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a b s t r a c t

The Holzapfel–Gasser–Ogden (HGO) model for anisotropic hyperelastic behaviour of

collagen fibre reinforced materials was initially developed to describe the elastic properties

of arterial tissue, but is now used extensively for modelling a variety of soft biological

tissues. Such materials can be regarded as incompressible, and when the incompressibility

condition is adopted the strain energy Ψ of the HGO model is a function of one isotropic

and two anisotropic deformation invariants. A compressible form (HGO-C model) is widely

used in finite element simulations whereby the isotropic part of Ψ is decoupled into

volumetric and isochoric parts and the anisotropic part of Ψ is expressed in terms of

isochoric invariants. Here, by using three simple deformations (pure dilatation, pure shear

and uniaxial stretch), we demonstrate that the compressible HGO-C formulation does not

correctly model compressible anisotropic material behaviour, because the anisotropic

component of the model is insensitive to volumetric deformation due to the use of

isochoric anisotropic invariants. In order to correctly model compressible anisotropic

behaviour we present a modified anisotropic (MA) model, whereby the full anisotropic

invariants are used, so that a volumetric anisotropic contribution is represented. The MA

model correctly predicts an anisotropic response to hydrostatic tensile loading, whereby a

sphere deforms into an ellipsoid. It also computes the correct anisotropic stress state for

pure shear and uniaxial deformations. To look at more practical applications, we

developed a finite element user-defined material subroutine for the simulation of stent

deployment in a slightly compressible artery. Significantly higher stress triaxiality and

arterial compliance are computed when the full anisotropic invariants are used (MA

model) instead of the isochoric form (HGO-C model).
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Nomenclature

I identity tensor
Ψ Helmholtz free-energy (strain-energy) function
Ψvol volumetric contribution to the free energy
Ψaniso anisotropic contribution to the free energy
Ψ iso isotropic contribution to the isochoric free energy
Ψ aniso anisotropic contribution to the isochoric

free energy
σ Cauchy stress
σ0 deviatoric Cauchy stress
q von Mises equivalent stress
σhyd hydrostatic (pressure) stress
F deformation gradient
J determinant of the deformation gradient; local

ratio of volume change
C right Cauchy–Green tensor
I1 first invariant of C
I4;6 anisotropic invariants describing the deformation

of reinforcing fibres

F isochoric portion of the deformation gradient
C isochoric portion of the right Cauchy–Green

deformation tensor
I1 first invariant of C
I4;6 isochoric anisotropic invariants
a0i, i¼4, 6 unit vector aligned with a reinforcing fibre in

the reference configuration
ai, i¼4, 6 updated (deformed) fibre direction (¼ Fa0i)
κ0 isotropic bulk modulus
μ0 isotropic shear modulus
ki, i¼1, 2 anisotropic material constants
ν isotropic Poisson's ratio

Bold uppercase symbols represent second order
tensors, bold lowercase symbols represent vec-
tors and un-bold symbols represent scalars.
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1. Introduction

The anisotropic hyperelastic constitutive model proposed
by Holzapfel et al. (2000) (henceforth referred to as the
HGO model) is used extensively to model collagen fibre-
reinforced biological materials, even more so now that it
has been implemented in several commercial and open-
source Finite Element (FE) codes for the simulation of soft
tissue elasticity.

The constitutive equation builds upon previously pub-
lished transversely isotropic constitutive models (e.g. Weiss
et al., 1996) and reflects the structural components of a
typical biological soft tissue, hence its strain-energy density
consists of two mechanically equivalent terms accounting for
the anisotropic contributions of the reinforcing fibre families,
in addition to a term representing the isotropic contribution
of the ground matrix in which the fibres are embedded. Also,
it assumes that the collagen fibres do not support compres-
sion, and hence they provide a mechanical contribution only
when in tension (this may be taken care of by pre-multiplying
each anisotropic term with a Heaviside, or “switching”,
function).

