
Mechanics of Materials 42 (2010) 469–476
Contents lists available at ScienceDirect

Mechanics of Materials

journal homepage: www.elsevier .com/locate /mechmat
Bimodular rubber buckles early in bending

M. Destrade a,*, M.D. Gilchrist a, J.A. Motherway a, J.G. Murphy b

a School of Electrical, Electronic, and Mechanical Engineering, University College Dublin, Belfield, Dublin 4, Ireland
b Department of Mechanical Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland

a r t i c l e i n f o a b s t r a c t
Article history:
Received 10 August 2009

Keywords:
Incompressible elasticity
Bending instability
Bimodularity
0167-6636/$ - see front matter � 2009 Elsevier Ltd
doi:10.1016/j.mechmat.2009.11.018

* Corresponding author.
E-mail address: michel.destrade@ucd.ie (M. Dest
A block of rubber eventually buckles under severe flexure, and several axial wrinkles
appear on the inner curved face of the bent block. Experimental measurements reveal that
the buckling occurs earlier – at lower compressive strains – than expected from theoretical
predictions. This paper shows that if rubber is modeled as being bimodular, and specifi-
cally, as being stiffer in compression than in tension, then flexure bifurcation happens
indeed at lower levels of compressive strain than predicted by previous investigations
(these included taking into account finite size effects, compressibility effects, and strain-
stiffening effects). Here the effect of bimodularity is investigated within the theory of incre-
mental buckling, and bifurcation equations, numerical methods, dispersion curves, and
field variations are presented and discussed. It is also seen that Finite Element Analysis
software seems to be unable to encompass in a realistic manner the phenomenon of bend-
ing instability for rubber blocks.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Rubber is a highly deformable solid. When we are pre-
sented with a rubber band or a rubber string, we almost
automatically subject it to a large stretch to test its exten-
sibility and then sometimes consider its behavior in tor-
sion. However, a thick, stubby, rubber block does not lend
itself neither naturally to these two deformations, nor to
compression or shear. In fact, one can say that large bend-
ing (or flexure) is the favorite mode of deformation of rub-
ber blocks. Moreover, many engineering and industrial
devices rely on the excellent bending characteristics of
rubber blocks and subject them to countless bending/
straightening cycles. The importance of bending of blocks
in applications is the motivation for our study of their
stability.

Gent and Cho (1999) subjected blocks of natural rubber
to severe bending until they saw creases appearing on the
inner bent face. We might expect these axial wrinkles to
form on this bent face because of our intuitive notion of
. All rights reserved.

rade).
a region of tension and a region of compression in the
neighborhood of the outer and inner faces of a bent block,
respectively. Once circumferential line elements contract
up to a certain critical stretch kcr, say, the experiments of
Gent and Cho thus suggest that incremental wavy static
deformations can be superposed on the primary, non-lin-
ear bending deformation, signaling the onset of instability
(in the linearized sense). Gent and Cho (1999) assumed
that the inner face bending instability should occur at the
same critical stretch as that of surface instability of an
incompressible half-space. For the neo-Hookean material,
they therefore expected the inner face to buckle at
kcr ¼ 0:54, and were surprised to see it occur earlier, at
kcr ¼ 0:65� 0:07.

Their prediction relied on several assumptions. Several
studies have tested these assumptions to discover whether
modifying any of them would significantly increase the va-
lue of kcr. We now look at these assumptions in turn. First,
the incompressibility assumption: does the introduction of
slight compressibility (as is suitable for natural rubbers)
change the critical stretch of surface instability? The an-
swer, recently established by Murphy and Destrade
(2009), is that slight compressibility has little quantitative
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effect on the value of the critical ratio of compression for
surface instability; if anything, it makes the half-space
more stable. Next, the half-space assumption: does the
introduction of a finite size for the block make a big differ-
ence? The answer is also no, as shown by Haughton (1999)
and Coman and Destrade (2008), with the critical stretch
slightly increased from 0.54 (half-space in plane strain
compression) to 0.56 (block in large bending), with very
little variation with the block’s dimensions. The final
assumption is that the neo-Hookean strain-energy func-
tion is an adequate model of natural rubber. In fact, the
Mooney–Rivlin material, and also the most general third-
order elasticity model of incompressible materials, are all
equivalent to the neo-Hookean material in the case of
plane strain bending (Goriely et al., 2008; Destrade et al.,
accepted for publication) so that quite a wide variety of
materials reduce to the neo-Hookean form, although it is
characterized by only one material parameter, the initial
shear modulus. Moreover, Gent and Cho (1999) are correct
in their assertion that it might not be ‘necessary to con-
sider stress–strain relations incorporating finite-extensi-
bility effects’ for this problem. Destrade et al. (2009a)
studied the impact of the strain-stiffening effect on bend-
ing instability. Their conclusion is that it does promote
instability for materials which stiffen early (typically at
10–20% extension stretch) such as biological soft tissues,
but that it does not affect the bending instability of mate-
rials which stiffen at large stretches (at 200–600%, say)
such as natural rubbers.

