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a b s t r a c t 

Several experiments have demonstrated the existence of an electro-mechanical effect in 

many biological tissues and hydrogels, and its actual influence on growth, migration, and 

pattern formation. Here, to model these interactions and capture some growth phenomena 

found in Nature, we extend volume growth theory to account for an electro-elasticity cou- 

pling. Based on the multiplicative decomposition, we present a general analysis of isotropic 

growth and pattern formation of electro-elastic solids under external mechanical and elec- 

trical fields. As an example, we treat the case of a tubular structure to illustrate an electro- 

mechanically guided growth affected by axial strain and radial voltage. Our numerical 

results show that a high voltage can enhance the non-uniformity of the residual stress 

distribution and induce extensional buckling, while a low voltage can delay the onset of 

wrinkling shapes and can also generate more complex morphologies. Within a controllable 

range, axial tensile stretching shows the ability to stabilise the tube and help form more 

complex 3D patterns, while compressive stretching promotes instability. Both the applied 

voltage and external axial strain have a significant impact on guiding growth and pattern 

formation. Our modelling provides a basic tool for analysing the growth of electro-elastic 

materials, which can be useful for designing a pattern prescription strategy or growth self- 

assembly in Engineering. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

1. Introduction 

Growth and remodelling count among the most basic and essential biological activities, as they not only promote bio-

diversity but also ensure normal biological function and regeneration. Internal genetic information, chemical stimuli, and

physical conditions have been proved to affect the growth process, from the level of molecules and cells all the way to

tissues and organs ( Goriely, 2017; Lewis, 2008; Martin et al., 1998; Zhao, 2009 ). At the level of tissues and organs, physi-

cal factors, including mechanical and electrical conditions, have shown strong impact on residual stress accumulation and

pattern evolution ( Ahn and Grodzinsky, 2009; Levin, 2014; Mendonça et al., 2003 ). 
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Fig. 1. (A). The electric field caused by mis-expression of ion channel during embryogenesis can make coherent changes in pattern, leading (left) a normal 

forebrain to being (right) drastically increased in size ( Levin, 2009 ); (B). Rat calvaria osteoblasts and fibroblasts subjected to the external electric field 

exhibit the ability to reorient and elongate cells in a perpendicular direction ( Funk et al., 2009 ); (C). The fibrous structure of elastin and schematics of the 

heat-tail configuration of tropoelastin monomers in which the envisioned molecular structure with a dipole moment that can be rotated by the applied 

electric field ( Yang et al., 2011 ); (D) Illustration of a device triggering self-assembled monolayer anionic PNIPAM copolymer hydrogel by electric potentials 

from the underlying electrodes ( Xu and Hayward, 2013 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With volume growth theory ( Amar and Goriely, 2005; Rodriguez et al., 1994 ), residual stress accumulation and pattern

evolution are well explained as a result of re-balancing the incompatible volume swelling/absorption and excessive residual

stress ( Balbi et al., 2015; Ciarletta et al., 2014; Li et al., 2011 ). Moreover, as residual stress is created and conserved through-

out the whole growth process, stress- or strain-dependent growth models have been proposed theoretically and verified

experimentally ( Du et al., 2018; 2019a; 2019b; Fung, 1991 ). 

However, it is worth recalling that the growth and remodelling processes involve many complex physiochemical reac-

tions. In addition to mechanical factors, other physical fields such as an electric field could also regulate the growth process.

Numerous experiments and protocols have indeed verified the practical impact of electric fields on tissue development and

wound healing ( Jaffe and Nuccitelli, 1977; Jaffe and Vanable Jr, 1984; Marino and Becker, 1970 ). For example Fig. 1 (A) shows

that the electric field caused by mis-expression of ion channels during embryogenesis can produce coherent changes in

patterns ( Levin, 2009 ). Another evidence ( Fig. 1 (B)) is that rat calvaria osteoblasts and fibroblasts subjected to an external

electric field exhibit the ability to reorient and elongate cells in a perpendicular direction ( Funk et al., 2009 ). 

From the perspective of material properties, Fukada and Yasuda (1957) proved experimentally that bone exhibits the

piezoelectric effect. Soon after, teeth, skin, nerve tissues, blood vessels, and dried collagen were also confirmed to ex-

hibit an electro-mechanical coupling effect ( Anderson and Eriksson, 1968; Athenstaedt, 1970; Chae et al., 2018; Fukada

and Hara, 1969 ). In addition, using X-ray micro-diffraction experiments on hydroxyapatite unit cells of the bone, Wieland

et al. (2015) revealed that the inverse piezoelectric effect could induce adequate strain levels to trigger a mechanism for

bone growth. Furthermore, by using piezoelectric response force microscopy and molecular dynamics simulations ( Liu et al.,

2014; 2012 ), as shown in Fig. 1 (C), the microscopic essence of the electro-mechanical effect of most soft bio-tissues was

revealed to be due to the polar structure of tropoelastin. Zelisko et al. (2015) established that the piezoelectric coefficient

of tropoelastin is about 96.6 pC N 

−1 , which is a remarkable value compared with other piezoelectric polymers such as the

PVDF polymer, for which it is 33 pC N 

−1 
. 

On the other hand, many polymeric materials, such as VHB 4910, display a strong ability to imbibe solvent and swell

( Bosnjak et al., 2020 ). In addition, Kim et al. (2002) showed that the mechanical properties of some polyelectrolyte hydrogels

and electro-active hydrogels, such as PVA/chitosan IPN, are related not only to their specific aqueous solutions but are also

very sensitive to electrical stimuli. In their experiments, a swollen polyelectrolyte hydrogel is placed between a pair of
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Fig. 2. The multiplicative decomposition of the volume growth modelling subject to the external traction and voltage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

electrodes and bends in response to an applied electric field. The bending angle and the bending speed increase with an

increase in the applied voltage and in the concentration of NaCl in the aqueous solution. 

By taking advantage of this type of electro-mechanical response, electrical stimuli have been used widely to trigger self-

assembled patterns of colour and fluorescence on demand ( Bosnjak et al., 2020; Wang et al., 2014; 2012; 2011a; 2011b ),

and to design electrically-assisted iono-printing electro-active hydrogel actuation and drug delivery devices ( Agnihotri et al.,

2005; Choi et al., 2020; Palleau et al., 2013 ). Fig. 1 (D) shows the working principle of a device triggering self-assembled

monolayer anionic PNIPAM copolymer hydrogels using electric potentials created by underlying electrodes ( Xu and Hay-

ward, 2013 ). There, other swelling related factors, such as the temperature and ionic strength, are also considered. The

experimental results show that creases are formed selectively above the anode and that patterns can be controlled precisely

through the electrode geometry. However, the actual mechanism for electrically-driven crease formation on hydrogel sur-

faces is still not completely understood. Nonetheless, it is clear that the total stress, which includes the Maxwell stress and

the mechanical stress, must be coupled to the swelling process. 

Accordingly, for numerous examples of growing soft matter including bio-tissues and polymers, a comprehensive growth

model including both electrical and mechanical fields is needed. 

By relying on nonlinear elasticity theory ( Dorfmann and Ogden, 2010; 2019; Su et al., 2018; 2019 ), we adopt an electro-

elastic free energy function to capture large deformation and electro-mechanical coupling during the growth process. Ac-

cording to the multiplicative decomposition method, the energy function of materials in the virtual configuration should be

assumed to be stress-free. Similar to the treatment found in volume growth modelling, here the growth factor is included

through the elastic deformation and the current residual stress and electric field can be obtained within the finite defor-

mation regime. Finally, as the residual stress is affected by external mechanical and electrical fields, we also perform an

incremental bifurcation analysis to show how these electro-mechanical loads affect the generation of patterns. 

