to a DE actuator. To
alleviate the contradiction between the appearance of thin flexible displays and the requirement of sufficient volume for
loudspeakers, Sugimoto et al. [43] designed a tunable semi-cylindrical acoustic transducer made of an SEA film for sound
generation. Sarban et al. [44] fabricated a core-free rolled tubular SEA actuator, studied its dynamic characteristics and
successfully realized active vibration isolation. In the field of biomedical applications, Son et al. [45] proposed to couple an
SEA tube sensor to an arterial segment in order to provide structural support and simultaneously monitor its local state
information. Consequently, tunable SEA resonators are extremely suitable for the next-generation acoustic treatment devices,
active vibration isolators, and biomedical sensors.

To investigate how biasing fields influence the small-amplitude dynamic characteristics of SEA structures, different ver-
sions of linearized incremental theories [17,18,46e49] based on nonlinear electro-elasticity theory have been established in
the literature by adopting either the Lagrangian description or the updated Lagrangian description, as well as in terms of
different energy density functions. By introducing three configurations to describe the general motion of an electro-elastic
body, Wu et al. [50] compared in detail different versions of nonlinear electro-elasticity theory and associated linearized
incremental theory, identified the similarities and differences between them, and concluded that these seemingly various
theories are in principle equivalent without any essential difference.

Following the theory of nonlinear electro-elasticity and its associated linearized incremental theory developed by Dorf-
mann and Ogden [46], much effort has been devoted in recent years to investigating the effects of biasing fields on the small-
amplitude wave propagation characteristics in SEA materials, such as bulk waves and different types of guided waves
[12,13,29,51e55]. An in-depth literature overview on tunable elastic waves in SEA materials and structures was provided by
Wang et al. [56] to demonstrate wave manipulation via tunable SEA phononic crystals. More recently, the state-space method
(SSM) was employed byMao et al. [10] andWang et al. [57] to explore the electrostatically tunable free vibration behaviors of
SEA balloons and of multilayered electro-active plates, respectively. Numerical results in both papers proved that the SSM is a
highly effective method for the analysis of SEA structures with inhomogeneous biasing field or multilayered configuration.

The purpose of the present study is to shed light on the effects of inhomogeneous biasing field and tube geometric size on
axisymmetric free vibrations of incompressible SEA cylindrical tubes. Both axisymmetric torsional and longitudinal vibrations
(hereafter abbreviated as T vibrations and L vibrations) are considered. The biasing field is generated by applying an electric
voltage difference between the two electrodes on the inner and outer tube surfaces respectively, in addition to a pre-stretch in
the axial direction (see Fig. 1). The SSM proposed by Wu et al. [52] for the analysis of circumferential guided waves in SEA
tubes is used here to tackle the problem of the inhomogeneity of biasing fields.

This paper is organized as follows. Using nonlinear electro-elasticity theory [23,27], Section 2 briefly reviews the basic
formulations governing the nonlinear axisymmetric deformation and inhomogeneous biasing fields of SEA tubes charac-
terized by a neo-Hookean ideal dielectric model. Based on the linearized incremental theory [46], Section 3 provides the
governing equations and the state-space formalism in cylindrical coordinates for the incremental fields. For the generalized



Fig. 1. (a) Schematic diagram of an SEA tube with flexible surface electrodes with mechanically negligible effects; (b) Undeformed configuration and geometric
sizes; (c) Deformed configuration after activation generated by the combined action of radial electric voltage V and axial pre-stretch lz and current geometric
sizes.
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rigidly supported conditions, Section 4 derives the frequency equations for the two types of axisymmetric vibrations of SEA
tubes with the help of the approximate laminate technique. We conduct numerical calculations in Section 5 to first, validate
the convergence and accuracy of the proposed SSM for axisymmetric vibrations and then, to elucidate the effects of elec-
tromechanical biasing field and tube geometry on the axisymmetric vibration characteristics. A conclusive summary is
provided in Section 6 and some related mathematical expressions or derivations are presented in Appendices A-D.
2. Nonlinear axisymmetric deformation of an SEA tube

For a better understanding of the derivations of the governing equations for the nonlinear axisymmetric deformation and
the superimposed small-amplitude vibrations in an SEA tube, the general nonlinear electro-elasticity theory and its asso-
ciated linearized incremental theory are briefly reviewed in Appendix A. The detailed formulations can be found in works by
Dorfmann and Ogden [23,27,46].

The nonlinear axisymmetric deformation of an SEA tube subjected to a radial electric field, internal/external pressures, and
an axial pre-stretch has already been provided elsewhere [51,52,54,58,59]. In this section, we just briefly review the basic
equations and expressions when the SEA tube coated with electrodes on both the inner and outer surfaces is subjected to a
radial voltage as well as an axial pre-stretch.

As displayed in Fig. 1, the inner and outer radii as well as the length of the tube are specified as A, B and L, respectively, in
the undeformed configuration, with initial thickness H ¼ B� A. An electric voltage difference V is applied between the two
surface electrodes. Meanwhile, the tube is subjected to a constant axial pre-stretch lz. Under these electromechanical biasing
fields, the tube is deformed along with the flexible electrodes so that the inner and outer radii, the length and the thickness of
the tube become a, b, l ¼ lzL, and h ¼ b� a, respectively.

The axisymmetric deformation for an incompressible material is given by

R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ lz

�
r2 � a2

�q
; q¼Q; z¼ lzZ; (1)

where ðR;Q; ZÞ and ðr; q; zÞ are cylindrical coordinates in the undeformed and deformed configurations, respectively. Thus, the
deformation gradient tensor F can be calculated as

F¼

2
66666664
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where lr ¼ l�1
q l�1

z and lq ¼ r=R are the radial and circumferential stretches, respectively. Accordingly, Eq. (1)1 yields

l2alz �1¼R2
�
l2q lz �1

�.
A2 ¼

�
l2blz �1

�.
h2; (3)

where la ¼ a=A, lb ¼ b=B, and h ¼ A=B.
Due to the applied radial electric voltage, the biasing Eulerian electric displacement vector D has only a radial component

Dr , and thus the only non-zero component of its Lagrangian counterpart D ¼ F�1D is Dr ¼ lqlzDr . Furthermore, the five
independent scalar invariants Im in Eq. (A.3) and the non-zero components of the total Cauchy stress tensor t and the Eulerian
electric field vector E in Eq. (A.4) are

I1 ¼ l�2
q l�2

z þ l2q þ l2z ; I2 ¼ l2ql
2
z þ l�2

q þ l�2
z ;

I4 ¼ l2q l
2
z D

2
r ; I5 ¼ l�2

q l�2
z I4; I6 ¼ l�4

q l�4
z I4;

(4)

and

trr ¼ 2l�2
q l�2

z

h
U1 þ U2

�
l2q þ l2z

�i
þ 2

�
U5 þ 2U6l

�2
q l�2

z

�
D2
r � p;

tqq ¼ 2l2q
h
U1 þ U2

�
l�2
q l�2

z þ l2z

�i
� p; tzz ¼ 2l2z

h
U1 þ U2

�
l�2
q l�2

z þ l2q

�i
� p;

Er ¼ 2
�
U4l

2
q l

2
z þ U5 þ U6l

�2
q l�2

z

�
Dr;

(5)

where Um ¼ vU=vIm, with U being the total energy density function.
Since the deformation is axisymmetric and also invariant along the axis, all the physical quantities are independent of the

coordinates q and z. As a result, Faraday0s law (A.1)3 is satisfied automatically, and Gauss0s law (A.1)2 and the equation of
motion (A.1)1 reduce to

vDr

vr
þDr

r
¼1

r
vðrDrÞ
vr

¼0;
vtrr
vr

þ trr � tqq
r

¼0: (6)
Integrating Eq. (6)1, we obtain

Dr ¼ QðaÞ
2prlzL

¼ � QðbÞ
2prlzL

; (7)

where QðaÞ and QðbÞ are the total free surface charges on the inner and outer surfaces of the deformed SEA tube, satisfying
QðaÞ þ QðbÞ ¼ 0, i.e., the electrodes on the inner and outer surfaces carry equal and opposite charges. Note that we used the
boundary condition (A.5)3 to derive Eq. (7).

It is apparent from Eq. (4) that there are only three independent variables, for instance: lq, lz and I4. For convenience, a
reduced energy density function can be defined as

U*ðlq; lz; I4Þ¼UðI1; I2; I4; I5; I6Þ: (8)
Substituting it into Eq. (5) gives

lqU
*
lq
¼ tqq � trr ; lzU

*
lz
¼ tzz � trr; Er ¼ 2l2q l

2
zU

*
4Dr ; (9)

where U*
lq

¼ vU*=vlq, U
*
lz
¼ vU*=vlz and U*

4 ¼ vU*=vI4.
The electric field vector E is curl-free so that we can introduce an electrostatic potential 4 such that E ¼ � grad4. Then,

substituting Eq. (7) into Eq. (9)3 and integrating the resulting equation from the inner surface to the outer one, we obtain

V ¼ lz
QðaÞ
pL

Zb
a

l2qU
*
4
dr
r
; (10)
where V ¼ 4ðaÞ � 4ðbÞ is the electric potential difference between the inner and outer surfaces. Moreover, by inserting Eq.
(9)1 into Eq. (6)2, conducting the integration from a to b, and assuming that both the inner and outer surfaces are traction-free,
we find that
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Zb
a

lqU
*
lq

dr
r
¼0: (11)
In a similar way, the radial normal stress can be found as

trrðrÞ¼
Zr
a

lqU
*
lq

dr
r
: (12)
After trr is obtained analytically or numerically from Eq. (12) for a specific energy density function, the circumferential
(tqq) and axial (tzz) normal stresses can be derived by Eq. (9)1 and (9)2, respectively. Then one equation of Eq. (5)1-3 de-
termines the Lagrange multiplier p and the resultant axial force N is found by the integration of tzz over the cross-section of
the deformed SEA tube.