For the original incompressible HGO model the strain
energy Ψ is expressed as a function of one isochoric isotropic
deformation invariant (denoted as I1) and two isochoric
anisotropic invariants (denoted as I4 and I6). A Lagrange
multiplier is used to enforce incompressibility (Holzapfel
et al., 2000). Once again it should be stressed that the original
HGO model is intended only for the simulation of incom-
pressible materials.

A modification of the original HGO model commonly
implemented in finite element codes entails the replacement
of the Lagrange multiplier penalty term with an isotropic
hydrostatic stress term that depends on a user specified bulk
modulus. This modification allows for the relaxation of the
incompressibility condition and we therefore refer to this
modified formulation as the HGO-C (compressible) model for
the remainder of this study.

The HGO-C model has been widely used for the finite
element simulation of many anisotropic soft tissues. For
example, varying degrees of compressibility have been
reported for cartilage in the literature (e.g. Guilak et al.,
1995; Smith et al., 2001). It has been modelled as a compres-
sible material using the HGO-C model (e.g. Peña et al., 2007
used Poisson's ratio, ν¼ 0:1 and Pérez del Palomar and
Doblaré (2006) used ν¼ 0:1 and ν¼ 0:4). To date, material
compressibility of arterial tissue has not been firmly estab-
lished. Incompressibility was assumed by the authors of the
original HGO model and in subsequent studies (e.g. Kiousis
et al., 2009). However many studies model arteries as com-
pressible or slightly compressible (e.g. Cardoso et al., 2014,
ν¼ 0:33–0:43 and Iannaccone et al., 2014, ν¼ 0:475). In addi-
tion to arterial tissue the nucleus pulposus of an inter-
vertebral disc has been modelled as a compressible aniso-
tropic material using the HGO-C model (e.g. Maquer et al.,
2014, ν¼ 0:475). Furthermore the HGO-C formulation has been
used to simulate growth of anisotropic biological materials,
where volume change is an intrinsic part of a bio-mechanical
process (e.g. Huang et al., 2012, ν¼ 0:3). However, the enforce-
ment of perfect incompressibility may not be readily
achieved in numerical models. As an example, the finite
element solver Abaqus/Explicit assigns a default Poisson's
ratio of 0.475 to “incompressible” materials in order to
achieve a stable solution (Abaqus, 2010) and in this case the
HGO-C model must be used (e.g. Conway et al., 2012; Famaey
et al., 2012). Despite the widespread use of the HGO-C model,
its ability to correctly simulate anisotropic compressible
material behaviour has not been established previously:
�
 The first objective of this study is to demonstrate that the
HGO-C formulation does not correctly model an anisotro-
pic compressible hyperelastic material.
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Recently, Vergori et al. (2013) showed that under hydrostatic
tension, a sphere consisting of a slightly compressible HGO-C

material expands into a larger sphere instead of deforming
into an ellipsoid. It was suggested that this effectively
isotropic response is due to the isochoric anisotropic invar-
iants Ii being used in the switching function instead of the
full invariants Ii, i¼4, 6. However, in the current paper we
show that the problem emerges fundamentally because there
is no dilatational contribution to the anisotropic terms of Ψ .
In fact, modifying only the “switching criterion” for fibre
lengthening is not sufficient to fully redress the problem:
�
 The second objective of the study is to implement a
modification of the HGO-C model so that correct aniso-
tropic behaviour of compressible materials is achieved.

This modified anisotropic (MA) model uses the full form of
the anisotropic invariants and through a range of case studies
we show that this leads to the correct computation of stress
in contrast to the widely used HGO-C model.

The paper is structured as follows. In Section 2 we demon-
strate and highlight the underlying cause of the insensitivity
of the anisotropic component of the HGO-C model to volu-
metric deformation in compressible materials. We demon-
strate that modification of the model to include the full form of
the anisotropic invariants corrects this deficiency. In Section 3
we show how the HGO-C model yields unexpected and
unphysical results for pure in-plane shear and likewise in
Section 4 for simple uniaxial stretching, in contrast to the
modified model. We devote Section 5 to two Finite Element
biomechanics case studies, namely pressure expansion of an
artery and stent deployment in an artery, and illustrate the
significant differences in computed results for the HGO-C
model and the modified model. Finally, we provide some
concluding remarks and discussion points in Section 6.
2. Theory: compressible anisotropic
hyperelastic constitutive models

2.1. HGO-C model for compressible materials

The original HGOmodel is intended for incompressiblematerials.
However a variation of the HGO model whereby a bulk modulus
is used instead of a penalty term has been implemented in a
number of FE codes. Several authors have used this formulation
to model compressible anisotropic materials by using a relatively
low value of bulk modulus. An important objective of this paper
is to highlight that this HGO-C formulation does not correctly
model compressible anisotropic material behaviour.