In this paper, we investigate the influence of a com-
pletely different assumption, one that is usually implicit
in the study of non-linearly elastic materials and, in partic-
ular, implicit in the work of Gent and Cho (1999). This
assumption is that the mechanical behavior of rubber is
the same in tension as in compression.

Intuitively, we expect that there are regions of tension
and regions of compression in a deformed solid; however,
it is a far from trivial task to provide a rigorous definition of
these terms, especially in non-linear elasticity, as can be
seen in the elegant study by Curnier et al. (1995). Here
we focus on the flexure of a block, where intuition suggests
that the region near the outer face of the bent block is a re-
gion of ‘‘tension”, and the region near the inner face is a re-
gion of ‘‘compression”. In these regions, line elements
originally aligned along the length of the bar are extended
and contracted, respectively.

Another deformation where the distinction between
tension and compression can be determined on the basis
of intuition alone is that of simple tension and compres-
sion. Subjecting a sample of rubber to a large homoge-
neous tension is a routine mechanical engineering
experiment. Subjecting a block of rubber to a large homo-
geneous compression is, on the other hand, a much more
difficult task. In particular, it requires generous lubrication
to avoid non-homogeneous bulging of the sides and this
can lead to slippage of the block (Brown, 2005) and tilting
of the platens. There is a dearth of experimental data for
both tension and compression tests of a given rubber sam-
ple. The limited data available in the literature suggest that
rubbers can behave in a completely different way in one
protocol compared to the other. For example, Bechir et al.
(2006) measure a Poisson ratio of 0.48 in extension for
NR70 (i.e. close to incompressibility) but a Poisson ratio
of 0.26 in compression. Such bimodularity has also been ob-
served in a variety of other elastic materials, including
rocks (Lyakhovsky et al., 1997), nacre (Bertoldi et al.,
2008) and cartilage (Soltz and Ateshian, 2000). A biome-
chanical example of bimodularity can be found in Mirnajafi
et al. (2006) who measured the flexural stiffness of pig aor-
tic valve leaflets in the direction of natural leaflet motion
(Young’s modulus Eþ) and against that direction (Young’s
modulus E�) and found that 0:43 < Eþ=E� < 0:78. Bimodu-
larity, or tension/compression asymmetry, has long been
recognized as being important in the theory of plasticity.
Differences in the yield stresses between tension and com-
pression have been observed, for example, in copper alloys
(Yapici et al., 2007; Kuwabara et al., 2009) and in metallic
glasses (Schuh and Lund, 2003). It is our contention that
bimodularity can have a significant effect on the behavior
of elastic materials as well and should be taken into ac-
count, where possible, in the analysis of their behavior.

We illustrate our argument with a study of the instabil-
ity of flexure and find that it is promoted when the rubber
is stiffer in compression than in tension. We take the
neo-Hookean model (equivalent to Mooney–Rivlin and
third-order elasticity models in bending) as the base
strain-energy density. As mentioned earlier, only one
material parameter plays a role in bending for these mate-
rials, namely the initial shear modulus. Therefore only l̂,
the dimensionless ratio of the shear moduli in tension
and in compression, plays a role in the determination of
the critical stretch of compression of bimodular third-
order elasticity incompressible solids. We find that the lower
and mean values of Gent and Cho’s experimental range,
kcr ¼ 0:58 and kcr ¼ 0:65, are reached for a bimodular
block with l̂ ¼ 0:68 and l̂ ¼ 0:44, respectively. In general,
we find that bimodularity increases the value of the critical
stretch ratio of compression, and decreases the number of
expected wrinkles. A somewhat counter-intuitive outcome
is that it also increases the allowable angle of bending prior
to bifurcation. These results (Section 3.3) are the product of
an in-depth analysis of the large deformation field (Sec-
tion 2) and of the incremental equations of equilibrium
(Section 3.2). They rely on advanced numerical methods
and equations developed elsewhere (Destrade et al.,
2009a).