For definiteness, a neo-Hookean ideal dielectric model [60] is utilized to characterize the SEA tube with the (reduced)
energy density functions written as

U ¼ mðI1 � 3Þ=2þ I5=ð2εÞ;
U* ¼ m

�
l�2
q l�2

z þ l2q þ l2z � 3
�.

2þ l�2
q l�2

z I4
.
ð2εÞ; (13)

where m denotes the shear modulus of the SEA material in the absence of biasing fields and ε is the dielectric constant of the
ideal dielectric material, independent of the deformation.

For the neo-Hookean ideal dielectric model, the explicit expressions of the physical variables related to the nonlinear
axisymmetric deformation have been provided by Zhu et al. [58] and Wu et al. [52]. Specifically, the nonlinear axisymmetric
responses governed by Eqs. (10) and (11) are

V ¼ �Q
h

1� h
lnh; V ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�1
z

�
2l2a

1� h2
ln

la
lb

þ l2a � l�1
z

�s
h

1� h
lnh; (14)

where V ¼ V
ffiffiffiffiffiffiffiffi
ε=m

p
=H and Q ¼ QðaÞ=ð2pAlzL ffiffiffiffiffi

mε
p Þ are dimensionless measures of the electric potential difference and surface

charge, respectively, and h ¼ a=b is the inner-to-outer radius ratio in the deformed configuration.
In addition, the radially inhomogeneous biasing fields required to calculate the resonant frequencies of axisymmetric

vibrations are given by

lq ¼
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2
.
ð1� hÞ2 þ lz

�
x2 � h2l2a

.
ð1� hÞ2

�r ; Dr ¼ � V
x lnh

;

p ¼ l�1
z

"
1� ln

la
lq

þ
h2l2a

.
ð1� hÞ2 þ x2�
1� h2

�
x2

ln
la
lb

#
;

(15)

whereDr ¼ Dr=
ffiffiffiffiffi
mε

p
and p ¼ p=m are the dimensionless radial electric displacement and Lagrangemultiplier, respectively, and

x ¼ r=H is the dimensionless radial coordinate in the deformed configuration.

3. Incremental equations and state-space formalism

To describe the time-dependent incremental motion accompanied by an incremental electric field in the finitely deformed
SEA tube, the incremental governing equations given in Appendix A.2 are written in the cylindrical coordinates ðr; q; zÞ in this
section. Then we reproduce the state-space formalism for the incremental fields presented by Wu et al. [52].

It can be seen from Eq. (A.6)2 that the incremental electric field _E0 is curl-free and thus an incremental electric potential _4
can be introduced such that _E0 ¼ � grad _4. Its components in the cylindrical coordinates are

_E0r ¼ � v _4

vr
; _E0q ¼ �1

r
v _4

vq
; _E0z ¼ �v _4

vz
: (16)
Accordingly, the incremental Gauss0s law (A.6)3 and the incremental equations of motion (A.6)1 can be written, respec-
tively, as
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v _D0r

vr
þ1

r

�
v _D0q
vq

þ _D0r

�
þ v _D0z

vz
¼0; (17)
and

v _T0rr

vr
þ 1

r
v _T0qr
vq

þ
_T0rr � _T0qq

r
þ v _T0zr

vz
¼ r

v2ur
vt2

;

v _T0rq
vr

þ 1
r
v _T0qq
vq

þ
_T0qr þ _T0rq

r
þ v _T0zq

vz
¼ r

v2uq
vt2

;

v _T0rz

vr
þ 1

r
v _T0qz
vq

þ
_T0rz
r

þ v _T0zz
vz

¼ r
v2uz
vt2

;

(18)
In addition, the incremental displacement gradient tensor H can be written as

H¼

2
66666664

vur
vr

1
r

�
vur
vq

� uq

�
vur
vz

vuq
vr

1
r

�
vuq
vq

þ ur

�
vuq
vz

vuz
vr

1
r
vuz
vq

vuz
vz

3
77777775
: (19)
The incremental incompressibility condition (A.10) in the cylindrical coordinates thus can be expressed as

vur
vr

þ1
r

�
vuq
vq

þur

�
þ vuz

vz
¼0: (20)
According to Eqs. (16) and (19), the linearized incremental constitutive equation (A.7) for incompressible SEA materials
can be expressed in terms of the incremental mechanical displacement vector u and incremental electric potential _4 as

_T0rr ¼ c11
vur
vr

þ c12
1
r

�
vuq
vq

þ ur

�
þ c13

vuz
vz

þ e11
v _4

vr
� _p;

_T0qq ¼ c12
vur
vr

þ c22
1
r

�
vuq
vq

þ ur

�
þ c23

vuz
vz

þ e12
v _4

vr
� _p;

_T0zz ¼ c13
vur
vr

þ c23
1
r

�
vuq
vq

þ ur

�
þ c33

vuz
vz

þ e13
v _4

vr
� _p;

_T0rz ¼ c58
vur
vz

þ c55
vuz
vr

þ e35
v _4

vz
; _T0zr ¼ c88

vur
vz

þ c58
vuz
vr

þ e35
v _4

vz
;

_T0qz ¼ c44
1
r
vuz
vq

þ c47
vuq
vz

; _T0zq ¼ c77
vuq
vz

þ c47
1
r
vuz
vq

;

_T0rq ¼ c66
vuq
vr

þ c69
1
r

�
vur
vq

� uq

�
þ e26

1
r
v _4

vq
;

_T0qr ¼ c99
1
r

�
vur
vq

� uq

�
þ c69

vuq
vr

þ e26
1
r
v _4

vq
;

(21)

and
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_D0r ¼ e11
vur
vr

þ e12
1
r

�
vuq
vq

þ ur

�
þ e13

vuz
vz

� ε11
v _4

vr
;

_D0q ¼ e26

	
1
r

�
vur
vq

� uq

�
þ vuq

vr



� ε22

1
r
v _4

vq
;

_D0z ¼ e35

�
vuz
vr

þ vur
vz

�
� ε33

v _4

vz
;

(22)

where the effective material parameters cij, eij and εij are defined as

ε11 ¼ R�1
011; ε22 ¼ R�1

022; ε33 ¼ R�1
033; e11 ¼ �G0111ε11; e12 ¼ �G0221ε11;

e13 ¼ �G0331ε11; e26 ¼ �G0122ε22; e35 ¼ �G0133ε33; c11 ¼ A01111 þ G0111e11 þ p;

c12 ¼ A01122 þ G0111e12; c13 ¼ A01133 þ G0111e13; c22 ¼ A02222 þ G0221e12 þ p;

c23 ¼ A02233 þ G0331e12; c33 ¼ A03333 þ G0331e13 þ p; c44 ¼ A02323;

c47 ¼ A02332 þ p; c55 ¼ A01313 þ G0133e35; c58 ¼ A01331 þ G0133e35 þ p;

c66 ¼ A01212 þ G0122e26; c77 ¼ A03232; c88 ¼ A03131 þ G0133e35;

c69 ¼ A01221 þ G0122e26 þ p; c99 ¼ A02121 þ G0122e26:

(23)

in which the non-zero components of the instantaneous electro-elastic moduli tensors A0, G0 and R0 for the axisymmetric
deformation of SEA tubes subjected to a radial electric displacement field have been derived by Wu et al. [52]. Their explicit
expressions can be found in Appendix B of Ref. [52]. Note that adjusting the electromechanical biasing fields may alter the
effective material properties of SEA tubes, which will generate large effects on the superimposed dynamic behavior.

It is obvious that the biasing fields are radially inhomogeneous when subjected to a radial electric voltage, which makes
the effective material parameters depend on the radial coordinate r. Consequently, the resulting incremental governing
equations are a system of coupled partial differential equations with variable coefficients, which are difficult to solve
analytically or even numerically via the conventional displacement-based method. Therefore, the state-space method (SSM)
[52,61,62] combining the state-space formalism with the approximate laminate technique is adopted in this paper to derive
the frequency equations of the axisymmetric vibrations of SEA tubes.

The basic incremental governing equations (17)-(18) and (20)-(22) then can be transformed into a set of first-order or-
dinary differential equations as follows

vY
vr

¼MY; (24)

which is called the state equation, where the incremental state vector Y is defined as

Y¼ ½ur ;uq;uz; _4; _T0rr ; _T0rq; _T0rz; _D0r�T; (25)

and M is an 8� 8 system matrix, with its four 4� 4 sub-matrices presented in Appendix B.