The paper is organised as follows. In Section 2, we present a general analysis of isotropic growth and pattern formation

for electro-elastic solids under external mechanical and electrical biasing fields. In Section 3, we take a tubular electro-elastic

solid as an example, and put the tube under an axial stretch and a voltage in the radial direction. Section 4 shows some

numerical results for the growing neoHookean dielectric solid. In particular we investigate the influence of axial stretch

and external voltage on the growth and non-growth induced pattern generation. In Section 5, we discuss the effects and

significance of electro-mechanical growth and draw some conclusions. 

2. Governing equations 

2.1. Finite growth with external electro-mechanical fields 

Consider a continuous electro-elastic solid growing from an undeformed stress-free configuration B 0 and subjected to

external mechanical and electrical stimuli. It reaches a grown and residually stressed configuration B, where the position

vector x corresponds to the position vector X in B 0 . The deformation gradient tensor is F = ∂x / ∂X . 

Using the multiplicative decomposition of volume growth modelling ( Rodriguez et al., 1994 ), see Fig. 2 , we decompose

the elastic deformation tensor F e as 

F e = F F −1 
g , (1)

where F g is the pure growth deformation tensor, with J g = det F g tracking its volume changes. Note that, in the study, we hy-

pothesise that the pure growth deformation is decoupled with both applied electric field and external mechanical tractions.

Taking the material as incompressible, we impose that only isochoric elastic deformations are possible, so that 

J e = det F e = 1 , (2)

at all times. 
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According to nonlinear electro-elastic theory, we may track the impact of electro-mechanical stimuli on growth by taking

a free energy density in the form � = �(F e , ˜ D ) in the virtual stress-free configuration 

˜ B . Here, ˜ D is the electric displacement

vector with respect to the virtual stress-free configuration, and its corresponding electric field is denoted 

˜ E . In addition, with

respect to the reference configuration, we call D l the Lagrangian electric displacement and E l the Lagrangian electric field

vector. In the current configuration, we call D the current electric displacement and E the electric field vector. 

In the absence of free charges and currents, these electrical quantities satisfy 

div D = 0 , curl E = 0 , Div D l = 0 , Curl E l = 0 , (3) 

where curl and div are respectively the curl and divergence operators with respect to x , and Curl and Div are respectively

the curl and divergence operators with respect to X . Then, recall that Nanson’s formula n d a = JF −T Nd A connects the current

(d a ) and referential (d A ) area elements, where J = det F is the volume change with growth, and n and N are the outward

unit vectors normal to surface elements in the current configuration and reference configurations, respectively. Hence we

have ∫ 
B 

div D dv = 

∫ 
∂B 

D · n da = 

∫ 
∂B 0 

J 
(
F −1 D 

)
· NdA 

= 

∫ 
B 0 

Div 
(
JF −1 D 

)
d V = 

∫ 
B 0 

Div D l d V = 0 , (4) 

and ∫ 
ϕ 
( curl E ) · n d a = 

∫ 
∂ϕ 

E · d x = 

∫ 
∂ϕ 0 

(
F T E 

)
· d X 

= 

∫ 
ϕ 0 

Curl 
(
F T E 

)
· Nd A = 

∫ 
ϕ 0 

( Curl E l ) · Nd A = 0 , 
(5) 

where ϕ is an open surface in the current configuration and ∂ϕ is a closed curve bounding ϕ, defined in the usual sense

relative to the unit normal n to ϕ , and ϕ 0 and ∂ϕ 0 are their referential counterparts. Hence, we have the connections 

D = J −1 F D l , E = F −T E l , (6) 

Similarly, performing the same manipulations of the quantities in the virtual stress-free configuration, we obtain the follow-

ing connections for these electrical fields, 

D = J −1 F D l = F e ̃  D , E = F −T E l = F −T 
e 

˜ E . (7) 

Thus, for an incompressible solid with energy function �( F e , ˜ D ) − p(J e − 1) , we obtain the stress and the electric field

tensor with respect to the virtual stress-free configuration as 

˜ S = 

∂�

∂F e 
− pF −1 

e , ˜ E = 

∂�

∂ ̃  D 

, (8) 

respectively, where p is an arbitrary Lagrange multiplier, to be found from boundary and/or initial conditions. Then, the

nominal stress S and Lagrangian electric field E l with respect to the reference configuration are 

S = J g F 
−1 

g 

(
∂�

∂F e 
− pF −1 

e 

)
, E l = F T g 

∂�

∂ ̃  D 

, (9) 

respectively, and the Cauchy stress σ and the current electric field E in the current configuration are, therefore, 

σ = F e 
∂�

∂F e 
− pI, E = F −T 

e 

∂�

∂ ̃  D 

, (10) 

respectively. 

In the absence of body forces, the equilibrium equation of the Cauchy stress reads 

div σ = 0 , (11) 

and the boundary conditions, in the absence of exterior electric fields, are 

σT n = t a , D · n = q e , E × n = 0 , (12) 

where n is the outward unit vector normal to surface elements in the current configuration, t a is the prescribed mechanical

traction, and q e is the surface charge density on the boundary. 

According to the nonlinear electro-elastic theory developed by Dorfmann and Ogden (2005, 2010, 2019) , for isotropic,

incompressible electro-elastic materials, the free energy function �( F e , ˜ D ) − p(J e − 1) , can also be written as a function of

the following five invariants 

I 1 = tr C e , I 2 = 

1 
2 

[
( tr C e ) 

2 − tr 
(
C 2 e 

)]
, 

I 4 = 

˜ D · ˜ D , I 5 = 

˜ D · C e ̃  D , I 6 = 

˜ D · C 2 e 
˜ D , (13) 
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where C e = F T e F e is the right Cauchy-Green deformation tensor (note that the third principal invariant I 3 = det C e is equal to

1 at all times because of incompressibility (2) ). Then, according to Eq. (7) , the Cauchy stress and the electrical field follow

as 

σ = 2�1 B e + 2�2 (I 1 B e − B 

2 
e ) − pI + 2�5 D � D 

+ 2�6 (D � B e D + B e D � D ) , 

E = 2(�4 B 

−1 
e D + �5 D + �6 B e D ) , (14)

where B e = F e F 
T 

e is the left Cauchy-Green deformation tensor and �i = ∂�/ ∂ I i . It follows that because B e is related to the

growth deformation F g and because D is determined by the electric field E and B e , the residual stress must depend both on

the growth factor and on external mechanical and electric fields. And so must the growth-induced patterns. 

2.2. Instability analysis 

To figure out the effects of external mechanical and electric fields on growth-induced pattern evolution, we rely on an

incremental theory to analyse stability after growth. 