In the concluding section (Section 4), we also present
the output of a Finite Element Analysis simulation for the
flexure of a uni-modular neo-Hookean block, and find that
it is not satisfactory when confronted with experimental
observations (Fig. 1) and theoretical predictions.
2. Bimodular bending deformation

Take a block of length 2L, height H, and thickness 2A:

�A 6 X 6 A; �L 6 Y 6 L; 0 6 Z 6 H; ð2:1Þ

made of an incompressible, isotropic, homogeneous, non-
linearly elastic bimodular solid. Bend it under applied ter-
minal moments into the following circular, annular sector:

ra 6 r 6 rb; �a 6 h 6 a; 0 6 z 6 H; ð2:2Þ



Fig. 1. Bending a block of silicone, until creases appear on the inner face. Here the block has dimensions 16.5 cm � 5 cm � 6 cm, giving an aspect ratio
L=A ¼ 3:36. The end faces of the block were glued onto plexi-glass plates, and these are subjected manually to a bending moment. At least three axial
wrinkles are visible.

M. Destrade et al. / Mechanics of Materials 42 (2010) 469–476 471
where ra; rb are the inner and outer radii of the bent
block’s curved faces, corresponding to the planes
X ¼ �A and X ¼ A in the reference configuration, respec-
tively, and 2a is the bending angle ð0 6 a 6 pÞ. Here
ðX;Y ; ZÞ and ðr; h; zÞ are the rectangular and cylindrical po-
lar coordinates of a particle before and after deformation,
respectively. Flexure is described by Rivlin’s (1949)
solution

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2LX=aþ r2

a þ r2
b

� �
=2

q
; h ¼ aY=L; z ¼ Z; ð2:3Þ

from which it follows that

r2
b � r2

a ¼ 4AL=a: ð2:4Þ

The circumferential stretch k2 is a useful, non-dimensional
quantity, given by

k2 ¼ ar=L: ð2:5Þ

If then

ka
2 � ara=L; kb

2 � arb=L; ð2:6Þ

we may rewrite (2.4) as

kb
2

� �2
� ka

2

� �2 ¼ 2�; ð2:7Þ

where

� � 2aðA=LÞ ð2:8Þ

is a non-dimensional measure of the amount of bending.
Note that the curve separating the region of tension, where
1 6 k2 6 kb

2, from the region of compression, where
ka

2 6 k2 6 1 is called the neutral axis, defined by, for exam-
ple, Varga (1966), as

r ¼ rn � L=a: ð2:9Þ

We need a second relationship between ka
2 and kb

2 in or-
der to fully determine the deformation field. The classical
solution of the flexure problem due to Rivlin, where there
is of course no bimodularity, assumes that the curved sur-
faces are stress-free and this yields ka

2k
b
2 ¼ 1, which is inde-
pendent of the strain-energy function. In a bimodular block,
the stress-free boundary condition yields a second rela-
tionship that does depend on the form of the strain-energy
function assumed. Here we assume that

W� ¼ l� k�2
2 þ k2

2 � 2
� �

; ð2:10Þ

where l� are the shear moduli in tension and compression,
respectively. This is the plane strain form of the neo-Hook-
ean strain-energy function and we recall from the Intro-
duction that a wide class of materials reduces to this
form in plane strain. For this material, Destrade et al.
(2009b) show that when the curved faces of the bent block
are free of normal traction and the stress is continuous
throughout the bimodular block, then the following equa-
tion is obtained:

2�x3 þ ½1� 4�� l̂ð1� 2�Þ2�x2 � 2½1� �� l̂ð1� 2�Þ�x
þ 1� l̂ ¼ 0; ð2:11Þ

where x � ka
2

� ��2 and l̂ � lþ=l� is the ratio of the shear
moduli in the regions of tension and compression, respec-
tively. This is a bicubic in ka

2 and a quadratic in �.
Eqs. (2.7) and (2.11) determine completely the large

bending deformation for a bimodular neo-Hookean block,
with a given l̂, once the amount of bending � ¼ 2aðA=LÞ
is prescribed, since ka

2 can be determined from (2.11) and
kb

2 then obtained from (2.7). To illustrate the magnitude
of the stretches obtained, Fig. 2 shows the variations of
ka