4. Axisymmetric vibrations of an SEA tube

4.1. Approximate laminate technique

In this section, the state-space formalism is combined with the approximate laminate technique to derive the frequency
equations of axisymmetric vibrations superimposed upon an activated SEA tube undergoing the finite static axisymmetric
deformation described in Section 2. For the axisymmetric vibrations independent of q, the relation v=vq ¼ 0 is fulfilled. In this
case, in view of Appendix B, the state equation (24) can be simplified to

vYk

vr
¼MkYk; k2f1;2g; (26)
where Y1 ¼ ½ur ;uz; _4; _T0rr ; _T0rz; _D0r �T and Y2 ¼ ½uq; _T0rq�T are the incremental state vectors corresponding to the axisymmetric
vibrations, and
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�q10
v2

vz2
0 q12

v2

vz2
0 �e35

c55

v

vz
�1
r

3
7777777777777777777777777777775

;

M2 ¼

2
66664

c69
c66

1
r

1
c66

r
v2

vt2
þ q7

r2
� c77

v2

vz2
�
�
c69
c66

þ 1
�

1
r

3
77775:

(27)
It is apparent from equations (26) and (27) that the six unknown functions ur , uz, _4, _T0rr , _T0rz and _D0r are uncoupled from
the other two unknown functions uq and _T0rq. Hence, there exist two independent classes of incremental axisymmetric vi-
brations superimposed on the underlying deformed configuration: the axisymmetric longitudinal vibrations (L vibrations)
involving Y1 and M1, with the non-zero mechanical displacement components ur and uz coupled with the incremental
electrical quantities (see Fig. 5(bed)); and the purely torsional vibrations (T vibrations) governed by Y2 andM2, with the sole
displacement component uq uncoupled from the incremental electrical quantities (see Fig. 6). Note that the cylindrically
breathing mode characterized by the sole radial displacement ur is a special mode of the L vibrations (see Fig. 5(a)), which
needs to be dealt with separately.

Assume the deformed SEA tube (see Fig. 1(c)) is subject to the generalized rigidly supported (GRS) conditions [62] at the
two ends. Moreover, we suppose that the electric inductions in the surrounding vacuum near the tube ends are negligible so
that the zero incremental electric displacement condition applies at the tube ends. Thus, the incremental mechanical and
electric boundary conditions are

uz ¼ _T0zr ¼ _T0zq ¼ _D0z ¼0; ðz¼0; lÞ: (28)
For the harmonic axisymmetric free vibrations of the SEA tube, we assume that

Y1 ¼

2
6666664

ur
uz
_4
_T0rr
_T0rz
_D0r

3
7777775
¼

2
6666664

HUrðxÞcosðnpzÞ
HUzðxÞsinðnpzÞ

H
ffiffiffiffiffiffiffiffi
m=ε

p
FðxÞcosðnpzÞ

mS0rrðxÞcosðnpzÞ
mS0rzðxÞsinðnpzÞffiffiffiffiffi
mε

p
D0rðxÞcosðnpzÞ

3
7777775
eiut ; Y2 ¼

	
uq
_T0rq



¼
	
HUqðxÞcosðnpzÞ
mS0rqðxÞcosðnpzÞ



eiut ; (29)

where i ¼
ffiffiffiffiffiffiffi
�1

p
is the imaginary unit, u is the circular frequency of vibration, x ¼ r=H and z ¼ z=l are the dimensionless radial

and axial coordinates in the deformed configuration, and n is the axial mode number. Note that the circumferential mode
number is equal to zero for the axisymmetric vibrations. According to Eq. (21)5,7-(22)3 and (29), the incremental boundary
conditions (28) are satisfied automatically.

Substituting Eq. (29) into Eqs. (26)-(27), we obtain the dimensionless form of the state equations as

dYkðxÞ
dx

¼MkðxÞYkðxÞ; k2f1;2g; (30)

where Y1 ¼ ½Ur;Uz;F;S0rr ;S0rz;D0r �T and Y2 ¼ ½Uq;S0rq�T are the dimensionless incremental state vectors, and the dimen-
sionless system matrices Mk are written as
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M1 ¼

2
6666666666666666666666666664

�1
x

�c 0 0 0 0

d1c 0 d2c 0
1
c55

0

q1
x

q2c 0 0 0 � 1
ε11

q3
x2

þ q9c
2 �62 q4

x
c q10c

2 0 �d1c �q1
x

q5
x
c q6c

2 �62 0 c �1
x

�q2c

q10c
2 0 �q12c

2 0 �d2c �1
x

3
7777777777777777777777777775

;

M2 ¼

2
66664

d3
x

1
c66

q7
x2

þ c77c
2 �62 �d3 þ 1

x

3
77775;

(31)

in which the dimensionless quantities are defined as follows:

c ¼ npH
�
l ¼ npH

�ðlzLÞ; cij ¼ cij
�
m; ε11 ¼ ε11

�
ε;

qj ¼ qj
ffiffiffiffiffiffiffiffi
ε=m

p
ðj ¼ 1; 2Þ; qj ¼ qj

�
m ðj ¼ 3� 7;9Þ; q10 ¼ q10

� ffiffiffiffiffi
mε

p
;

q12 ¼ q12
�
ε; d1 ¼ c58

�
c55; d2 ¼ e35

�
c55; d3 ¼ c69

�
c66; e35 ¼ e35

� ffiffiffiffiffi
mε

p
;

(32)

and6 ¼ uH=
ffiffiffiffiffiffiffiffi
m=r

p
is the dimensionless circular frequency. It is evident from Eqs. (30) and (31) that the dimensionless system

matricesMk depend on x, making it difficult to obtain exact solutions to Eq. (30) directly. As a result, the approximate laminate
technique is now adopted to obtain approximately the analytical forms of the frequency equations.

We divide the deformed SEA tube with inner radius a and thickness h into N equal and thin sublayers. The radial co-
ordinates rj0 ¼ aþ ðj�1Þh=N and rj1 ¼ aþ jh=N are used to describe the inner and outer radii of the j-th sublayer and their
corresponding dimensionless radial coordinates xj0 ¼ rj0=H and xj1 ¼ rj1=H are expressed as

xj0 ¼
lah

1� h
þðj�1Þ lbð1� hÞ

Nð1� hÞ ; xj1 ¼
lah

1� h
þ j

lbð1� hÞ
Nð1� hÞ : (33)
If the number of sublayers N is sufficiently large, every sublayer is thin enough so that the systemmatricesMk within each
sublayer can be approximately regarded as constant. In the following, the values of the material parameters and the
dimensionless radial coordinate itself are calculated at each mid-surface. The dimensionless radial coordinate corresponding
to the mid-surface of the j-th sublayer is

xjm ¼ lah

1� h
þ ð2j�1Þ lbð1� hÞ

2Nð1� hÞ: (34)
Applying Eq. (30) to the j-th sublayer, we obtain the formal solutions as

YkðxÞ ¼ exp
h�
x� xj0

�
Mkj

�
xjm
�i
Yk
�
xj0
�
;�

k ¼ 1;2; xj0 � x � xj1; j ¼ 1;2;/N
�
;

(35)
whereMkjðxjmÞ are the approximated constant systemmatrices within the j-th sublayer. Setting x ¼ xj1 in Eq. (35), we find the
following transfer relation between the incremental state vectors at the inner and outer surfaces of the j-th sublayer as



F. Zhu et al. / Journal of Sound and Vibration 483 (2020) 11546710
Yk
�
xj1
�¼ exp

	
lbð1� hÞ
Nð1� hÞMkj

�
xjm
�

Yk
�
xj0
�
; k2f1;2g: (36)
Considering the continuity conditions at each interface between the consecutive sublayers, we can finally obtain the

transfer relation between the incremental state vectors Y
in
k and Y

ou
k at the inner and outer surfaces, as

Y
ou
k ¼PkY

in
k ; k2f1;2g; (37)

where Pk ¼
Q1

j¼Nexpflbð1�hÞMkj =½Nð1�hÞ�g are the global transfer matrices of sixth-order (k ¼ 1) and second-order (k ¼
2), through which the state variables at the inner and outer surfaces are connected.

4.2. Frequency equations

Assuming that the inner and outer surfaces of the SEA tube are traction-free and that the applied electric voltage remains
unchanged during vibration, we can obtain the corresponding incremental boundary conditions (A.11) as

_4in ¼ _T
in
0rr ¼ _T

in
0rq ¼ _T

in
0rz ¼ _4ou ¼ _T

ou
0rr ¼ _T

ou
0rq ¼ _T

ou
0rz ¼ 0: (38)

Substituting it into Eq. (37) yields two sets of independent linear algebraic equations as
2
4 P131 P132 P136
P141 P142 P146
P151 P152 P156

3
5
2
6664
Uin
r

Uin
z

Din
0r

3
7775¼

2
400
0

3
5; P221U

in
q ¼0; (39)

where Pkij are the components of the global transfer matrices Pk. To obtain non-trivial solutions, the determinants of the
coefficient matrices in Eq. (39) must be zero, i.e.,������

P131 P132 P136
P141 P142 P146
P151 P152 P156

������¼0; P221 ¼0; (40)

which determine the characteristic frequency equations of the two independent classes of axisymmetric vibration of the
activated SEA tube for axial mode numbers n � 1.