The kinematics of deformation are described locally in
terms of the deformation gradient tensor, denoted as F,
relative to some reference configuration. The right Cauchy–
Green tensor is defined by C¼ FTF, where T indicates the
transpose of a second-order tensor.

Hyperelastic constitutive models used for rubber-like
materials often split the local deformation into volume-
changing (volumetric) and volume-preserving (isochoric, or
deviatoric) parts. Accordingly the deformation gradient F is
decomposed multiplicatively as follows:

F¼ ðJ1=3IÞF; ð1Þ

where J is the determinant of F. The term in the brackets
represents the volumetric portion of the deformation gradient
and F is its isochoric portion, such that detðFÞ ¼ 1 at all times.

Suppose that the material consists of an isotropic matrix
material within which are embedded two families of fibres
characterized by two preferred directions in the reference
configuration defined in terms of two unit vectors a0i, i¼4, 6.
With C, J and a0i are defined the invariants

I1 ¼ trðCÞ; I4 ¼ a04 � ðCa04Þ; I6 ¼ a06 � ðCa06Þ; ð2Þ

I1 ¼ J�2=3I1; I4 ¼ J�2=3I4; I6 ¼ J�2=3I6; ð3Þ

where Ii (i¼ 1;4;6) are the isochoric counterparts of Ii. The HGO
model proposed by Holzapfel et al. (2000) for collagen rein-
forced soft tissues additively splits the strain energy Ψ into
volumetric, isochoric isotropic and isochoric anisotropic terms:

Ψ ðC;a04;a06Þ ¼ΨvolðJÞ þ Ψ isoðCÞ þ Ψ anisoðC;a04;a06Þ; ð4Þ

where Ψ iso and Ψ aniso are the isochoric isotropic and isochoric
anisotropic free-energy contributions, respectively, and C ¼
J�2=3C is the isochoric right Cauchy–Green deformation tensor.

In numerical implementations of the model (Abaqus, 2010;
ADINA, 2005; Gasser and Holzapfel, 2002), the volumetric
and isochoric isotropic terms are represented by the slightly
compressible neo-Hookean hyperelastic free energy:

Ψvol Jð Þ ¼ 1
2 κ0ðJ�1Þ2; Ψ iso C

� �¼ 1
2μ0 I1�3

� �
; ð5Þ

where κ0 and μ0 are the bulk and shear moduli, respectively,
of the soft isotropic matrix. Of course one may write (5) in
terms of the full invariants also, using the results from (3).

The isochoric anisotropic free-energy term is prescribed as

Ψ aniso C;a04;a06
� �¼ k1

2k2
∑

i ¼ 4;6
fexp ½k2ðIi�1Þ2��1g; ð6Þ

where k1 and k2 are the positive material constants which can
be determined from experiments.

For a general hyperelastic material with free energy Ψ the
Cauchy stress is given by

σ ¼ 1
J
F
∂Ψ
∂F

: ð7Þ

For the Cauchy stress derived from Ψ above, we have the
decomposition σ ¼ σvolþσ iso þ σaniso, where

σvol ¼ κ0 J�1ð ÞI; σ iso ¼ μ0J
�1 B�1

3I1I
� �

; ð8Þ

with B ¼ FF
T
, and

σaniso ¼ 2k1J�1 ∑
i ¼ 4;6

Ii�1
� �

exp k2ðIi�1Þ2� �
a i � a i�

1
3
IiI

� �
; ð9Þ

where a i ¼ Fa0i. This slightly compressible implementation is
referred to as the HGO-C model henceforth.