First, we superimpose an infinitesimal incremental displacement ˙ x = ˙ χ(X ) on the current configuration B with respect

to the reference configuration B 0 and an incremental electric displacement ˙ ˜ D with respect to the virtual stress-free config-

uration 

˜ B . The incremental displacement gradient tensor with respect to the reference configuration B 0 is then 

˙ F = ∂ ˙ χ/ ∂X ,

and with respect to the current configuration B it is ˙ F I = ∂ ˙ χ/ ∂x . Hence, we have the connection 

˙ F = 

˙ F I F . (15)

Recall that the growth deformation F g is independent of the elastic deformation. The incremental displacement and electric

displacement are infinitesimal and independent of the growth deformation, so that we also have 

˙ F e = 

˙ F I F e , (16)

where ˙ F e is the increment of the purely elastic deformation tensor F e . Further, we find that the incremental incompressibility

condition reads 

tr ˙ F I = 0 . (17)

We now linearise the expressions for the stress measures. We obtain the incremental nominal stress and incremental

Lagrangian electric field as 

˙ S = J g F 
−1 

g 

(
A e ˙ F e + � ˙ ˜ D − ˙ p F −1 

e + pF −1 
e 

˙ F e F 
−1 

e 

)
, 

˙ E l = F T g 

(
� ˙ F e + K ̇

 ˜ D 

)
, (18)

where ˙ p is the increment of the Lagrange multiplier, and A e , �, and K are respectively, fourth-, third- and second-order

tensors, the electro-elastic moduli tensors . Their components are ( Dorfmann and Ogden, 2010 ) 

A eαiβ j = 

∂ 2 �

∂ F eiα∂ F e jβ
, �αiβ = 

∂ 2 �

∂ F eiα∂ ̃  D β

, K αβ = 

∂ 2 �

∂ ̃  D α∂ ̃  D β

. (19)

Then, using Nanson’s formulas (7) and Eq. (16) , we further obtain the incremental nominal stress and Lagrangian electric

field in their push-forward (or updated) form as 

˙ S I = J −1 F ˙ S = A I 
˙ F I + �I 

˙ ˜ D I − ˙ p I + p ̇ F I , 

˙ E lI = F −T ˙ E l = �I 
˙ F I + K I 

˙ ˜ D I . (20)

Here ˙ ˜ D I = F e 
˙ ˜ D , and A I , �I , and K I are the updated electro-elastic moduli tensors, with components 

A Ipiqj = F ep αF eq βA eαiβ j , �Ipiq = F ep αF −1 
eβq 

�αiβ, K Ipq = F −1 
eαp F 

−1 
eβq 

K αβ, (21)

and symmetries 

A Ipiq j = A Iq jpi , �Ipiq = �Iipq , K Ipq = K Iqp . (22)

Moreover, we note, using the incremental form of the symmetry condition of the Cauchy stress F S = (F S) T , that the follow-

ing connections apply, 

A 

I 
epiq j − A 

I 
eipq j = ( σpq + pδpq ) δi j −

(
σiq + pδiq 

)
δp j . (23)

Finally, the incremental equilibrium equations read 

div ˙ S I = 0 , div ˙ ˜ D I = 0 , curl ˙ E = 0 . (24)
lI 
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Fig. 3. The growing tubular structure made of an electro-elastic solid, where the axial stretch λz is constrained and the voltage V is applied across the 

radial direction. 

 

 

 

 

 

 

 

Now recall that the solid is assumed to grow in the absence of body forces, free charges and currents, and that the

increments of electrical variables in the surrounding vacuum are disregarded. Hence, the incremental form of the electric

and mechanical boundary conditions read 

˙ S T I n = 

˙ t Ia , 
˙ ˜ D I · n = 

˙ q e , ˙ E lI × n = 0 , (25) 

where ˙ t Ia and ˙ q e are the incremental mechanical traction and surface charge density per surface element of the boundary

∂B. 

Our goal is to find nontrivial solutions that mathematically satisfy the incremental equilibrium equations and bound-

ary conditions, indicating critical states. Once the critical value of the initial instability is found, we can then obtain the

corresponding morphology of this electro-mechanically controlled growth. 

3. Growing tube under external electro-mechanical fields 

3.1. Residual stress and electric field after growth 

Here we take a growing tubular electro-elastic solid as an example. The tube is under an axial stretch and a voltage is

applied in the radial direction. It grows isotropically and independently of these external electro-mechanical loads. 

As shown in Fig. 3 , before growth, the tube is located in the region 

R i ≤ R ≤ R o , −π ≤ � ≤ π, 0 ≤ Z ≤ L, (26) 

which is the reference configuration. In the current configuration, it occupies the region 

r i ≤ r ≤ r o , −π ≤ θ ≤ π, 0 ≤ z ≤ �. (27) 

Then, using Eq. (1) , we obtain the deformation gradient tensors as 

F = 

[ 

∂r 
∂R 

0 0 

0 λ 0 

0 0 λz 

] 

, F g = 

[ 

g 0 0 

0 g 0 

0 0 g 

] 

, F e = 

[ 

g −1 ∂r 
∂R 

0 0 

0 g −1 λ 0 

0 0 g −1 λz 

] 

, (28) 

where λ = r/R, λz = �/L . Enforcing the incompressibility condition, we have 

∂r 

∂R 

= g 3 λ−1 λ−1 
z , (29) 

which further gives the geometrical connection 

R 

2 − R 

2 
i = g −3 λz (r 2 − r 2 i ) . (30) 

As shown in Fig. 3 , the axial strain is applied externally, and the voltage is applied along the radial direction. Thus, the

nominal electric field and displacement in the reference configuration are of the form 

E l = [ E R , 0 , 0 ] 
T 
, D l = [ D R , 0 , 0 ] 

T 
. (31) 

Recalling the connections in Eq. (7) , the electric field and the displacement with respect to the virtual configuration are 

˜ E = 

[
˜ E r , 0 , 0 

]T = 

[
g −1 E R , 0 , 0 

]T 
, (32) 

˜ D = 

[
˜ D r , 0 , 0 

]T = 

[
g −2 D R , 0 , 0 

]T 
. (33) 
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In addition, the true electric field and the displacement in the current configuration are 

E = [ E r , 0 , 0 ] 
T = 

[
g −3 λλz E R , 0 , 0 

]T 
, 

D = [ D r , 0 , 0 ] 
T = 

[
λ−1 λ−1 

z D R , 0 , 0 

]T 
. (34)

Then the invariants in Eq. (13) reduce to 

I 1 = g 4 λ−2 λ−2 
z + g −2 λ2 + g −2 λ2 

z , I 2 = g −4 λ2 λ2 
z + g 2 λ−2 + g 2 λ−2 

z , 

I 4 = g −4 D 

2 
R , I 5 = λ−2 λ−2 

z D 

2 
R , I 6 = g 4 λ−4 λ−4 

z D 

2 
R . (35)

Now using Eqs. (14) and (35) , we find the following non-zero components of the Cauchy stress tensor σ and of the

current electric field vector E : 

σrr = 2�1 g 
4 λ−2 λ−2 

z + 2�2 g 
2 (λ−2 + λ−2 

z ) − p 

+ 2�5 λ
−2 λ−2 

z D 

2 
R + 4�6 g 

4 λ−4 λ−4 
z D 

2 
R , 

σθθ = 2�1 g 
−2 λ2 + 2�2 (g 2 λ−2 

z + g −4 λ2 λ2 
z ) − p, 

σzz = 2�1 g 
−2 λ2 

z + 2�2 (g 2 λ−2 + g −4 λ2 λ2 
z ) − p, 

E r = 2(�4 g 
−4 λλz + �5 λ

−1 λ−1 
z + �6 g 

4 λ−3 λ−3 
z ) D R . (36)

We may combine these expressions to obtain the following compact relations: 

σθθ − σrr = λ
∂�

∂λ
, σzz − σrr = λz 

∂�

∂λz 
, E r = λλz 

∂�

∂D R 

. (37)

Then the equilibrium equation in Eq. (11) 1 can be rewritten as 

∂σrr 

∂r 
= 

λ

r 

∂�

∂λ
. (38)

Furthermore, noticing that d r 
d λ

= 

g 3 r 

λ(g 3 −λz λ2 ) 
, the Cauchy stress at any position r is obtained by integration as 

σrr (r) = 

∫ r 

r i 

λ

r 

∂�

∂λ
d r − σrr (r i ) = 

∫ λ

λi 

∂�

∂λ

g 3 

g 3 − λz λ2 
d λ − σrr (λi ) , (39)

where λi = r i /R i . Assuming that the inner face and outer surface are both free of mechanical traction, so that 

σrr (r i ) = 0 , σrr (r o ) = 0 , (40)

we arrive at 

σrr (λ) = 

∫ λ

λi 

∂�

∂λ

g 3 

g 3 − λz λ2 
d λ, 0 = 

∫ λo 

λi 

∂�

∂λ

g 3 

g 3 − λz λ2 
d λ, (41)

where λo = r o /R o . According to Eq. (37) , the circumferential stress σ θθ and the axial stress σ zz can then be obtained from

the radial stress σ rr . 