The breathing mode (n ¼ 0) is a special mode which corresponds to a purely radial vibration. Then the state variables in
Eq. (29)1 are all assumed to be zero except for ur, _T0rr , _4 and _D0r . As a result, the state equation (30) degenerates to

dY3ðxÞ
dx

¼M3ðxÞY3ðxÞ; (41)

where Y3 ¼ ½Ur;F;S0rr ;D0r�T is the dimensionless incremental state vector for the breathing mode, and the 4� 4 dimen-

sionless system matrix M3 can be written as

M3 ¼

2
6666666666664

�1
x

0 0 0

q1
x

0 0 � 1
ε11

q3
x2

�62 0 0 �q1
x

0 0 0 �1
x

3
7777777777775
: (42)
Following a similar derivation to Eq. (40), we obtain the following frequency equation of the breathing mode as���� P321 P324
P331 P334

����¼0; (43)
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where P3ij are the components of the global transfer matrix P3 for the breathing mode.
For the neo-Hookean ideal dielectric model (13), the explicit form of the dimensionless quantities appearing in Eqs. (31)

and (32) are

c55 ¼ c66 ¼ l�2
z l�2

q ; c77 ¼ l2z ; ε11 ¼ 1; d1 ¼ d3 ¼ l2z l
2
q

�
p� D

2
r

�
; d2 ¼ �Drl

2
z l

2
q ;

q1 ¼ q2 ¼ 2Dr ; q3 ¼ l2q þ 2pþ D
2
r þ l�2

z l�2
q ; q4 ¼ q5 ¼ pþ D

2
r þ l�2

z l�2
q ;

q6 ¼ l2z þ 2pþ D
2
r þ l�2

z l�2
q ; q7 ¼ l2q � D

2
r � l2z l

2
q

�
D
4
r þ p2 � 2pD

2
r

�
;

q9 ¼ l2z � D
2
r � l2z l

2
q

�
D
4
r þ p2 � 2pD

2
r

�
; q10 ¼ �Drð1� b1Þ; q12 ¼ l2z l

2
qD

2
r þ 1:

(44)

where Dr ¼ Dr=
ffiffiffiffiffi
mε

p
and p ¼ p=m are defined in Section 2.

5. Numerical results and discussions

Our goal is to study the axisymmetric vibration characteristics of SEA tubes, and in particular investigate how its resonant
frequencies are affected by the electromechanical biasing fields (i.e., the axial pre-stretch lz and the dimensionless radial
electric voltage V) and by the tube geometry (i.e., the inner-to-outer radius ratio h and the length-to-thickness ratio L= H).

5.1. Nonlinear static response of the SEA tube

Based on the nonlinear governing equation (14) for the neo-Hookean ideal dielectric model, we obtain the axisymmetric
response curves in Fig. 2, which displays the variations of the circumferential stretch la at the outer surface with the
dimensionless voltage V for different axial pre-stretches lz and inner-to-outer radius ratios h. Note that the inverse of h (i.e.,
the outer-to-inner radius ratio) is chosen to be h�1 ¼ 1:1, 2 and 5, corresponding to what can be considered to be thin-,
medium- and thick-walled tubes, respectively. The curves of la versus V for different combinations of lz and h�1 reveal a
monotonically increasing variation trend, which means physically that the tube expands in the radial direction. We find that
no axisymmetric solution exists and that the SEA tube collapses when the voltage exceeds a critical value, which we call the
electromechanical instability voltage VEMI. There, the balance between the compressive force caused by the radial electric
voltage and the mechanical resistance force cannot be maintained [51,52]. Moreover, when the voltage reaches VEMI, a rapid
rise of the curves is observed. For a fixed h�1, the axial compression results in a higher VEMI, while for the thinner SEA tube, it
is easier to arrive at the electromechanical instability with a given lz. Specifically, the critical voltage values VEMI for different
combinations of lz and h�1 are exhibited in Table 1.

5.2. Validation of the state-space method

As stated in Sections 3 and 4, the state-space method (SSM) combining the state-space formalism with the approximate
laminate technique is an analytical but approximate method. It is necessary to validate its convergence and accuracy for the
axisymmetric vibrations of SEA tubes.

For the convergence analysis, Tables 2e5 exhibit the variations with the number of discretized layers (NOL) of the first two
dimensionless resonant frequencies of two classes of vibration for the axial mode number n ¼ 1 calculated by the SSM. The
results for the thick and short tube are displayed in Tables 2 and 4, while Tables 3 and 5 correspond to the results for the thin
and slender tube. Obviously, the results based on the SSM show an excellent convergence rate with increasing layer number,
and thus we are satisfied that we can obtain accurate resonant frequencies with an arbitrary precision via the present SSM.

When there is no electric voltage applied to the tube, the deformation of the pre-stretched SEA tube is homogeneous.
Therefore, the exact resonant frequencies for the superimposed non-axisymmetric vibrations (including the axisymmetric
vibration as a special case) can be obtained through the conventional displacementmethod; these frequencies are provided in
Appendix C in detail. Based on the exact solutions and the SSM, the curves of the first five dimensionless resonant frequencies
6 versus the axial mode number n are plotted in Fig. 3(a) and (b) for the L and T vibrations, respectively, in the pre-stretched
SEA thick and short tube (lz ¼ 2, h�1 ¼ 5 and L=H ¼ 2:5). The lines in Fig. 3 correspond to the exact solutions while the
symbols represent the solutions from the SSM. The tube is divided into 120 thin sublayers to ensure a balance between
accuracy and computational speed. It is clear that resonant frequencies obtained by the SSM agree very well with the exact
solutions in the entire axial mode number range for the axisymmetric vibrations. This in turn confirms the accuracy of the
SSM. The frequency equation of the breathing mode for an arbitrary energy function is provided in Eq. (C.20). In particular, Eq.
(C.21) gives the resonant frequency of the breathing mode for the pre-stretched neo-Hookean tube. It should be emphasized
that due to the incompressibility of the tube, there exists only one radial vibration frequency for the breathing mode n ¼ 0
associated with dilatational motions. This phenomenon is in contrast to the classical linear elastic result for a compressible
isotropic elastic tube, which has an infinite number of vibration frequencies for the breathing mode [62]. In addition, it can be



Fig. 2. The circumferential stretch la at the outer surface versus the electric voltage V for SEA tubes with different axial pre-stretches lz and outer-to-inner radius
ratios h�1.
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seen from Eq. (C.16) that the axial pre-stretch has no effect on the resonant frequencies of the T vibration for the neo-Hookean
hyperelastic model; they are only determined by the outer-to-inner radius ratio and the length-to-thickness ratio.

In summary, the superior convergence rate and the excellent agreement with the exact solutions demonstrate that the
obtained numerical results based on the SSM are highly accurate.
5.3. Effect of the electromechanical biasing fields

In this subsection, we focus on how the electromechanical biasing fields influence the resonant frequencies of the two
classes of axisymmetric vibration of SEA tubes. Without loss of generality, the tube geometry is taken as h�1 ¼ 5 and L= H ¼
2:5 corresponding to a thick and short SEA tube. The number of discretized layers is set to 120 as in Section 5.2.

Variations of the dimensionless resonant frequency 6 with the axial mode number n are displayed in Fig. 4(a) and (b) for
the L and T vibrations, respectively, for axial pre-stretch lz ¼ 2 and different voltages below the electromechanical instability
voltage VEMI. It can be seen from Fig. 4(a) that the first resonant frequency of L vibrations decreases at first and then grows
monotonously with increasing axial mode number n. The lowest vibration frequency is taken at the axial mode number n ¼
1. In addition, a higher electric voltage leads to a lower vibration frequency. Specifically, when the dimensionless radial
electric voltage is less than 0.2, the applied electric voltage barely affects the L vibration frequency. However, a high electric
voltage surpassing 0.2 will significantly decrease the resonant frequency due to the rapid expansion of the tube as shown in
Fig. 2. When the applied electric voltage V ¼ 0:49 gradually approaches VEMI ¼ 0:55, the effect of electromechanical coupling
on the L vibration frequency is the greatest.

For the T vibrations depicted in Fig. 4(b), the change of electric voltage makes no difference to the first-order vibration
frequency. This is because the first-order resonant frequency of the T vibration is governed by the relation ru2� g2c77 ¼ 0
with g ¼ np=l for an arbitrary energy function, which is independent of the applied voltage as verified in Appendix D.
Furthermore, the first-order vibration frequency grows monotonously and linearly with increasing axial mode number.
However, the second-order vibration frequency declines with the applied voltage and grows nonlinearly with the increasing
axial mode number, as shown in Fig. 4(b).

The first-order L vibration modes corresponding to different axial mode numbers n ¼ 0, 1, 2 and 6 are presented in Fig. 5.
The breathing mode in Fig. 5(a) has a sole component, the radial displacement component ur , independent of z and q. Ac-
cording to Eqs. (C.17) and (C.19), the radial displacement for the breathing mode is an inversely proportional function of the
radius. Therefore, the displacement at the inner surface is larger than that at the outer surface and the circumferential
gridlines become sparse from the inner surface to the outer surface. Fig. 5(bed) show the L vibrationmodes for non-zero axial
mode numbers (ns0) with both the radial and axial displacement components ur and uz. The SEA tube for these modes
vibrates as a trigonometric function in the axial direction, which conformswell with the formal solutions (29)1. Obviously, the
axial mode number ns0 is equal to the integer multiple of the half-wave number.