The original incompressible HGO model by Holzapfel et al.
(2000) specified that for arteries the constitutive formulation
should be implemented for incompressible materials. In that
limit, κ0-1, ðJ�1Þ-0 while the product of these two quan-
tities becomes an indeterminate Lagrange multiplier, p, and
the volumetric stress assumes the form, σvol ¼ �pI. Indeed
the original incompressible HGO model can equally be
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expressed in terms of the full invariants I4 and I6 (with J-1)
(e.g., Holzapfel et al., 2004).

However, in the case of the HGO-C implementation, if κ0
is not fixed numerically at a large enough value, then slight
compressibility is introduced into the model. The key point
of this paper is that the isochoric anisotropic term Ψ aniso

defined in (6) does not provide a full representation of the
anisotropic contributions to the stress tensor for slightly
compressible materials. In Section 2.4 we introduce a simple
modification of the anisotropic term to account for material
compressibility.

2.2. Pure dilatational deformation

First we consider the case of the HGO-C material subjected to
a pure dilatation with stretch λ¼ J1=3, so that

F¼ λI; C¼ λ2I; J¼ λ3: ð10Þ

We expect that an anisotropic material requires an aniso-
tropic stress state to maintain the pure dilatation. However,
calculation of the invariants Ii and Ii yields

Ii ¼ a0i � ðCa0iÞ ¼ λ2; Ii ¼ J�2=3Ii ¼ 1; i¼ 4; 6; ð11Þ

so that while Ii is indeed the square of the fibre stretch and
changes with the magnitude of the dilatation, its isochoric
counterpart Ii is always unity. Referring to (9), it is clear that
the entire anisotropic contribution to the stress (7) disappears
(i.e. σaniso � 0), and the remaining active terms are the
isotropic ones. Thus, under pure dilatation, the HGO-C model
computes an entirely isotropic state of stress.

2.3. Applied hydrostatic stress

Now we investigate the reverse question: what is the
response of the HGO-C material to a hydrostatic stress

σ ¼ σI; ð12Þ

where σ40 under tension and σo0 under pressure? In an
anisotropic material, we expect the eigenvalues of C, the
squared principal stretches, λ21, λ22, λ23 say, to be distinct.
Hence, if the material is slightly compressible, then a sphere
should deform into an ellipsoid (Vergori et al., 2013) and a
cube should deform into a hexahedron with non-parallel
faces (Ní Annaidh et al., 2013).

However, in the HGO-C model the Ψ aniso contribution is
switched on only when Ii (not Ii) is greater than unity. Vergori
et al. (2013) showed that in fact Ii is always less than or equal
to one in compression and in expansion under hydrostatic
stress, so that the HGO-C response is isotropic, contrary to
physical expectations. Then we may ask if removal of the
switching function circumvents this problem so that aniso-
tropic response is obtained.

With the fibres taken to be mechanically equivalent
and aligned with a04 ¼ ð cos Θ; sin Θ;0Þ and a06 ¼ ð cos Θ;

� sin Θ;0Þ in the reference configuration, we have, by sym-
metry, I6 ¼ I4 and I6 ¼ I4 and Ψ 6 ¼ Ψ 4, where the subscripts 4
and 6 on Ψ signify partial differentiation with respect to I4
and I6, respectively. Similarly, in the following the subscript 1
indicates differentiation with respect to I1. For this special
case, Vergori et al. (2013) showed that the stretches arising
from the application of a hydrostatic stress are

λ1 ¼ J1=3
Ψ 1ðΨ 1 þ 2Ψ 4 sin 2 ΘÞ
ðΨ 1 þ 2Ψ 4 cos 2 ΘÞ2

" #1=6

;

λ2 ¼ J1=3
Ψ 1ðΨ 1 þ 2Ψ 4 cos 2 ΘÞ
ðΨ 1 þ 2Ψ 4 sin 2 ΘÞ2

" #1=6

;