Turning now to Maxwell’s equation in Eq. (11) 2 , we see that the equilibrium equation for the current electric field

reduces to 

1 

r 

∂(rD r ) 

∂r 
= 0 , (42)

so that 

D r = 

c 

r 
, (43)

where c is an integration constant, which can be determined by specifying the voltage in the current configuration. As the

electric field is the negative gradient of the electric potential φ: E = −grad φ, and the voltage V is the potential difference

φi − φo between the inner and outer surfaces, we then find 

V = φi − φo = 

∫ r o 

r i 

E r d r = 

∫ r o 

r i 

D r 

ε 
d r = 

c 

ε 
ln 

r o 

r i 
, (44)

where r̄ o = r o /r i is a dimensionless measure of the outer radius. Here we assumed ideal electro-elasticity for the calcula-

tion, that is, we assume that E r = D r /ε, where ε is the dielectric permittivity. Hence, with Eq. (44) , the electric electric

displacement and field finally read 

D r = 

εV 

r ln ( r o /r i ) 
, E r = 

V 

r ln ( r o /r i ) 
. (45)
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Then, within the framework of nonlinear electro-elasticity theory ( Dorfmann and Ogden, 2010 ), we split the free energy

function of the electro-elastic material into 

�(F e , ˜ D ) = W (F e ) + �∗(F e , ˜ D ) , (46) 

where W ( F e ) is the elastic energy function part and �∗(F e , ˜ D ) is the electro-elastic energy function part. For the ideal electro-

elastic solid ( Dorfmann and Ogden, 2005; 2010; 2019; Zhao and Suo, 2007 ), �∗(F e , ˜ D ) = I 5 / (2 ε) , which we now adopt. 

The Cauchy stress of ideal electro-elastic solids then follows from Eq. (39) as 

σrr (r) = 

∫ λ

λi 

∂W 

∂λ

g 3 

g 3 − λz λ2 
d λ − 1 

ε 

∫ λ

λi 

λ−3 λ−2 
z D 

2 
R 

g 3 

g 3 − λz λ2 
d λ. (47) 

Then we introduce the following dimensionless quantities, 

�̄ = �/μ, W̄ = W/μ, r̄ o = r o /r i , R̄ o = R o /R i , 

σ̄rr = σrr /μ, V̄ = 

V 

R o − R i 

√ 

ε 

μ
, D̄ r = D r / 

√ 

εμ. (48) 

where μ > 0 is the initial shear modulus in the absence of electric field. Using Eqs. (41) , (45) , and (47) , we arrive at the

following expressions for the dimensionless voltage, 

V̄ = 

r̄ o λi ln ̄r o 

R̄ o − 1 

√ 

2 

1 − r̄ 2 o 

∫ λi 

λo 

∂ W̄ 

∂λ

g 3 

g 3 − λz λ2 
d λ. (49) 

and the dimensionless Cauchy stress 

σ̄rr (λ) = 

λ2 
o ̄R 

2 
o (λ

2 
i 

− λ2 ) 

λ2 (λ2 
o ̄R 

2 
o − λ2 

i 
)(g −3 λz λ2 

i 
− 1) 

∫ λi 

λo 

∂ W̄ 

∂λ

g 3 

g 3 − λz λ2 
d λ + 

∫ λ

λi 

∂ W̄ 

∂λ

g 3 

g 3 − λz λ2 
d λ. (50) 

3.2. Incremental equations 

Now we superimpose an incremental elasto-electric perturbation on the deformed configuration to study the stability of

the tube after growth. The components of these increments are written in cylindrical coordinates, 

u i = u i ( r, θ, z ) , ˙ ˜ D Ii = 

˙ ˜ D Ii ( r, θ, z ) . (51) 

The incremental deformation gradient tensor ˙ F I follows as 

˙ F I = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

∂u r 
∂r 

1 
r 

(
∂u r 
∂θ

− u θ

)
∂u r 
∂z 

∂u θ
∂r 

1 
r 

(
∂u θ
∂θ

+ u r 

)
∂u θ
∂z 

∂u z 
∂r 

1 
r 

∂u z 
∂θ

∂u z 
∂z 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, (52) 

and the incremental incompressibility condition Eq. (17) as 

tr ˙ F I = 

∂u r 

∂r 
+ 

1 

r 

(
∂u θ

∂θ
+ u r 

)
+ 

∂u z 

∂z 
= 0 . (53) 

Introducing the incremental electric potential ˙ φ, we write the components of the incremental electric field as 

˙ E lIr = −∂ ˙ φ

∂r 
, ˙ E lIθ = −1 

r 

∂ ˙ φ

∂θ
, ˙ E lIz = −∂ ˙ φ

∂z 
. (54) 

According to Eqs. (20) and (52) , we provide the explicit expression of the incremental nominal stress ˙ S I and incremental

electric fields ˙ E lI in terms of instantaneous electro-elastic moduli and incremental fields in Appendix A. 

For the growing tube, the incremental equilibrium equations and incremental Maxwell’s equations reduce to 

∂ ˙ S Irr 

∂r 
+ 

1 

r 

∂ ˙ S Iθ r 

∂θ
+ 

˙ S Irr − ˙ S Iθθ

r 
+ 

∂ ˙ S Izr 

∂z 
= 0 , 

∂ ˙ S Irθ
∂r 

+ 

1 

r 

∂ ˙ S Iθθ

∂θ
+ 

˙ S Iθ r + 

˙ S Irθ
r 

+ 

∂ ˙ S Izθ
∂z 

= 0 , 

∂ ˙ S Irz 

∂r 
+ 

1 

r 

∂ ˙ S Iθz 

∂θ
+ 

∂ ˙ S Izz 

∂z 
+ 

˙ S Irz 

r 
= 0 , (55) 

and 

∂ ˙ ˜ D Ir 

∂r 
+ 

1 

r 

( 

∂ ˙ ˜ D Iθ

∂θ
+ 

˙ ˜ D Ir 

) 

+ 

∂ ˙ ˜ D Iz 

∂z 
= 0 , (56) 
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respectively. In addition, as the incremental displacements are axisymmetric and the lateral surfaces are free of tractions,

the incremental boundary conditions read 

u z = 

˙ S Izr = 

˙ S Izθ = 0 , at z = 0 , l, 

˙ S Irr = 

˙ S Irθ = 

˙ S Irz = 

˙ φ = 0 at r = r i , r o . (57)