Fig. 6 exhibits the first two T vibration modes for a fixed axial mode number n ¼ 1 in an SEA tube subjected to biasing
fields. For the first-order vibration mode in Fig. 6(a), the sole torsional displacement component uq is proportional to the
radius (see Eqs. (D.1) and (D.9)), and the vibration is a rotation of each cross-section as a whole about its center, which is
analogous to the torsional waves seen in an isotropic elastic cylinder [63]. Thus, the gridlines still distribute uniformly in the
cross-section. But the torsional displacement varies according to the trigonometric function in the axial direction (see the



Table 1
Electromechanical instability voltages VEMI for different combinations of axial pre-stretches lz and outer-to-inner radius ratios h�1.

lz 0.75 1 1.5 2

h�1 ¼ 1:1 1.333 1.000 0.666 0.500
h�1 ¼ 2 1.358 1.019 0.679 0.509
h�1 ¼ 5 1.467 1.100 0.734 0.551
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right view of Fig. 6(a)). For the second-order vibration mode in Fig. 6(b), the torsional displacement presents the nonlinear
distribution and there exists one zero-crossing point in the mode profile along the radial direction.

In order to clearly demonstrate the effect of voltage on the vibration behavior, the curves of the L vibration frequency as
functions of the voltage are displayed in Fig. 7(aec) for axial mode number n ¼ 0, n ¼ 1and n ¼ 2, respectively, under
different axial pre-stretches. It is apparent that the resonant frequencies6 for all three modes monotonically decrease to zero
with the increasing voltage from zero to the critical voltage Vcr of the corresponding vibration mode. At the critical voltage
Vcr, the point 6 ¼ 0 represents the axisymmetric instability of the corresponding vibration mode of the SEA tube. The
decrease of the resonant frequencies is mainly due to the global stiffness of the SEA tube gradually decreasing with increasing
voltage [10]. In particular, when the voltage approaches the critical value Vcr, the global stiffness reduces rapidly so that
barreling instabilities [61,64] occur in the SEA tube. This is why the frequencies of modes n ¼ 1 and n ¼ 2 in Fig. 7(b and c)
decrease gently at first and then dramatically. Moreover, we find that the larger axial pre-stretch the tube is subjected to, the
lower critical voltage the tube may withstand.

For the breathing mode n ¼ 0 in Fig. 7(a), when there is no radial electric voltage (V ¼ 0), the vibration frequencies are
identical for any axial pre-stretch lzin the neo-Hookean SEA tube according to Eq. (C.21), and they depend only on the inner-
to-outer radius ratio h. Additionally, the critical voltages corresponding to the breathingmode for different axial pre-stretches
are identical to the electromechanical instability voltage VEMI shown in Table 1 for the axisymmetric deformation.

Furthermore, we see from Fig. 7(aec) that the critical voltage decreases monotonously with increasing axial mode number
for lz ¼ 0:75, 1 and 1.5, while the critical voltage presents a different variation trend for lz ¼ 2. Therefore, Fig. 7(d)
Table 2
The first two resonant frequencies6 of L vibration with n ¼ 1 of the thick and short tube (h�1 ¼ 5 and L=H ¼ 2:5) based on the SSMwith different numbers of
discretized layers (NOL) (lz ¼ 2 and V ¼ 0:3).

NOL 20 40 60 80 100 120 140 160

1st 1.38275 1.38271 1.38271 1.3827 1.3827 1.3827 1.3827 1.3827
2nd 3.10784 3.11411 3.1153 3.11572 3.11591 3.11602 3.11608 3.11613

Table 3
The first two resonant frequencies 6 of L vibration with n ¼ 1 of the thin and slender tube (h�1 ¼ 1:1 and L=H ¼ 100) based on the SSM with different
numbers of discretized layers (NOL) (lz ¼ 2 and V ¼ 0:3).

NOL 20 40 60 80 100 120 140 160

1st 0.034475 0.034475 0.034475 0.034475 0.034475 0.034475 0.034475 0.034475
2nd 0.155983 0.155983 0.155983 0.155983 0.155983 0.155983 0.155983 0.155983

Table 4
The first two resonant frequencies6 of T vibration with n ¼ 1 of the thick and short tube (h�1 ¼ 5 and L=H ¼ 2:5) based on the SSMwith different numbers of
discretized layers (NOL) (lz ¼ 2 and V ¼ 0:3).

NOL 20 40 60 80 100 120 140 160

1st 1.2675 1.26765 1.26768 1.26769 1.26769 1.2677 1.2677 1.2677
2nd 4.10631 4.10741 4.10762 4.10769 4.10772 4.10774 4.10775 4.10776

Table 5
The first two resonant frequencies 6of T vibration with n ¼ 1 of the thin and slender tube (h�1 ¼ 1:1 and L=H ¼ 100) based on the SSM with different
numbers of discretized layers (NOL) (lz ¼ 2 and V ¼ 0:3).

NOL 20 40 60 80 100 120 140 160

1st 0.034475 0.034475 0.034475 0.034475 0.034475 0.034475 0.034475 0.034475
2nd 3.14552 3.14552 3.14552 3.14552 3.14552 3.14552 3.14552 3.14552



Fig. 3. Accuracy analysis of the first five dimensionless vibration frequencies 6 of the L vibration (a) and T vibration (b) obtained by the exact solutions and the
SSM for the pre-stretched (lz ¼ 2) SEA thick and short tube (h�1 ¼ 5 and L=H ¼ 2:5), without applied voltage.

Fig. 4. Dimensionless frequency spectra (6 versus n) in a pre-streched (lz ¼ 2) SEA thick and short tube (h�1 ¼ 5 and L=H ¼ 2:5) for different values of radial
electric voltage: (a) the first-order frequency of L vibrations; (b) the first two frequencies of T vibrations.
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demonstates the variation trend of the critical voltage Vcr (where the barreling instabilities occur) with the axial mode
number n for different axial pre-streches from 1.5 to 2.2. With the assistance of the dotted grey auxiliary line in Fig. 7(d), we
see that the critical voltage decreases to a minimum at n ¼ 1 and then increases monotonically when the applied axial pre-
stretch is greater than approximately 1.6. Therefore, for a higher axial pre-stretch, the SEA tube undergoes the barreling
instability first at n ¼ 1. If the axial pre-stretch is less than 1.6, then the SEA tube will have the barreling instability at a higher
axial mode number.

For the T vibration with n ¼ 1, Fig. 8 displays the variations of the first two resonant frequencies with the applied voltage
for different axial pre-stretches. Compared with the curves of L vibrations in Fig. 7, the frequency variation trend for the T
vibration in Fig. 8 is quite unique. Specifically, the first-order resonant frequency (the lower curves shown in Fig. 8) is in-
dependent of the applied voltage V and axial pre-stretch lz, as explained in Appendix D. The torsional mode of the first-order
frequency exhibits a linear displacement distribution along the radial direction. Note that different axial pre-stretches lz

result in different electromechanical instability voltages VEMI, as shown in Table 1 and Fig. 8. The independence of the first-
order vibration frequency on the biasing fields could be exploited to design a torsional resonator with a consistent working



Fig. 5. The first-order mode of the L vibrations in a pre-streched (lz ¼ 2) SEA thick and short tube (h�1 ¼ 5 and L=H ¼ 2:5) with V ¼ 0:2: (a) breathing mode (n ¼
0); (b) n ¼ 1; (c) n ¼ 2; (d) n ¼ 6.

Fig. 6. The first two modes of the T vibration with n ¼ 1 in a pre-stretched (lz ¼ 2) SEA thick and short tube (h�1 ¼ 5 and L=H ¼ 2:5) with V ¼ 0:2: (a) the first-
order mode; (b) the second-order mode.
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performance. However, the second-order frequency (the higher curves depicted in Fig. 8) decreases gradually with the
voltage, which is in accordance with the phenomenon shown in Fig. 4(b).

In short, the dependence of the resonant frequency of the axisymmetric vibrations on the electromechanical biasing fields
provides a possibility to tune the small-amplitude free vibrations of SEA tubes, which should be beneficial to the SEA tube-
based design of tunable sound generators, vibration isolators, and biomedical sensors.
5.4. Effect of the tube geometry

Now we explore how the tube geometry, including the length-to-thickness ratio L=H and the outer-to-inner radius ratio
h�1, influences the axisymmetric vibrations of the SEA tube. In this subsection, the dimensionless electric voltage is fixed as
V ¼ 0:2 and the tube is divided into 120 thin sublayers to guarantee convergence and accuracy.

For the breathing mode (n ¼ 0), the curves of the first-order dimensionless frequency 6 versus L=H are displayed in
Fig. 9(a) for different combinations of h�1 and lz. Apparently, the length-to-thickness ratio makes no difference to the vi-
bration frequency; this is because L=H disappears from the frequency equation for the breathing mode n ¼ 0 according to Eq.
(32)1. Nonetheless, the outer-to-inner radius ratio h�1 and the axial pre-stretch lz still have an influence on the vibration
frequency for a non-zero voltage. Specifically, for a fixed axial pre-stretch, the thicker the SEA tube is, the larger resonant



Fig. 7. The first-order resonant frequencies 6 of the L vibration as functions of the radial electric voltage V for a thick and short SEA tube (h�1 ¼ 5 and L= H ¼ 2:5)
under different axial pre-stretches lz: (a) breathing mode (n ¼ 0); (b) n ¼ 1; (c) n ¼ 2. (d) Variation trend of the critical voltage Vcr corresponding to the in-
stabilities with the axial mode number n for different axial pre-stretches.