λ3 ¼ J1=3
Ψ

2
1 þ 2Ψ 1Ψ 4 þ Ψ

2
4 sin 2 2Θ

Ψ
2
1

" #1=6

: ð13Þ

Explicitly,

Ψ 1 ¼ ∂Ψ
∂I1

¼ 1
2
μ0; Ψ 4 ¼ ∂Ψ

∂I4
¼ k1 I4�1

� �
exp k2ðI4�1Þ2� �

: ð14Þ

Looking at (13), we see that there is a solution to the
hydrostatic stress problem where the stretches are unequal,
so that a sphere deforms into an ellipsoid. However, there is
also another solution for which I4 � 1, in which case, Ψ 4 � 0
by the above equation, and then λ1 ¼ λ2 ¼ λ3 ¼ J1=3 by (13).
Thus, a sphere then deforms into another sphere.

Of those (at least) two possible paths, FE solvers converge
upon the isotropic solution. One possible explanation for this
may be that the initial computational steps calculate strains in
the small-strain regime. In that regime, Vergori et al. (2013)
showed that all materials with a decoupled volumetric/isocho-
ric free-energy behave in an isotropic manner when subject to a
hydrostatic stress. Hence the first computational step brings the
deformation on the isotropic path, and I4 ¼ 1 throughout. In
Sections 2.2 and 2.3 we have thus demonstrated that the use of
an isochoric form of the anisotropic strain energy Ψ aniso from
the HGO model in the HGO-C model cannot yield a correct
response to pure dilatation or applied hydrostatic stress.

2.4. Modified anisotropic model for compressible materials

In order to achieve correct anisotropic behaviour for com-
pressible materials we introduce a modification to the aniso-
tropic term of the HGO model, whereby the anisotropic strain
energy is a function of the ‘total’ right Cauchy–Green defor-
mation tensor C, rather than its isochoric part C, so that

Ψ ðJ;C;a04;a06Þ ¼ΨvolðJÞ þ Ψ isoðJ;CÞ þ ΨanisoðC;a04;a06Þ; ð15Þ

where the expressions for strain energy density terms Ψvol

and Ψ iso are the same as those in (5), and

Ψaniso C;a04;a06ð Þ ¼ k1
2k2

∑
i ¼ 4;6

fexp½k2ðIi�1Þ2��1g: ð16Þ

This modification to the HGO-C model is referred to as the
modified anisotropic (MA) model hereafter. Combining (5), (15)
and (16), the Cauchy stress for the MA model is determined
using (7) and the decomposition σ ¼ σvolþσ iso þ σaniso resulting
in the expression:

σ ¼ k0 J� 1ð ÞIþ m0J
�5=3 B� 1

3
I1I

� �

þ 2J�1k1 S
i ¼ 4;6

Ii � 1ð Þ exp k2ðIi � 1Þ2� �
ai⊗aið Þ: ð17Þ

where ai ¼ Fa0i, i¼4, 6. Now it is easy to check that in the
cases of a pure dilatation and of a hydrostatic stress, the MA
model behaves in an anisotropic manner, because the term
Ii�1a0 and hence Ψanisoa0 and σanisoa0. This resolves the
issues identified above for the HGO-C model.



Fig. 1 – (A) Schematic of an undeformed sphere highlighting three radii on orthogonal axes, 1–2–3, centred at the sphere
origin. Two families of fibres are contained in the ð1;2Þ plane and symmetric about the 1-axis. (B) Computed (deformed/
undeformed) ratios ðr=r0Þ of the orthogonal radii for both MA and HGO-C models versus the ratio σhyd=σ

max
hyd . Note that the

deformation computed for the HGO-C model incorrectly remains spherical. (C) Deformed ellipsoidal shape computed for the
MA model; contours illustrate the inhomogeneous distribution of stress triaxiality (σhyd=q) throughout the deformed body.
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We have developed a user-defined material model (UMAT)
Fortran subroutine to implement the MA formulation for the
Abaqus/Standard FE software. The FE implicit solver requires
that both the Cauchy stress and the consistent tangent
matrix (material Jacobian) are returned by the subroutine.
Appendix A gives the details of the consistent tangent matrix.