2 with �.
Once �; ka

2; and kb
2 are known, the inner and outer radii,

as well as the neutral axis, are completely determined.
Normalized with respect to the block thickness, they are

ra

2A
¼ ka

2

�
;

rn

2A
¼ 1
�
;

rb

2A
¼ kb

2

�
: ð2:12Þ

Finally, the radial stress field is either lþrþ or l�r�,
depending on the region – tension or compression. Here,
the non-dimensional quantities r� are
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Fig. 2. Variations of ka
2, the circumferential stretch ratio on the inner bent face, with �, the product of the block aspect ratio and the bending angle, for

bimodular solids which are stiffer in compression than in tension. The ratio of the tension shear modulus to the compression shear modulus takes the
values: l̂ ¼ 1:0 (dotted line; homogeneous block), 0.8, 0.68, 0.6, 0.5, and 0.44 (full lines). The circles give an indication of the critical stretch of bending
instability, see Fig. 3.
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rþ ¼ 1
2

k2 þ k�2
2 � kb

2

� �2
� kb

2

� ��2
� �

;

r� ¼ 1
2

k2 þ k�2
2 � ka

2

� �2 � ka
2

� ��2
h i

: ð2:13Þ

This field leaves the bent faces free of normal traction.

3. Bimodular bending instability

3.1. The general method

Suppose that instead of specifying �, as in the last sec-
tion, ka

2, the circumferential stretch on the inner face, is pre-
scribed. Then (2.11) can be solved to determine �, with kb

2

determined from (2.7). We can then investigate whether,
at the prescribed stretch ka

2, a static incremental field can
be superimposed onto the large bending solution. If so, then
ka

2 is what is termed a critical stretch of bending instability,
kcr. The incremental equations of equilibrium used to deter-
mine these critical stretches are described next.

3.2. Bifurcation

For incompressible solids, the incremental equations of
equilibrium are (Ogden, 1984)

div _s ¼ 0; divu ¼ 0; ð3:1Þ

where _s is the incremental nominal stress and u is the
incremental mechanical displacement. We seek solutions
of these equations in the form

fu; _sg ¼ R ½Uðk2Þ;Vðk2Þ;0; Srrðk2Þ; Srhðk2Þ; 0�einh
	 


; ð3:2Þ

where U; V ; Srr ; Srh, are complex functions of k2 only and
n ¼ pp=a; p an integer; ð3:3Þ

gives the number of wrinkles on the bent faces.
Destrade et al. (2009a) formulated the following Stroh

form of the incremental equations:

d
dk2

gðk2Þ ¼
i
k2

G�ðk2Þgðk2Þ; ð3:4Þ

where

g � U;V ; irSrr; irSrh½ �t ð3:5Þ

is the displacement-traction vector (Shuvalov, 2003). The
components of the matrices G� are given by

G� ¼

i �n 0 0
�n 1�r�k2

2

� �
�i 1�r�k2

2

� �
0 �k2

2=l�

j�11 ij�12 �i �n 1�r�k2
2

� �
�ij�12 j�22 �n i 1�r�k2

2

� �

2
66664

3
77775;

ð3:6Þ

where

j�11 ¼ l� k2
2 þ 3k�2

2 � 2r� þ n2k2
2 1� k�2

2 � r�
� �2

h in o
;

j�12 ¼ nl� 2k2
2 þ 2k�2

2 � k2
2ðr�Þ

2
h i

;

j�22 ¼ l� k2
2 � k2

2 k�2
2 � r�

� �2 þ n2 k2
2 þ 3k�2

2 � 2r�
� �h i

:

ð3:7Þ

The bifurcation problem is a two-point boundary value
problem. Thus (3.4) must be integrated numerically, sub-
ject to the following boundary conditions of zero incre-
mental traction on the bent faces:



M. Destrade et al. / Mechanics of Materials 42 (2010) 469–476 473
g ka
2

� �
¼ U ka

2

� �
;0

� �t
; g kb

2

� �
¼ U kb

2

� �
;0

h it
: ð3:8Þ

Following the approach of Haughton (1999), the value of n,
defined in (3.3), is determined by assuming that there are
no incremental normal tractions on the plane end-faces
h ¼ �a. We must also enforce the continuity of displace-
ment and traction (i.e. of g) across the neutral axis (at
k2 ¼ 1). Several strategies exist to tackle this problem. To
find kcr only, the compound matrix method is most efficient;
to find kcr and the mechanical fields throughout the block,
the impedance matrix method works very well. In the for-
mer case, we have to integrate numerically a linear system
satisfied by the compound matrix; in the latter case, we
have to integrate numerically a Riccati equation satisfied
by the conditional surface impedance matrix (see Destrade
et al. (2009a) for details).
3.3. Results