Fig. 8. The first two resonant frequencies 6 of the T vibration with n ¼ 1 as functions of the radial electric voltage V for a thick and short SEA tube (h�1 ¼ 5 and L=
H ¼ 2:5) under different axial pre-stretches lz .
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Fig. 9. The first-order resonant frequency 6 of the L vibration as functions of the length-to-thickness ratio L=H for different combinations of h�1 and lz with V ¼
0:2: (a) breathing mode ðn ¼ 0Þ; (b) n ¼ 1 for lz ¼ 0:75; (c) n ¼ 1 for lz ¼ 1; (b) n ¼ 1 for lz ¼ 2.
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frequency we obtain. Additionally, increasing the axial pre-stretch lowers the resonant frequency. However, the variation gap
between the axial pre-stretch and the vibration frequency depends on h�1. The vibration frequency is barely affected by the
axial pre-stretch for a thin tube (h�1 ¼ 1:1), but it is remarkably decreased by the axial pre-stretch for a thick tube (h�1 ¼ 5).

For the L vibration mode n ¼ 1, Fig. 9(b)e(d) demonstrate the variations of the lowest resonant frequency with L=H for
different combinations of h�1 and lz. Generally, the vibration frequency gradually decreases with increasing L=H and the
vibration frequency of the thick tube is higher than that of the thin tube. In addition, we see from Fig. 9(b)e(d) that the curves
of these three tubes with different h�1 get closer to each other when increasing the axial pre-stretch. That is to say, a larger
axial pre-stretch weakens the effect of the tube geometry on the L vibration behavior. It is interesting to note from Fig. 9(b)
that, for an axial compression lz ¼ 0:75, the resonant frequency of the thin tube reduces to zero when L=H approaches a
critical value 2.0391, which corresponds to the barreling instability with the axial mode number n ¼ 1. Thus, the axisym-
metric instability occurs more easily for a slender tube subjected to axial compression.

Turning now to the T vibration with n ¼ 1, Fig. 10 displays the first two resonant frequencies versus L=H for different
combinations of h�1 and lz. Similar to the results of L vibrations, the vibration frequency decreases monotonically with
increasing L=H. For the first-order torsional mode shown in Fig. 10(a), the resonant frequency for the neo-Hookean SEA tube
satisfies 6 ¼ p=ðL =HÞ (see Eq. (D.10) in Appendix D) and is an inversely proportional function of the length-to-thickness ratio
L=H. Therefore, the frequency is independent of the axial pre-stretch and the outer-to-inner radius ratio, as shown in
Fig. 10(a). According to Appendix D, the torsional displacement is distributed linearly along the radial direction. In addition,
the resonant frequency tends to zero for an infinite SEA tube, which means physically that the longer tube achieves torsional



Fig. 10. The first two resonant frequencies 6 of the T vibration with n ¼ 1 as functions of the length-to-thickness ratio L=H for different combinations of h�1 and
lz with V ¼ 0:2: (a) the first-order frequency; (b) the second-order frequency for lz ¼ 1.
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instability more easily. For the second-order frequency depicted in Fig. 10(b), a thicker SEA tube (h�1 ¼ 5) results in a higher
resonant frequency, especially when L=H � 1. Besides, the frequency is hardly affected by the axial pre-stretch for a low
voltage (V ¼ 0:2), but for a higher voltage, increasing the axial pre-stretch will lead to a lower resonant frequency, which is
analogous to the phenomena observed in Fig. 8.
6. Conclusions

In this work, we conducted an analytical study of the small-amplitude axisymmetric vibrations of SEA tubes subjected to
inhomogeneous biasing fields. The theory of nonlinear electro-elasticity and the associated linearized incremental theory
constitute the framework of our analysis. To tackle the problem of inhomogeneity in the deformed configuration, we adopted
the state-space method (SSM) which combines the state-space formalism in cylindrical coordinates with the approximate
laminate technique. We obtained the characteristic frequency equations for two independent classes of axisymmetric vi-
brations (i.e., L and T vibrations) by imposing proper mechanical and electric boundary conditions. To confirm the accuracy of
the SSM, we also employed the displacement method to derive the exact frequency equations of the axisymmetric vibrations
in a pre-stretched hyperelastic tube. Finally, we conducted numerical calculations to validate the effectiveness of the SSM. The
effects of the electromechanical biasing fields and the tube geometry on the axisymmetric vibration characteristics were
discussed in detail. From the numerical results, we obtained the following important conclusions:

1) The proposed SSM is a highly accurate and efficient method for studying the axisymmetric vibrations of SEA tubes under
inhomogeneous biasing fields.

2) The manipulation of axisymmetric vibration behaviors of the neo-Hookean SEA tubes is feasible by tuning the electro-
mechanical biasing fields except for the lowest torsional mode with linear displacement distribution along the radial
direction.

3) By varying the tube geometry, the resonant frequencies of differentmodes for the neo-Hookean SEA tubes could be readily
adjusted, except for the breathing mode and the lowest torsional mode, because they are independent of the length-to-
thickness ratio and the outer-to-inner radius ratio, respectively.

This work provides not only a robust method (SSM) to derive the frequency equations of three-dimensional free vibrations
of SEA cylindrical structures, but also demonstrates the electrostatic tunability of resonant frequency of SEA tubes with
various geometric sizes. Experiments will definitely help understand the small-amplitude vibration characteristics in the SEA
tubes under biasing fields and deserve further study. The present investigation clearly indicates that it is feasible to use
biasing fields to tune the small-amplitude vibration behaviors of SEA tubes, which should be beneficial to the experimental
research and design of tunable resonant devices consisting of SEA tubes (e.g., tunable sound generators, active vibration
isolators, and biomedical sensors).

It should be emphasized that an SEA tube with strain-stiffening effect may exhibit the snap-through phenomenon mainly
arising from the curvature and material nonlinearity [59,65]. However, the SEA tube studied in this analysis is characterized
by the neo-Hookean ideal dielectric model, which does not lead to the snap-through mechanism. Therefore, further analysis
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on the effects of other nonlinear material models (such as Gent model, Ogden model) on the vibration behaviors of SEA tubes
is required, but it is out of the scope of this paper.
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Appendix A. Theoretical background

A.1. The theory of nonlinear electro-elasticity

Consider a soft deformable continuous electro-elastic body subjected to a static finite deformation. We denote the un-
deformed stress-free reference configuration at time t0 by Br, and by vBr and N the boundary and the outward unit normal,
respectively. Anymaterial point X inBr is identified by its position vectorX. An application of the external stimuli deforms the
body so that the material point X occupies a new position x ¼ cðX; tÞ at time t in the deformed or current configuration Bt ,
with the boundary and the outward unit normal denoted by vBt and nt , respectively. Here, the vector function c with a
sufficiently regular property is defined for all points inBr . The deformation gradient tensor is defined as F ¼ vx= vX ¼ Gradc,
where ‘Grad’ is the gradient operator with respect to Br . In component formwe have Fia ¼ vxi=vXa, where Roman and Greek
indices are associated with Bt and Br , respectively. The local measure of the volume change is J ¼ detF ¼ 1 for an incom-

pressible material. The left and right Cauchy-Green deformation tensors b ¼ FFT and c ¼ FTF are used as the deformation
measures, where the superscript T signifies the usual transpose operator of a second-order tensor if not otherwise stated.

Under the quasi-electrostatic approximation and in the absence of mechanical body forces, free body charges and currents,
the equation of equilibrium, Gauss0s law and Faraday0s law may be written as

divt ¼ rx;tt ; divD ¼ 0; curlE ¼ 0; (A.1)

respectively, where r is the material mass density (which remains unchanged during the deformation), the subscript t
following a comma denotes the material time derivative, ‘div’ and ‘curl’ are the divergence and curl operators in Bt ,
respectively, and t, D and E represent the total Cauchy stress tensor including the contribution of the electric body forces, the
electric displacement and electric field vectors in Bt , respectively.

For an incompressible material, the nonlinear constitutive relations can be expressed as

T ¼ vU
vF

� pF�1; E ¼ vU
vD; (A.2)
where UðF;DÞ is the total energy density function per unit reference volume, T ¼ F�1t,D ¼ F�1D and E ¼ F�1E are the total
nominal stress tensor, the Lagrangian electric displacement and electric field vectors, respectively; p is a Lagrange multiplier
introduced by the incompressibility constraint. Note that the total nominal stress tensor is the transpose of the first Piola-
Kirchhoff stress tensor and that they both are non-symmetric two-point tensors like the deformation gradient tensor [27].
Due to incompressibility ðI3 ≡ det c ¼ 1Þ, the energy density function UðF;DÞ depends the following five invariants only,

https://doi.org/10.1016/j.jsv.2020.115467
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I1 ¼ trc; I2 ¼
1
2

h
ðtrcÞ2 � tr

�
c2
�i

; I4 ¼D ,D; I5 ¼D , ðcDÞ; I6 ¼D,
�
c2D

�
: (A.3)
Thus, the total stress tensor t and the Eulerian electric field vector E can be derived from Eqs. (A.2) and (A.3) as

t ¼ 2U1bþ 2U2

�
I1b� b2

�
� pIþ 2U5D5Dþ 2U6ðD5bDþ bD5DÞ;

E ¼ 2
�
U4b

�1Dþ U5Dþ U6bD
�
;

(A.4)

where Um ¼ vU=vIm ðm ¼ 1;2;4;5;6Þ.
Taking no account of the electrical quantities in the surrounding vacuum, themechanical and electric boundary conditions

to be satisfied on vBt may be written as

tn ¼ ta; E� nt ¼ 0; D,nt ¼ �sf ; (A.5)

where ta is the applied mechanical traction vector per unit area of vBt and sf is the free surface charge density on vBt .