We have used the above subroutine to repeat the simula-
tions of expansion of a sphere under hydrostatic tension of
Vergori et al. (2013), this time using the MA formulation.
Again two families of fibres are assumed, lying in the ð1;2Þ
plane and symmetric about the 1-axis (the sphere and axes
are shown in Fig. 1A). The displacements of points on the
surface of the sphere at the ends of three mutually orthogo-
nal radii with the increasing applied hydrostatic tension are
shown in Fig. 1B. Clearly the sphere deforms into an ellipsoid
with a major axis oriented in the 3-direction and a minor axis
oriented in the 1-direction, confirming the simulation of
orthotropic material behaviour. The distribution of stress
triaxiality in the deformed ellipsoid, measured by σhyd=q, is
shown in Fig. 1C, where σhyd � trðσÞ=3 is the hydrostatic
stress and q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2σ' : σ'

p
is the von Mises equivalent stress,

with σ0 being the deviatoric Cauchy stress tensor. Clearly
an inhomogeneous stress state is computed in the
deformed body.

The results shown in Fig. 1 contrast sharply with the
equivalent simulations using the HGO-C model (Vergori et al.,
2013) superimposed in Fig. 1B for comparison. In that case a
similar fibre-reinforced sphere is shown to deform into a
larger sphere with a homogeneous stress distribution, indi-
cative of isotropic material behaviour.
3. Analysis of pure shear

A pure dilatation and a hydrostatic stress each represent a
highly idealized situation, unlikely to occur by themselves in
soft tissue in vivo. This section highlights that unphysical
behaviour can also emerge for common modes of
deformation if the anisotropic terms are based exclusively
on the isochoric invariants. Considering once again the
general case of a compressible anisotropic material, we analyse
the response of the HGO-C and MA models to pure in-plane
shear. Regarding the out-of-plane boundary conditions, we first
consider the case of plane strain (Section 3.1). Even though this
deformation is entirely isochoric the HGO-C model yields incor-
rect results. We then consider the case of plane stress (Section
3.2), and again demonstrate that the HGO-C model yields
incorrect results. By contrast, we show that the MA model
computes a correct stress state for all levels of compressibility
and specified deformations. In the following calculations we
assume a shear modulus μ0 ¼ 0:05 MPa and anisotropic material
constants k1 ¼ 1 MPa and k2 ¼ 100.

3.1. Plane strain pure shear

With restriction to the ð1; 2Þ plane we now consider the plane
strain deformation known as pure shear, maintained by the
application of a suitable Cauchy stress. In particular, we take
the deformation gradient for this deformation to have com-
ponents

F¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F212 þ 1

q
F12 0

F12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F212 þ 1

q
0

0 0 1

2
6664

3
7775; ð18Þ

where F12 is a measure of the strain magnitude. Fig. 2A
depicts the deformation of the ð1; 2Þ square cross section of
a unit cube, which deforms into a parallelogram symmetric
about a diagonal of the square. The deformation corresponds

to a stretch λ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F212 þ 1

q
þ F12 along the leading diagonal with

a transverse stretch λ�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F212 þ 1

q
�F12. We can think of the

deformation arising from displacement components applied
to the vertices of the square, as indicated in Fig. 2A. Two
families of fibres, with reference unit vectors a04 and a06, are
assumed to lie in the ð1;2Þ plane, as illustrated in Fig. 2A,



Fig. 2 – (A) Schematic illustrating the kinematics of the pure shear deformation of the ð1;2Þ section of a unit cube. Note the
rotated coordinate system ð10;20Þ, orientated at 451 to the ð1;2Þ-axes, used to specify the vertex displacement components u10

and u20 . Note also the vectors a0i, i¼4, 6, indicating the directions of the two families of fibres, with angle θ. Results are
displayed for a range of fibre orientations with θ from 7451 to 7901 with respect to the ð1;2Þ coordinate system. (B) Computed
stress ratio σ33=σ12 versus F12 for the HGO-C model, illustrating significant negative (compressive) stresses in the out-of-plane
direction. (C) Computed stress ratio versus F12 for the MA model, illustrating very small negative (compressive) stresses in the
out-of-plane direction (an order of magnitude lower than for the HGO-C model).
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oriented with angles 7θ to the 1-axis. We perform some
calculations for a range of fibre orientations for each of the
HGO-C and MA models.