For a given bimodular material, l̂ ¼ lþ=l� is pre-
scribed. Non-dimensionalising the incremental equations
(3.4) yields two independent, non-dimensional parame-
ters: kcr and L=ðpAÞ. Plotting then kcr versus L=ðpAÞ yields
master curves for the ‘‘physical” dispersion curves, which
give the critical stretch ratio kcr versus the block aspect ra-
tio L=A, for p ¼ 1;2;3; . . .. The maximum of the master
curve is a good indicator of the physical critical stretch of
a block with a given aspect ratio. Further details can be
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Fig. 3. How bimodularity promotes bending instability. As the difference b
l̂ ¼ 1:0; 0:8; . . . ;0:44ð Þ, the critical stretch of bending increases. (We checked se

block becomes more stable.) The circles indicate the maximum of each curve, and
Fig. 4.
found in Haughton (1999), Coman and Destrade (2008)
and Destrade et al. (2009a).

Consequently, we plot these master curves for various
values of l̂ within the range 0:44 6 l̂ 6 1; the upper value
restricts attention to bimodular solids which are stiffer in
compression than in tension, the choice of the arbitrary
lower value will be explained shortly. Qualitatively, we
find that the bending instability occurs earlier for bimodu-
lar solids than for a uni-modular block l̂ ¼ 1ð Þ, in line with
results on coated blocks (Dryburgh and Ogden, 1999) and
bilayered blocks (Roccabianca et al., submitted for publica-
tion). Quantitatively, we find that the lower value of the
Gent and Cho (1999) range, i.e. kcr ¼ 0:65� 0:07 ¼ 0:58,
corresponds to l̂ ¼ 0:68 whilst their mean value,
kcr ¼ 0:65 corresponds to l̂ ¼ 0:44, see Fig. 3. On that fig-
ure, we note that the maximum of each master curve in-
creases as the bimodularity becomes more pronounced.

There is a seemingly counter-intuitive result worth not-
ing: although instability is clearly promoted by bimodular-
ity, in the sense that kcr is increased, a bimodular block can
nonetheless be bent further than its uni-modular counter-
part before instability occurs, given that instability for a
bimodular block corresponds to a larger value of the
amount of bending � ¼ 2aðA=LÞ. This is clear from the
observation of the circles in Fig. 2, which indicate the onset
of bending instability. This occurs not alone at a higher va-
lue of k2 than the homogeneous (uni-modular) block (at
l̂ ¼ 1), but also at a higher value of �. We illustrate this
observation further with a specific example.
3.02.52.0

μ=0.44^

0.68
0.6

0.5

(pA)

etween compressive and tensile behaviors becomes more pronounced
parately that when the solid is stiffer in tension than in compression, the

give a good indication of the ‘‘physical critical stretch” of bifurcation, see
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Fig. 4. Dispersion curves for a given bimodular block, with l̂ ¼ 0:68. Depending on the aspect ratio L=A of the block, a certain mode of buckling is triggered
at kcr. Except for unrealistically short and stubby blocks, kcr is confined within the range 0.578–0.580, that is, close to the value indicated by the circle in
Fig. 3. For example, a block with aspect ratio L=A ¼ 3:36 (like the silicone block of Fig. 1) experiences bending instability when the circumferential stretch
reaches 0.5797 approx. and three axial wrinkles should appear ðp ¼ 3Þ, as can be easily seen from consideration of the vertical hash line.

Fig. 5. Mechanical displacement field in bent blocks with aspect ratio
L=A ¼ 3:36 (like the block of Fig. 1). On the left: uni-modular block
l̂ ¼ 1ð Þ; on the right: a bimodular block with l̂ ¼ 0:68. First stage:

undeformed configuration. Second stage: maximum bending, prior to
bifurcation; here the angles of bending are 275� and 319�, for the uni-
modular and the bimodular blocks, respectively, corresponding to critical
stretches of 0.56 and 0.58, respectively. Third stage: incremental buck-
ling; here 8 wrinkles and 3 wrinkles appear on the inner face of the uni-
modular block and of the bimodular block, respectively. The thick line is
the neutral axis, where line elements are neither extended nor
contracted.
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Fig. 4 displays the dispersion curves p ¼ 1;2; . . . ;6 when
l̂ ¼ 0:68. When the aspect ratio L=A ¼ 3:36 (this is the as-
pect ratio of the silicone block used in Fig. 1), it is clear
from the figure that its inner face buckles in bending when
p ¼ 3 and ka