A.2 The linearized incremental theory

Now an incremental time-dependent perturbation _x ¼ ðX; tÞ along with an infinitesimal incremental electric displace-
ment _D0 is superimposed upon a finitely deformed configuration B0 (with the boundary vB0 and the outward unit normal
vector n). Here, the incremental quantities are denoted by a superposed dot. According to the incremental field theory [46],
the updated Lagrangian form of the incremental governing equations can be written as

div _T0 ¼ ru;tt ; curl _E0 ¼ 0; div _D0 ¼ 0; (A.6)

where uðx; tÞ ¼ _xðX; tÞ is the incremental displacement vector and _D0; _E0 and _T0 are the ‘push-forward’ versions of the

corresponding Lagrangian increments. The resulting push-forward variables are identified with a subscript 0. The linearized
incremental constitutive equations for incompressible SEA materials are

_T0 ¼ A0Hþ G0 _D0 þ pH� _pI; _E0 ¼ GT
0HþR0 _D0; (A.7)

where H ¼ gradu is the incremental displacement gradient tensor, _p is the incremental Lagrange multiplier, and A0, G0 and

R0 are, respectively, fourth-, third- and second-order tensors, which are referred to as instantaneous electro-elastic moduli
tensors. Note that the superscript T in Eq. (A.7) stands for the transpose of a third-order tensor between the first two indices

and the third index, i.e., GT
0H ¼ G0ijkHij. In component form, A0, G0 and R0 are given by

A0piqj ¼ FpaFqbAaibj ¼ A0qjpi; G0piq ¼ FpaF�1
bq Gaib ¼ G0ipq;

R0ij ¼ F�1
ai F

�1
bj Rab ¼ R0ji;

(A.8)

with the referential electro-elastic moduli tensors A, G and R associated with UðF;DÞ defined as
Aaibj ¼
v2U

vFiavFjb
; Gaib ¼ v2U

vFiavDb
; Rab ¼ v2U

vDavDb
: (A.9)
Additionally, the incremental incompressibility condition can be written as

divu¼ trH ¼ 0: (A.10)
The updated Lagrangian incremental forms of the mechanical and electric boundary conditions are

_T
T
0n ¼ _tA0 ; _E0 � n ¼ 0; _D0,n ¼ �sF0; (A.11)

where the increments of electrical variables in the surrounding vacuum have been neglected, _tA0 and �sF0 are the updated
Lagrangian incremental mechanical traction vector per unit area of vB0 and the incremental surface charge density on vB0,
respectively.

Appendix B. Elements of the system matrix M

The four partitioned 4 � 4 sub-matrices Mijði; j¼ 1;2Þ of the system matrix M in the state equation (24) are given by [52]
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where

q1 ¼ ðe12 � e11Þ=ε11; q2 ¼ ðe13 � e11Þ=ε11; n1 ¼ c12 � c11 þ e11q1; n2 ¼ c13 � c11 þ e11q2;

q3 ¼ c22 � c12 þ e12q1 � n1; q4 ¼ c23 � c12 þ e12q2 � n2; q5 ¼ c23 � c13 þ e13q1 � n1;

q6 ¼ c33 � c13 þ e13q2 � n2; q7 ¼ c99 � c269
.
c66; q8 ¼ e26ð1� c69=c66Þ; q9 ¼ c88 � c258

.
c55;

q10 ¼ e35ð1� c58=c55Þ; q11 ¼ e226
.
c66 þ ε22; q12 ¼ e235

.
c55 þ ε33:
Appendix C. Frequency equations of non-axisymmetric vibrations in a pre-stretched hyperelastic tube

In this appendix, we derive the frequency equations of non-axisymmetric vibrations in a pre-stretched hyperelastic tube
bymeans of the conventional displacement method. Without the electromechanical coupling, the deformation in a hyperelastic

tube is homogeneous with the relations, lr ¼ lq ¼ la ¼ lb ¼ l�1=2
z . The three-dimensional incremental governing equations

for the pre-stretched hyperelastic tube can be obtained from Eqs. (18)-(21) by neglecting the electromechanical coupling
terms. In fact, the governing equations for the hyperelastic tube can be deduced from those in Su et al. [53] for an SEA hollow
cylinder with homogeneous biasing fields through a proper degenerate analysis.

Based on the basic governing equations without the electromechanical coupling obtained by Su et al. [53] (see their Eq.
(41)), three displacement functions j, G and W are introduced to express the displacement components as

ur ¼1
r
vj

vq
� vG

vr
; uq ¼ �vj

vr
� 1

r
vG
vq

; uz ¼ W ; (C.1)

which, when combined with the relation c11 � c12 � c69 ¼ c66, yields
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W � v _p

vz
¼ 0 ;

(C.2)

where V2 ¼ v2=vr2 þ ð1 =rÞv=vr þ ð1 =r2Þv2=vq2 is the two-dimensional Laplace operator.
We look for the vibration solutions to Eq. (C.2) in the form:

j ¼ jðrÞsinðmqÞcosðnpzÞeiut ; G ¼ GðrÞcosðmqÞcosðnpzÞeiut ;
W ¼ WðrÞcosðmqÞsinðnpzÞeiut ; _p ¼ pðrÞcosðmqÞcosðnpzÞeiut ; (C.3)

where z ¼ z=l is the dimensionless axial coordinate and m is the circumferential wave number. Note that Eq. (C.3), while
satisfying the generalized rigidly supported conditions (28) at the tube ends, represents the non-axisymmetric vibrations and
can be reduced to the axisymmetric vibrations by setting m ¼ 0. Substituting Eq. (C.3) into Eq. (C.2), we obtain�

Lþ a23

�
j ¼ 0; � LGþ gW ¼ 0;h

ðc11 � c13 � c58ÞLþ ru2 � g2c77
i
Gþ p ¼ 0;h

c55Lþ ru2 � ðc33 � c13 � c58Þg2
i
W þ gp ¼ 0;

(C.4)

where L ¼ d2=dr2 þ ð1 =rÞd=dr� m2=r2, a23 ¼ ðru2 �g2c77Þ=c66 and g ¼ np=l.
It is apparent that Eq. (C.4)1 is a Bessel equation of order m, and its solution is

j¼A3Jmða3rÞ þ B3Ymða3rÞ ; (C.5)
where Jmð ,Þ and Ymð ,Þ are the Bessel functions of the first and second kinds of order m, respectively, and A3 and B3 are
arbitrary constants to be determined from the boundary conditions. As for the remaining equations in Eq. (C.4), their solution
can be assumed as [53].

8<
:

G
W
p

9=
;¼ JmðarÞ

8><
>:

C1
C2
C3

9>=
>;þ YmðarÞ

8>><
>>:

D1

D2

D3

9>>=
>>;; (C.6)
where a is the radial wave number related to the other three functions G,W and p, and Cj and Dj ðj ¼ 1� 3Þ are undetermined
constants. Inserting Eq. (C.6) into Eq. (C.4)2-4 and ensuring the non-trivial solutions, the determinant of the coefficient matrix
associated with Cj and Dj must be zero, which results in the following characteristic equation:

������
g11 0 1
0 g22 g23
g31 g32 0

������¼0; (C.7)
where

g11 ¼ ru2 � c77g
2 � a2ðc11 � c13 � c58Þ;

g22 ¼ ru2 � ðc33 � c13 � c58Þg2 � a2c55;
g23 ¼ g32 ¼ g; g31 ¼ a2:

(C.8)
For prescribed n and u, the characteristic equation can yield two different values of a with Re½aj�>0 or Re½aj� ¼ 0 and
Im½aj�>0. The complete vibration solutions can be expressed as
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8<
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W
p
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X2
j¼1

8<
:
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b1j
b2j

9=
;AjJm

�
ajr
�þBjYm

�
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��

; (C.9)

where Aj and Bj ðj ¼ 1� 2Þ are undetermined constants and the ratio b1j and b2j between different constants Cij or

Dij ði ¼ 1� 3Þ are obtained as

b1j ¼ �a2j

.
g; b2j ¼ �

h
ru2 �ðc33 � c13 � c58Þg2 �a2j c55

i
b1j

.
g; ðj¼1�2Þ: (C.10)
After substituting Eqs. (C.5) and (C.9) into Eq. (C.1) and (21)1,4,8, we obtain the incremental displacement and transverse
stress components. Then, we impose the mechanical part of incremental boundary conditions (38) and the determinantal
condition for non-trivial solutions to exist, and obtain the frequency equation of the non-axisymmetric vibrations as��dij��¼0; ði; j¼1�6Þ; (C.11)

where the elements dij ði ¼ 1� 3Þ of the first three rows of the determinant corresponding to the boundary conditions on the
outer surface r ¼ b are written as
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(C.12)

where j ¼ 1;2;4;5, the prime denotes differentiationwith respect to r, Zð ,Þ ¼ Jð ,Þ for j ¼ 1;2 and Zð ,Þ ¼ Yð ,Þ for j ¼ 4;5. In
addition, the notations ajþ3 ¼ aj and biðjþ3Þ ¼ bijði; j¼ 1;2Þ have been adopted in Eq. (C.12). For the boundary conditions on
the inner surface r ¼ a, we can use the inner radius a to replace the outer radius b in Eq. (C.12) to obtain the elements
dijði¼ 4�6Þ of the last three rows of the determinant (C.11).