3.3. Stroh formulation and resolution. 

We look for solutions with sinusoidal circumferential and axial variations, as 

u r = U r (r) cos ( mθ ) cos ( kz ) , u θ = U θ (r) sin ( mθ ) cos ( kz ) , 

u z = U z (r) cos ( mθ ) sin ( kz ) , ˙ φ = �(r) cos ( mθ ) cos ( kz ) , 

˙ S Irr = �rr (r) cos ( mθ ) cos ( kz ) , ˙ S Irθ = �rθ (r) sin ( mθ ) cos ( kz ) , 

˙ S Irz = �rz (r) cos ( mθ ) sin ( kz ) , ˙ ˜ D Ir = �r (r) cos ( mθ ) cos ( kz ) , (58)

where m , an integer, is the circumferential wavenumber, and k = nπ/ ( λz L ) where n , another integer, is the axial half

wavenumber. Then the governing equations in Eqs. (53) , (55) and (56) can be arranged into a first-order differential system

d 

d r 
η(r) = 

1 

r 
G(r) η(r) , (59)

where η(r) = 

[
ˆ U 

ˆ S 
]T 

is the electro-mechanical Stroh vector, with 

ˆ U = 

[
U r U θ U z r�r 

]T 
and 

ˆ S =[
r�rr r�rθ r�rz �

]T 
, and G is the so-called Stroh matrix. It can be decomposed into the following block structure 

G = 

[
G 1 G 2 

G 3 G 4 

]
, (60)

where the components of the four 4 × 4 sub-blocks G 1 , G 2 , G 3 and G 4 are listed in Appendix B. 

We now use the surface impedance matrix method to solve numerically the Stroh differential system and obtain the

dispersion equation, see Ciarletta et al. (2016) ; Destrade et al. (2009) ; Du et al. (2018) ; Su et al. (2019) , for details. 

The 4 × 4 conditional impedance matrix z i ( r, r i ) is Hermitian, and is found by integrating numerically the following

Riccati equation 

d z i 

d r 
= 

1 

r 

(
−z i G 1 − z i G 2 z 

i + G 3 + G 4 z 
i 
)
, (61)

starting from the initial condition z i (r i , r i ) = 0 , and ending at r = r o , where the target condition is that 

det z i (r o , r i ) = 0 . (62)

Then, once z i ( r, r i ) has been calculated, we find the displacement in the tube by integrating 

z i (r o , r i ) ̂  U (r o ) = 0 , 
d 

d r 
ˆ U = 

1 

r 
G 1 ̂

 U + 

1 

r 
G 2 z 

i ˆ U . (63)

4. Numerical results for a neo-Hookean dielectric solid 

4.1. Large deformation of a growing tube with electro-mechanical control 

We use the ideal neoHookean dielectric solid ( Dorfmann and Ogden, 2010; 2019; Su et al., 2018; 2019; Zhao and Suo,

2007 ) to model electro-mechanical effects in bio-tissues or hydrogels; its free energy density is of the form 

� = 

μ

2 

( I 1 − 3 ) + 

1 

2 ε 
I 5 , (64)

and its dimensionless form is 

�̄ = 

1 

2 

(
g −2 λ2 + g 4 λ−2 λ−2 

z + g −2 λ2 
z − 3 

)
+ 

1 

2 

λ−2 λ−2 
z D̄ 

2 
R , (65)

In the absence of the internal pressure, the corresponding dimensionless radial stress in Eq. (50) is 

σ̄rr = 

g 

λz 

( 

ln 

λi 

λ
+ 

r 2 o 

(
r 2 

i 
− r 2 

)
r 2 

(
r 2 

i 
− r 2 o 

) ln 

λo 

λi 

) 

, (66)



10 Y. Du, Y. Su and C. Lü et al. / Journal of the Mechanics and Physics of Solids 143 (2020) 104073 

Fig. 4. The effect of the growth factor g and axial stretch λz on the nonlinear response of inner circumferential stretch λi versus the applied voltage V̄ , in 

the case R̄ o = 2 . 0 . 

Fig. 5. The distribution of residual stress of a tube that subjects to the external electric field V̄ and axial stretch λz after growth, where R̄ o = 2 . 0 . 

 

 

 

 

 

 

 

 

 

and the dimensionless voltage in Eq. (49) is 

V̄ = − r̄ o λi λ
−1 
z ln ̄r o 

R̄ o − 1 

√ 

1 

1 − r̄ 2 o 

(
g 4 λ2 

o − g 4 λ2 
i 

+ 2 gλz ln 

λi 

λo 

)
. (67) 

Fig. 4 shows the effects of prescribed growth and axial stretch on the nonlinear response of the inner circumferential

strain λi versus the applied voltage V̄ , see full curve and compares to the dotted line, corresponding to the no-growth sce-

nario. In the no-voltage case ( ̄V = 0 ), pure growth and contractile axial stretch lead to an increased circumferential stretch,

while a tensile axial stretch leads to a reduced circumferential stretch. As the voltage increases ( ̄V > 0 ), the circumferential

stretch λi increases moderately until it shoots to infinity sharply for a certain threshold value of the external voltage, which

is due to the absence of an axisymmetric solution of deformation ( Shmuel, 2015; Wu et al., 2017 ). In addition, we see that

growth and compressive axial strain increase the threshold, while an axial stretch decreases the threshold. 

In Fig. 5 we present the distribution of residual stress σ in the wall of a tube subjected to different external electric

field V̄ and prescribed axial stretch λz , without growth ( g = 1 . 0 ), and with growth ( g = 1 . 1 ). Compared to the circumfer-

ential stress σ θθ and the axial stress σ zz , the radial stress σ rr is almost negligible in both cases. Also, the circumferen-
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tial stress σ θθ is positive (compressive) at the inner face and negative (tensile) at the outer face, as expected. Moreover,

the results show that a higher biasing voltage leads to a higher circumferential stress and a more inhomogeneous axial

stress. 

In the literature so far, residual stress is explained by differential growth coming either from non-homogeneous growth

of multilayer structures or from anisotropic growth factors of isotropic materials. Here it is worth noting that by applying

an electrical biasing field, residual stress can also be induced even when growth is isotropic or homogeneous. In addition,

because the tube is constrained axially, the axial stress is very sensitive to both the applied axial strain and the prescribed

growth factor. We see from the figure that with growth and voltage, the circumferential stress decreases and the axial stress

can change from tensile to compressive or can be made to be more compressive. All these effects point to the possibility of

growth and voltage thresholds of instability and pattern generation. 

4.2. Patterns formation by electro-mechanically guided growth 

The Appendix gives the dimensionless non-zero components of the instantaneous electro-elastic moduli in Eq. (23) as 

A I1111 = A I1212 = A I1313 = g 4 λ−2 λ−2 
z + D 

2 
r , 

A I2121 = A I2222 = A I2323 = g −2 λ2 

A I3131 = A I3232 = A I3333 = g −2 λ2 
z 

�I111 = 2 �I122 = 2 �I133 = 2 D r , 

K I11 = K I22 = K I33 = 1 . 

(68)

Further, we may non-dimensionalise the Stroh matrix G as follows. First rewrite kr as 

kr = k̄ 
λ

R̄ o − 1 

√ 

λz λ2 
i 

− 1 

λ2 λz − 1 

, (69)

where k̄ = nπ
R o −R i 
λz L 

and the Riccati equation in Eq. (61) as 

d z i 

d λ
= 

1 

λ
(
1 − λz λ2 

)(
−z i G 1 − z i G 2 z 

i + G 3 + G 4 z 
i 
)
. (70)

Finally, the dispersion equation in Eq. (62) is equivalent to 

det z i (λo , λi ) = 0 . (71)

Then, the solution of the non-dimensional Eqs. (70) –(71) gives the critical state for an instability of the growing tube

under electro-mechanical control. With the resulting z i ( λo , λi ) we find the components of ˆ U (r o ) on the outer surface by

solving Eq. (63) 2 , and by integrating (63) 1 we obtain the incremental displacements throughout the thickness of the tube

wall, see Destrade et al. (2009) for details. 