2 ¼ 0:5797.
Fig. 5 contrasts this incremental buckling field through-
out the bent block (right-hand side of the figure) with the
corresponding uni-modular field. From (2.11), the corre-
sponding amount of bending for the bimodular block is
� ¼ 1:660, giving a bending angle of 2a ¼ �ðL=AÞ ¼ 319�.
In comparison, a uni-modular block l̂ ¼ 1ð Þ with the same
dimensions buckles in bending with p ¼ 8 at kcr ¼ 0:5612
(left side of the figure). Hence, by moving the maximum
of the master curve upwards and to the right in Fig. 3,
bimodularity promotes earlier buckling (kcr increases),
with fewer wrinkles (p decreases). At the same time, � in-
creases too (see Fig. 2), which means that the critical bend-
ing angle is larger. Note that Fig. 5 displays the correct
(scaled) size of the bent blocks relative to the undeformed
blocks. Similarly, the amplitude of the incremental wrin-
kles on the outer face is computed relative to their ampli-
tude on the inner face. However, the amplitude of the
wrinkles relative to the large bending displacement is not
known, because the incremental analysis is linear.

4. Concluding remarks

Gent and Cho (1999) showed experimentally that a
block of rubber buckles in bending when the circumferen-
tial stretch is 0:65� 0:07, earlier than their prediction
based on surface buckling, where the critical stretch is
0.54. Previous modeling attempts at finding a satisfactory
explanation for this early buckling have failed. They in-
cluded taking into account slight compressibility, finite
dimensions, and the strain-stiffening effect. Here we inves-
tigated how bimodularity might affect the bending instabil-
ity of rubber blocks, and found that if the rubber is stiffer in
compression than in tension, then the bending buckling



Fig. 6. Finite element simulation of the large flexure of a block with the same dimensions as the block of Fig. 1. The top pictures show the results of the
simulation just prior to folding of the inner surface (first picture) and after (second picture). The bottom pictures show zooms on the fold in the buckled
geometry.
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does occur earlier. Our detailed analysis also revealed that
the bimodular block can be bent by a larger angle than the
corresponding uni-modular block with the same dimen-
sions. It was important to evaluate the effect of bimodular-
ity for the flexure stability problem, because numerical
simulations using the Finite Element Method do not pro-
vide physical and realistic predictions. We conclude the pa-
per by summarizing our numerical simulation experiments.

We used the commercial Finite Element Analysis
software Abaqus (Dassault Systèmes Simulia Corp., Provi-
dence, Rhode Island, USA) to simulate numerically the flex-
ure of a uni-modular block with the same dimensions
(16.5 cm � 5 cm � 6 cm) as the silicone block of Fig. 1. We
measured its mass density as being q ¼ 641:176 kg m�3.
A hyperelastic material model was chosen using the neo-
Hookean form of the strain-energy potential defined as fol-
lows: initial shear modulus l = 0.6 MPa and initial Poisson
ratio 0.4999 (to mimic incompressibility). A reference point
at the center of each of the respective end faces of the block
governed the movement of each of these faces by means of
a coupling constraint. Each of the reference points was dis-
placed 3.91 cm towards the other, and they were rotated by
60�. These values were computed as being consistent with
Rivlin’s plane strain solution (2.3). The displacement and
rotation were ramped linearly over a time step of 0.5 s.
The mesh consisted of first-order fully integrated 8 noded
hexahedral 3D continuum elements, enhanced by incom-
patible modes to improve their bending behavior. The anal-
ysis was computed using explicit procedures to allow for
the large deformation. We looked at different types of ele-
ment formulations and mesh refinements, but always
found the same following trends in the final output. As
shown in Fig. 6, Abaqus predicts that under severe bending,
the block should experience the formation of a single fold,
centered axially on the inner bent face. This fold occurs at
a smaller bending angle, and at larger strains, than ob-
served experimentally and predicted theoretically. Other
inconsistencies include the absence of other folds, the
opposite of the anti-clastic effect (in the sense that the out-
er face widens while the inner face shrinks), and the pene-
tration of the fold inside the block (as seen on the last
picture).
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