First we note that although, for this specific case, the free
energies of the HGO-C and the MA models coincide (because
J¼1 and hence I4 ¼ I4), the corresponding stress tensors are
very different. This is due to the “deviatoric” form of the
anisotropic stress contribution that emerges for the HGO-C
model, as in the final term of (9), compared with the final
term of (17). It gives rise to a significant negative (compres-
sive) out-of-plane stress component σ33 which is comparable
in magnitude to σ12, as shown in Fig. 2B. Such a negative
stress is anomalous in the sense that for large κ0 the result for
the incompressible limit should be recovered, but it is not.
Indeed, if we start with the incompressible model we obtain
σ33 ¼ μ0�p, which is independent of σ12. However, as (18)
represents a kinematically prescribed isochoric deformation,
the volumetric stress in the HGO-C model goes to zero and
does not act as the required Lagrange multiplier.

By contrast, the out-of-plane compressive normal stress
component σ33 computed for the MA model is at least an order
of magnitude lower than the in-plane shear stress component
σ12 (Fig. 2C), and is close to zero for most fibre orientations. This
is consistent with the incompressible case because since p is
arbitrary it may be chosen to be μ0 so that σ33 ¼ 0. This is what
might be expected physically, given that the fibres and the
deformations are confined to the ð1;2Þ plane.

Because of the deviatoric component of the stress tensor
emerging from the HGO-C model, the trace of the Cauchy
stress is always zero when J¼1 as Eqs. (8) and (9) will confirm.
By contrast, the trace of the Cauchy stress is not zero for
the MA model. Hence the in-plane stress components are
significantly different from those for the HGO-C model, as
shown in Fig. 3A and B, respectively, for the case of a single
fibre family with θ¼ 301.
3.2. Plane stress pure shear

The kinematically prescribed isochoric deformation in
Section 3.1 is volume conserving and makes the Ψvol terms
equal to zero. We modify the out-of-plane boundary condi-
tion to enforce a plane stress (σ33 ¼ 0) simulation This allows
a compressible material to deform out-of-plane.

A plane stress pure shear deformation is given as

F¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F212 þ 1

q
F12 0

F12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F212 þ 1

q
0

0 0 F33

2
6664

3
7775; ð19Þ

where the out of plane stretch component F33 in general is
not equal to 1, so that the deformation is not in general
isochoric. If the bulk modulus κ0 is very large compared with
the initial shear modulus μ0, then it acts as a Lagrange
multiplier to enforce incompressibility, such that F33 ¼ 1 (at
least approximately). If the magnitude of the bulk modulus is
reduced, then the material becomes slightly compressible
and F33a1. Here we investigate the sensitivity of the stress
computed for the HGO-C and MA models to the magnitude of
the bulk modulus κ0.

First, we consider the almost incompressible case where
the ratio of bulk to shear modulus is κ0=μ0 ¼ 2� 106 for the
isotropic neo-Hookean component of the model, equivalent
to a Poisson ratio of ν¼ 0:49999975. The stress components
are shown in Fig. 4A. An important point to note is that in
this case the deformation is effectively isochoric, because we
find J¼ F33 ¼ 1:00006, and yet the HGO-C model predicts an
entirely different stress state from that for the kinematically
constrained isochoric deformation of the previous section
shown in Fig. 3B. This is because the volumetric term of the
free energy now contributes to the trace of the stress tensor,
and therefore the high magnitude of bulk modulus effectively



Fig. 4 – Dimensionless plots of the normal and in-plane shear Cauchy stress components σij=k1 versus F12 for the case of a single
family of fibres orientated at θ¼301. (A) Computed stresses for both the HGO-C andMAmodels with a large bulkmodulus κ0=μ0 ¼ 2�
106 (equivalent to a Poisson ratio of 0.49999975). (B) Computed stresses for the HGO-Cmodel with κ0=μ0 ¼ 50 (equivalent to a Poisson
ratio of 0.490). Note that the stresses computed for the HGO-C model are an order of magnitude lower in the slightly compressible
small bulk modulus case than in the almost incompressible large bulk modulus case.