In particular, our goal is to find the critical growth factor that satisfies the target condition (62) . For a set of possible

combinations of wrinkle numbers m and n , we integrate the Riccati Eq. (69) using a numerical differential solver (‘NDSolve’)

in Mathematica . First, we iterate the growth factor g until we obtain the critical growth factor g cr where the integrated

solution of the Riccati equation satisfies the target condition (62) . Then to find g cr precisely, we use the bisection method.

We set the threshold of numerical accuracy to find the zero in the target condition (62) as being ≤ 10 −15 and the step in

the growth factor as δg ≤ 10 −12 . Finally, among all possible combinations of m and n , we keep the smallest critical growth

factor g cr as the mode that will occur first. 

4.3. Pattern creation without growth 

Prior to studying electro-mechanically guided growth, we first establish the allowed ranges for external voltage and

prescribed axial stretch, where the tube remains stable in the absence of growth ( g = 1 . 0 ). 

Fig. 6 (A) shows the critical axial strain and Fig. 6 B the critical voltage for the onset of stability versus the dimensionless

outer radius R̄ o when L = 1 . 0 . As expected intuitively, thicker tubes are more stable than the inner tubes, as they require

larger contractile axial stretches and higher applied voltages to buckle. This observation is aligned with the experiment of

switching crease patterns on hydrogel surfaces through low voltage performed by Xu and Hayward (2013) , where the critical

voltage required for generating patterns is higher for thicker blocks than for thinner blocks. In addition, because the axial

stretch is fixed, the final patterns are almost always 2D axial buckling ( m cr = 0 , n cr = 1 ), except when the tube is thin,

where there might be simple 3D patterns emerging, with mixed axial and circumferential wrinkles (hence we can have

m cr = n cr = 1 when no voltage is applied, or m cr = 2 , n cr = 1 when there is no axial stretch.) 

In Fig. 7 , we present the critical axial stretch and corresponding pattern modes obtained from a combined electro-

mechanical actuation ( λz � = 1.0, V̄ � = 0 . 0 ). For certain applied voltages ( ̄V = 0 . 4 , 0 . 6 ), we see that thicker tubes are again
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Fig. 6. Tube of length L = 1 . 0 . (A) Critical axial stretch λz ,cr and modes of instability m cr , n cr , when there is no growth ( g = 1 . 0 ) and no voltage applied 

( ̄V = 0 . 0 ). (B). Critical voltage V̄ cr and modes of instability when there is no growth ( g = 1 . 0) and no axial stretch ( λz = 1 . 0 ). 

Fig. 7. Distribution of residual stress after growth subject to an external electric field V̄ = 0 . 4 , 0 . 6 and axial stretch λz . The integer values given in the 

neighbourhood of each point are the couple n cr , m cr . 
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Fig. 8. The effect of axial stretch on the critical voltage with R̄ o = 1 . 4 and L = 1 . 0 , 1 . 5 . 

Fig. 9. (A) The influence of the external axial strain on the critical growth factor and the corresponding wave numbers with applied voltage V̄ = 0 . 4 , 0 . 6 , 

where R̄ 0 = 1 . 4 , R i = 1 . 0 , L = 1 . 0 ; (B) some typical patterns of (A). 

 

 

 

more stable than thinner tubes, as they require larger critical contractile ( λz < 1) and extensional ( λz > 1) axial stretches

to buckle. In contrast to the case of sole axial stretch control (when V̄ = 0 . 0 ), buckling may now occur in extension , and not

only in contraction. Also, although the axial buckling mode is always n cr = 1 , the circumferential number of wrinkles varies

from m cr = 0 to m cr = 12 in our computations, showing many opportunities for 3D patterns. 
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Fig. 10. (A) The influence of the applied voltage on the critical growth factor and the corresponding wave numbers with axial stretches λz = 1 . 0 , 1 . 1 , 

where R̄ 0 = 1 . 4 , R i = 1 . 0 , L = 1 . 0 ; (B) some typical patterns of (A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 shows the effect of the prescribed axial stretch λz on the critical voltage V̄ cr , for tubes with thickness measure

R̄ o = 1 . 4 and heights L = 1 . 0 , 1 . 5 . It shows a maximal critical voltage, and hence that a certain extent of axial extension can

stabilise the tube by increasing the voltage controllable range; away from that value, excessive contraction or extension in

the axial direction makes the tube more unstable, with a smaller controllable range. 

4.4. Pattern creation with growth 

Now, within the controllable ranges obtained above, we investigate instability and pattern generation caused by growth

( g � = 1.0) and guided by external electro-mechanical loads ( ̄V � = 0 . 0 , λz � = 1.0). 

Fig. 9 displays the effect of the prescribed axial stretch λz on the critical growth factor, when the applied voltage is

V̄ = 0 . 4 , 0 . 6 . For illustration we picked some representative points: N 1 , . . . , N 4 when V̄ = 0 . 4 and M 1 , . . . , M 4 when V̄ = 0 . 6 . 

As the axial strain λz increases from the critical axial compressive strain points ( N 1 and M 1 ), the critical growth factor

increases monotonically until a maximum as λz reaches the critical axial tensile strain points ( N 4 and M 4 ) obtained in the

absence of growth ( g = 1 . 0 ). 

In terms of shapes, the critical patterns start from a 2D axial buckling shape, and move on to various 3D mixed axial

and circumferential wrinkles, to 2D axial wrinkles with high wave-numbers, and finally to the 3D mixed wrinkling shapes

obtained in Fig. 7 . In addition, we see that a higher external voltage ( ̄V = 0 . 6 ) promotes an earlier onset of patterns ( 0 . 9 <

λz,cr < 1 . 52 ), but with less variety of possible shapes ( m cr = 0 , 2 , 3 , 4 , n cr = 1 , 2 , 3 , 4 , 5 ), than a lower voltage ( ̄V = 0 . 4 ) with

later onset ( 0 . 9 < λz,cr < 2 . 28 ) but more shapes ( m cr = 0 , 3 , 4 , 5 , 6 , 7 , n cr = 1 , 7 , 9 , 11 , 13 , 15 , 17 , 20 , 23 ). 

Finally, by imposing the axial stretch as λz = 1 . 0 , 1 . 1 in turn, we investigate the effect of the applied voltage on the

critical growth factor, see Fig. 10 . As the external voltage increases, the critical growth factor g cr increases to a maximum,

then decreases, and finally reaches 1.0 at the critical voltage points obtained in Fig. 8 ( P 4 and Q 4 ). The critical pattern shapes

start from 3D mixed axial and circumferential wrinkles, and move on to 2D axial wrinkles or simpler 3D mixed wrinkles.

In addition, Fig. 10 shows that as long as the critical axial tension is not reached, the buckling mode can only occur in

contraction and a higher axial stretch can stabilise the tube. 
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5. Discussions and conclusions 

In this study, we established a sound framework to analyse the growth of electro-elastic materials, which are omnipresent

in Nature. This framework allowed us to propose a way to control or guide growth. 