For the axisymmetric vibrations with m ¼ 0, the frequency equation (C.11) can be decomposed as

��dij��¼
��������
d11 d12 d14 d15
d31 d32 d34 d35
d41 d42 d44 d45
d61 d62 d64 d65

��������
���� d23 d26
d53 d56

���� ¼ S1,S2 ¼ 0; (C.13)

where S1 ¼ 0 and S2 ¼ 0 represent the axisymmetric longitudinal vibration (L vibration) and the purely torsional vibration (T
vibration), respectively, of the pre-stretched hyperelastic tube.

Now consider neo-Hookean hyperelastic materials with strain-energy function Eq. (13) with I5 ¼ 0. We can obtain the
necessary instantaneous elastic moduli and effective material parameters from Appendix B in Wu et al. [52] and Eq. (23) as

A01111 ¼ A01212 ¼ ml�1
z ; A01221 ¼ A01122 ¼ 0; p ¼ ml2q ¼ ml�1

z ;

c11 ¼ 2ml�1
z ; c12 ¼ 0; c66 ¼ c69 ¼ ml�1

z ; c77 ¼ ml2z ;
(C.14)
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which yields a23 ¼ a23H
2 ¼ lzð62 �k2Þ with 6 ¼ uH=

ffiffiffiffiffiffiffiffi
m=r

p
and k ¼ npH=L. Substituting Eq. (C.14) into Eq. (C.13), we rewrite

the elements associated with the purely torsional vibration, in the dimensionless form, as
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(C.15)

where a ¼ a l ¼ a l�1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
62 � k2

p
. It is obvious from Eq. (C.15) that the resonant frequency of the purely torsional
3l 3 1 3 z

vibration is independent of the axial pre-stretch lz, but depends on the length-to-thickness ratio L=H in k and the inner-to-
outer radius ratio h ¼ A=B. After some manipulations, the frequency equation S2 ¼ 0 becomes

a43l

h
J2
� a3l
1� h

�
Y2
� ha3l
1� h

�
� J2

� ha3l
1� h

�
Y2
� a3l
1� h

�i
¼0: (C.16)
Thus, we note that a23l ¼ 62 � k2 ¼ 0 is one of the solutions to the frequency equation of the purely torsional vibration,
which is only determined by L=H. In fact, the torsional displacement corresponding to6 ¼ k is proportional to the radius, and
thus the vibration is a rotation of each cross-section of the tube as a whole about its center, which is similar to the torsional
waves in an isotropic elastic cylinder [63].

For the breathing mode with m ¼ uq ¼ uz ¼ 0, we have from Eqs. (C.1) and (C.3)

ur ¼uðrÞ eiut ; uq ¼ 0; uz ¼ 0; _p ¼ pðrÞeiut : (C.17)
Substituting it into the incremental incompressibility condition (20) and the incremental governing equation (18) gives

�u0ðrÞ ¼ �1
r
�uðrÞ; �u00ðrÞ ¼ 2

r2
�uðrÞ;

c11

	
�u00ðrÞ þ �u0ðrÞ

r
� �uðrÞ

r2



� �p0ðrÞ ¼ ��uðrÞru2:

(C.18)
Thus, the solutions to Eq. (C.18) can be written as

u¼A4

.
r; p ¼ A4ru

2 ln r þ B4; (C.19)

where A4 and B4 are the undetermined constants. Utilizing the incremental boundary conditions _T0rr jr¼a;b ¼

ðc12ur=r þ c11u0r � _pÞ��r¼a;b ¼ 0, we can obtain the frequency equation for the breathing mode as

ru2 ¼ðc12 � c11Þ
�
1
a2

� 1
b2

��
ln

a
b
; (C.20)

which, when combined with Eq. (C.14) and h ¼ h, leads to the frequency equation for the pre-stretched neo-Hookean

hyperelastic tube as

62 ¼ � 2ð1� hÞ2
�
1�h2

�.�
h2 ln h

�
: (C.21)
Appendix D. Frequency equation of the purely torsional mode with linear displacement distribution in an SEA tube

For the purely torsional vibration with m ¼ ur ¼ uz ¼ _p ¼ _4 ¼ 0, the only non-zero displacement component is

uq ¼ vðrÞcosðnpzÞeiut ; (D.1)
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which satisfies the generalized rigidly supported conditions (28) at the tube ends. Therefore, the incremental incompressi-
bility condition (20) is satisfied automatically. Substituting Eq. (D.1) into Eqs. (21)-(22), we obtain the non-zero stress and
electric displacement components as

_T0rq ¼ c66
vuq
vr

� c69
uq
r
; _T0qr ¼ c69

vuq
vr

� c99
uq
r
;

_T0qz ¼ c47
vuq
vz

; _T0zq ¼ c77
vuq
vz

; _D0q ¼ e26

�
vuq
vr

� uq
r

�
:

(D.2)
Consequently, the incremental governing equations (17) and (18)1,3 are also satisfied automatically. Inserting Eq. (D.2) into
Eq. (18)2 yields

c66�v
00ðrÞ þ

�
c066 þ

c66
r

�
�v0ðrÞ �

�
c069 þ

c99
r

� �vðrÞ
r

þ
�
ru2 � c77g

2
�
�vðrÞ ¼ 0; (D.3)

where g ¼ np=l and the prime signifies differentiation with respect to r.

Note that based on the incremental form of the total Cauchy stress symmetry condition FT ¼ ðFTÞT, the connections
between the components of A0 and t for an incompressible material may be obtained as [27,52].

A0jisk �A0ijsk ¼
�
tjs þ pdjs

�
dik � ðtis þpdisÞdjk; (D.4)

which, when combined with Eq. (23), provides
c66 � c69 ¼ t11; c99 � c69 ¼ t22; c99 ¼ t22 � t11 þ c66: (D.5)
Thus, using Eq. (D.5) and the equilibrium equation (6)2 with trr ¼ t11 and tqq ¼ t22, Eq. (D.3) can be rewritten as

c66�v
00ðrÞ þ

�
c066 þ

c66
r

�
�v0ðrÞ �

�
c066 þ

c66
r

� �vðrÞ
r

þ a23c66�vðrÞ ¼ 0; (D.6)

where a2 ¼ ðru2 � g2c Þ=c . It is obvious that the solution to Eq. (D.6) is difficult to obtain for a2s0. However, if a2 ¼ 0, Eq.
3 77 66 3 3
(D.6) becomes

c66

	
�v00ðrÞ þ 1

r
�v0ðrÞ � 1

r2
�vðrÞ



¼ c066

	
�vðrÞ
r

� �v0ðrÞ



(D.7)
Now we assume that the left-hand side of Eq. (D.7) is equal to zero, i.e.,

�v00ðrÞ þ 1
r
�v0ðrÞ � 1

r2
�vðrÞ ¼ 0; (D.8)

�1
which is the classical Euler equation with the general solution vðrÞ ¼ A5r þ B5r, where A5 and B5 are the undetermined
constants. In order to make the right-hand side of Eq. (D.7) vanish, we take A5 ¼ 0, which yields the solution of vðrÞ and uq as

vðrÞ¼B5r; uq ¼B5r cosðnpzÞeiut : (D.9)
Thus, the solution (D.9) satisfies the governing equation (D.7).
Inserting Eq. (D.9) into Eq. (D.2)1, we have _T0rq ¼ B5ðc66 � c69ÞcosðnpzÞeiut . Using Eq. (D.5)1 and t11jr¼a;b ¼ trr jr¼a;b ¼ 0,

the incremental boundary conditions _T0rqjr¼a;b ¼ 0 are satisfied automatically. As a result, regardless of the inhomogeneous

biasing fields, Eq. (D.9) is indeed a solution of the purely torsional vibration in the SEA tube with a23 ¼ 0 determining its

frequency equation. Specifically, the torsional mode related to a23 ¼ 0 exhibits linear displacement distribution along the
radial direction.

Particularly, for the neo-Hookean ideal dielectric model (13), the frequency equation a23 ¼ 0 can be rewritten as

62 ≡ ru2H2
.
m¼ðnpH=LÞ2≡k2; (D.10)

which is independent of the axial pre-stretch lz and the inner-to-outer radius ratio h ¼ A=B, and depends only on the length-
to-thickness ratio L=H. This phenomenon is analogous to the hyperelastic case described in Appendix C.
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