By assuming a multiplicative decomposition of the total growth deformation, a method which has a firm basis in volume

growth theory, we went on to include growth factor and electrical displacement into the elastic deformation. We presented

a general theoretical analysis for isotropic growth and pattern formation of electro-elastic solids under external mechani-

cal and electrical biasing fields. Then we conducted a linearised incremental analysis to investigate the effects of external

electro-mechanical fields on the generation of growth-induced patterns. As an illustrative example, we provided a three-

dimensional deformation and stability analysis for the isotropic growth of a tubular structure under a fixed axial stretch and

a prescribed external voltage in the radial direction. 

We first studied growth and pattern formation when external voltage and mechanical loads are present. For isotropic

growth, we revealed that the biasing electric field plays a significant role in causing the non-uniformity of the residual

stress and in promoting extensional buckling. In addition, we found that there is a maximum of the applied voltage for a

certain axial stretch and growth factor, which corresponds to the symmetric collapse of the structure. 

Moreover, in the absence of growth, we found a critical value of the applied voltage that would cause wrinkling pattern

formation. The critical value is also the threshold of the controllable range of the applied voltage for guiding the growth

process. Similarly, there are two thresholds of axial strain for a certain applied voltage, which correspond to contractile

and extensional buckling, and determine the upper and lower limits, respectively, of the controllable axial stretch range for

guiding growth. 

In the presence of growth, the numerical results show that a higher voltage can enhance the non-uniformity of the

residual stress distribution and induce extensional buckling, while a lower voltage can delay the appearance of morphology

while producing more complex shapes. Within a controllable range, axial tensile stretching shows the ability to stabilise

the tube and help form more complex 3D patterns, while axial contractile stretch promotes instability. Both the applied

voltage and the prescribed axial stretch have a significant impact and a promising future on guiding the growth and patterns

formation. 

Our numerical results suggest that growth instability and pattern formation can be guided or controlled by an elec-

tric field, instead of by purely mechanical means (such as changing elasticity, thickness, and initial residual stress, see

Balbi et al. (2015) ; Ciarletta et al. (2014) ; Du et al. (2019a,b) ). In principle, the coupling can be also used to design a pat-

tern prescription strategy, growth self-assembly, drug delivery devices, or 4D bio-mimetic printing in engineering. However,

this work only considers the dielectric characteristics that could reflect the effect of external voltage on the growth process,

which may not be enough to recapture the actual electro-mechanical growth process. As these growable soft matters actually

endow more complex electro-mechanical properties, it is, therefore, worthwhile to conduct further research in consideration

of bio-piezoelectric and pyroelectric effects. 

On the other hand, as our results suggest that external forces or electric fields can affect the formation of patterns, it

follows that these electro-mechanical factors may also create some nonlinear interplay in the evolution of post-buckling

patterns, such as formation of creases, symmetry breaking, wrinkle mode transition, period-doubling, etc. Covering these

phenomena requires nonlinear incremental analysis or nonlinear finite element simulations. These challenges are interesting

for future works, especially in the nonlinear stability analysis of growing electro-elastic materials, similar to the work of

Cai and Fu (1999) on the weakly nonlinear analysis of an elastic half-space, and that of Jin et al. (2019) on a semi-analytical

approach to the post-buckling analysis of elastic growth. In addition, as there is no experimental basis showing the nature

composition of the electro-mechanical growth deformation, we just choose the energy function of ideal electro-elastic solid

to describe qualitatively the electric effects, which might be not sufficiently exact for certain materials. Therefore, more

experiments about the influence of electro-mechanical factors on the complete growth process, including aspects such as

growth rate and growable volume, are very welcome in the further studies. 
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Appendix A 

With the most general energy function written in terms of the five invariants, the non-zero components of the instanta-

neous electro-elastic moduli read ( Dorfmann and Ogden, 2010; Su et al., 2019; Wu et al., 2017 ) 
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r �26 

))
, 

A 01212 = 2 /g 4 λ−2 λ−2 
z 

(
�1 + 2 D 

2 
r �6 + λ2 

z /g −2 
(
�2 + g −4 D 

2 
r 

(
g 2 λ2 �5 + λ4 �6 

)))
, 

A 01313 = 2 /g 4 λ−2 λ−2 
z 

(
�1 + 2 D 

2 
r �6 + λg −2 

(
�2 + g −4 D 

2 
r 

(
g 2 λ2 

z �5 + λ4 
z �6 

)))
, 

A 01221 = −2 /g 2 λ−2 
z �2 + 2 /g −2 λ2 �6 D 

2 
r , 

A 01331 = −2 /g 2 λ−2 �2 + 2 /g −2 λ2 
z �6 D 

2 
r , 

A 02121 = 2 /g −2 λ2 
(
�1 + g −2 λ2 

z �2 + �6 D 

2 
r 

)
, 

A 03131 = 2 /g −2 λ2 
z 

(
�1 + g −2 λ2 �2 + �6 D 

2 
r 

)
, 

A 02222 = 2 /g −8 
(
2 g 4 λ4 �11 + 4 /g 2 λ4 λ2 

z �12 + g 6 λ2 ( �1 + 4�12 ) 

+ λ−2 
z g 4 

(
g 6 + λ2 λ4 

z 

)
�2 + λ−4 

z 

(
g 6 + λ2 λ4 

z 

)
�22 , 

)
, 

A 02233 = 4 

(
2�12 + g 6 λ2 λ2 

z 

((
λ2 + λ2 

z 

)
�12 + g 2 ( �11 + �2 ) 

)
+ g 6 λ−2 λ−2 

z 

(
g 6 + λ4 λ2 

z 

)(
g 6 + λ2 λ4 

z 

)
�22 

)
, 

A 02323 = 2 g −2 λ2 �1 + 2 g 2 λ−2 
z �2 , 

A 02332 = −2 g −4 λ2 λ2 
z �2 , 

A 03232 = 2 g −2 λ2 
z �1 + 2 /g 2 λ−2 �2 , 

A 03333 = 2 /g −8 
(
2 /g 4 λ4 

z �11 + 4 g 2 λ2 λ4 
z �12 + g 6 λ2 

z ( �1 + 4�12 ) 

+ g 4 λ−2 
(
g 6 + λ4 λ2 

z 

)
�2 + 2 λ4 

(
g 6 + λ4 λ2 

z 

)2 
�22 

)
, 

(A.1) 

�0111 = 4 /g −4 λ−4 λ−4 
z D r 

(
g 2 λ4 λ4 

z 

(
λ2 + λ2 

z 

)
�24 + g 6 λ2 λ2 

z 

(
λ2 + λ2 

z 

)
�25 

+ g 10 
(
λ2 + λ2 

z 

)
�26 + D 

2 
r λ

6 λ6 
z �45 + g 4 λ4 λ4 

z 

(
�14 + �5 + D 

2 
r ( 2�46 + �55 ) 

)
+ g 8 λ2 λ2 

z 

(
�15 + 3 D 

2 
r �56 + 2�6 

)
+ g 12 

(
�16 + 2 D 

2 
r �66 

))
, 

�0122 = 2 D r 

(
�5 + g −2 λ−2 

(
λ4 + g 6 λ−2 

z 

)
�6 

)
, 

�0133 = 2 D r 

(
�5 + g −2 λ−2 

z 

(
λ4 

z + g 6 λ−2 
)
�6 

)
, 

�0221 = 4 g −6 D r 

(
λ4 λ2 

z 

(
�14 + g −2 λ2 

z �24 

)
+ g 8 λ−2 

z ( �16 + �25 ) 

+ g 2 λ2 
(
g 2 ( �15 + �24 ) + λ2 

z �25 

)
+ g 6 �26 + g 12 λ−2 λ−4 

z �26 

)
, 

�0331 = 4 g −6 D r 

(
λ4 

z λ
2 
(
�14 + g −2 λ2 �24 

)
+ g 8 λ−2 ( �16 + �25 ) 

+ g 2 λ2 
z 

(
g 2 ( �15 + �24 ) + λ2 �25 

)
+ g 6 �26 + g 12 λ−2 

z λ−4 �26 

)
, (A.2) 

K 011 = 2 

(
2 g −8 D 

2 
r λ

4 λ4 
z �44 + g −4 λ2 λ2 

z 

(
�4 + 4 D 

2 
r �45 

)
+ �5 + 2 D 

2 
r ( 2�46 + �55 ) 

+ g 4 λ−2 λ−2 
z 

(
4 D 

2 
r �56 + �6 

)
+ 2 λ−4 λ−4 

z D 

2 
r /g 8 �66 

)
, 

K 022 = 2 

(
g 2 λ−2 �4 + �5 + g −2 λ2 �6 

)
, 

K 033 = 2 

(
g 2 λ−2 

z �4 + �5 + g −2 λ2 
z �6 

)
. (A.3) 

Further, we can write the components of the updated incremental nominal stress ˙ S I in (20) 1 as 

˙ S Irr = ( A I1111 + p ) 
∂u r 

∂r 
+ A I1122 

1 

r 

(
∂u θ

∂θ
+ u r 

)
+ A I1133 

∂u z 

∂z 
+ �I111 

˙ ˜ D Ir − ˙ p , 

˙ S Iθθ = A I1122 
∂u r 

∂r 
+ ( A I2222 + p ) 

1 

r 

(
∂u θ

∂θ
+ u r 

)
+ A I2233 

∂u z 

∂z 
+ �I221 

˙ ˜ D Ir − ˙ p , 
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˙ S Izz = A I1133 
∂u r 

∂r 
+ A I2233 

1 

r 

(
∂u θ

∂θ
+ u r 

)
+ ( A I3333 + p ) 

∂u z 

∂z 
+ �I331 

˙ ˜ D Ir − ˙ p , 

˙ S Irθ = A I1212 
∂u θ

∂r 
+ ( A I1221 + p ) 

1 

r 

(
∂u r 

∂θ
− u θ

)
+ �I122 

˙ ˜ D Iθ , 

˙ S Irz = A I1313 
∂u z 

∂r 
+ ( A I1331 + p ) 

∂u r 

∂z 
+ �I133 

˙ ˜ D Iz , 

˙ S Iθ r = A I2121 
1 

r 

(
∂u r 

∂θ
− u θ

)
+ ( A I1221 + p ) 

∂u θ

∂r 
+ �I122 

˙ ˜ D Iθ , 

˙ S Iθz = A 2323 
1 

r 

∂u z 

∂θ
+ (A I2332 + p) 

∂u θ

∂z 
, 

˙ S Izr = A I3131 
∂u r 

∂z 
+ (A I1331 + p) 

∂u z 

∂r 
+ �I133 

˙ ˜ D Iz , 

˙ S Izθ = A I3232 
∂u θ

∂z 
+ (A I2332 + p) 

1 

r 

∂u z 

∂θ
, (A.4)

and the components of the updated incremental electric field in (20) 2 as 

˙ E lIr = −∂ ˙ φ

∂r 
= �I111 

∂u r 

∂r 
+ �221 

1 

r 

(
∂u θ

∂θ
+ u r 

)
+ �I331 

∂u z 

∂z 
+ K I11 

˙ ˜ D Ir , 

˙ E lIθ = −1 

r 

∂ ˙ φ

∂θ
= �I122 

[
1 

r 

(
∂u r 

∂θ
− u θ

)
+ 

∂u θ

∂r 

]
+ K I22 

˙ ˜ D Iθ , 

˙ E lIz = −∂ ˙ φ

∂z 
= �I133 

(
∂u r 

∂z 
+ 

∂u z 

∂ r 

)
+ K I33 

˙ ˜ D Iz . (A.5)

Appendix B 

G 1 = 

⎡ 

⎢ ⎣ 

−1 −m −kr 0 

m ( 1 − σrr /γ12 ) (1 − σrr /γ12 ) 0 0 

kr ( 1 − σrr /γ13 ) 0 0 0 

ξ1 − mσrr 

γ12 

�I122 

K I22 
0 0 

⎤ 

⎥ ⎦ 

, G 2 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 0 

0 

1 
γ12 

0 − m 

γ12 

�I122 

K I22 

0 0 

1 
γ13 

− kr 
γ13 

�I133 

K I33 

0 

m 

γ12 

�I122 

K I22 

kr 
γ13 

�I133 

K I33 
ξ2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (B.1)

G 3 = 

⎡ 

⎢ ⎣ 

κ11 κ12 κ13 −( �I111 − �I221 ) 
κ12 κ22 κ23 −m ( �I111 − �I221 ) 
κ13 κ23 κ33 −kr ( �I111 − �I331 ) 

�I111 − �I221 m ( �I111 − �I221 ) kr ( �I111 − �I331 ) −K I11 

⎤ 

⎥ ⎦ 

, 

G 4 = 

⎡ 

⎢ ⎣ 

1 − m ( γ12 −σrr ) 
γ12 

− kr ( γ13 −σrr ) 
γ13 

ξ1 

n − γ12 −σrr 

γ12 
0 − nσrr 

γ12 

�I122 

K I22 

kr 0 0 0 

0 0 0 0 

⎤ 

⎥ ⎦ 

, (B.2)

in which 

γ12 = A I1212 −
�2 

I122 

K I22 

, γ21 = A I2121 −
�2 

I122 

K I22 

, γ23 = A I2323 , 

γ13 = A I1313 −
�2 

I133 

K I33 

, γ31 = A I3131 −
�2 

I133 

K I33 

, γ32 = A I3232 , 

ξ1 = −
(

�I122 

K I22 

m 

2 

γ12 

+ 

�I133 

K I33 

k 2 r 2 

γ13 

)
σrr , 

ξ2 = −
(

m 

2 

K I22 

+ 

�2 
I122 

K 

2 
I22 

m 

2 

γ12 

+ 

k 2 r 2 

K I33 

+ 

�2 
I133 

K 

2 
I33 

k 2 r 2 

γ13 

)
, 

β12 = 

1 

2 

(
A I1111 + A I2222 − 2 A I1122 − 2 A I1221 + 

2�2 
I122 

K I22 

)
, 
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β13 = 

1 

2 

(
A I1111 + A I3333 − 2 A I1133 − 2 A I1331 + 

2�2 
I133 

K I33 

)
, 

κ11 = 2(γ12 − σrr + β12 ) + m 

2 

[
γ21 − ( γ12 − σrr ) 

2 

γ12 

]
+ k 2 r 2 

[
γ31 − ( γ13 − σrr ) 

2 

γ13 

]
, 

κ12 = m 

(
γ12 + γ21 + 2 β12 − σ 2 

rr 

γ12 

)
, 

κ13 = kr ( A I1111 + A I2233 − A I1122 − A I1133 + p ) , 

κ22 = 2 m 

2 (γ12 − σrr + β12 ) + γ21 − ( γ12 − σrr ) 
2 

γ12 

+ k 2 r 2 γ32 , 

κ23 = mkr ( A I1111 + A I2233 + A I2332 − A I1122 − A I1133 + 2 p ) , 

κ33 = 2 k 2 r 2 ( γ13 − σrr + β13 ) + m 

2 γ23 . (B.3) 

The detailed derivation of this Stroh formulation can be found in the paper by Su et al. (2019) . 
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