Fig. 3 – Dimensionless stress components σij=k1 versus F12 for the case of a single family of fibres orientated at θ¼ 30deg.
A) MA model; (B) HGO-C model.
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acts as a Lagrange multiplier to enforce incompressibility.
Indeed for these conditions the HGO-C and MA models
behave identical to the original HGO model. However, unlike
the HGO-C model, the MA model computes identical stress
components for both the kinematically constrained isochoric
deformation (18) and the Lagrange multiplier enforced
volume preserving deformation (19).

If the incompressibility constraint is slightly relaxed, so
that κ0=μ0 ¼ 50 (ν¼ 0:490) the HGO-C model computes a very
different stress state, as shown in Fig. 4B, with stress
components being reduced by an order of magnitude. Thus
the HGO-C model is very sensitive to changes in the bulk
modulus and, consequently, incompressibility must be
enforced by choosing a very large magnitude for the bulk
modulus in order to avoid the computation of erroneous
stress states.

By contrast, the MA model computes identical stress
states for κ0=μ0 ¼ 2� 106 and κ0=μ0 ¼ 50 (Fig. 4A in both cases).
This response highlights the robustness of the MA model,
which computes correct results for all levels of material
compressibility (including the incompressible limit).
4. Uniaxial stretch

We now consider a confined uniaxial stretch, as illustrated in
Fig. 5A, where a stretch is imposed in the 2-direction
(λ2 ¼ λ41) and no lateral deformation is permitted to occur
in the 1- and 3-directions (λ1 ¼ λ3 ¼ 1). Such a simple deforma-
tion may have biomechanical relevance as, for example, in a
blood vessel undergoing large circumferential strain, but little
or no axial or radial strain.

We derive analytically the stress components for the
HGO-C and MA models using the formulas of Section 2. We
assume that there is a single family of parallel fibres aligned
with the reference unit vector a0 in the ð1;2Þ plane and with
orientation θ relative to the 1-axis ranging from 01 to 901. We
take μ0 ¼ 0:05 MPa, κ0 ¼ 1 MPa for the slightly compressible



Fig. 5 – (A) Schematic of confined uniaxial stretch (λ2 ¼ λ41, λ1 ¼ λ3 ¼ 1), showing the fibre family reference directional vector a0

in the ð1;2Þ plane. The ratio of the Cauchy stress components σ11=σ22 is computed based on a model with a single fibre family
and plotted as a function of λ. Results are displayed for a range of fibre orientations θ from 01 to 901. (B) Computed results for
the HGO-C model, illustrating negative (compressive) lateral stresses. (C) Computed results for the MA model, all lateral
stresses being positive (tensile).
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neo-Hookean isotropic matrix, and material constants k1 ¼
1 MPa and k2 ¼ 100 for the fibre parameters.

The ratio of the lateral to axial Cauchy stress components,
σ11=σ22, is plotted as a function of applied stretch λ for the
HGO-C model (Fig. 5B) and the MA model (Fig. 5C). Results for
the HGO-C model exhibit negative (compressive) stresses in
the lateral direction for certain fibre orientations. This auxetic
effect suggests that the material would expand in the lateral
direction in the absence of the lateral constraint and is
contrary to expectations, particularly for fibre orientations
closer to the axial direction. In fact, here the computed lateral
compressive force is most pronounced when the fibre is
aligned in the direction of stretch (θ¼ 901), where a transver-
sely isotropic response, with exclusively tensile lateral stres-
ses, should be expected. For all fibres orientated within about
451 of the direction of stretch, the lateral stress changes from
tensile to compressive as the applied stretch increases. In
contrast to the HGO-C model, the MA model yields exclu-
sively tensile lateral stresses for all fibre orientations (Fig. 5C).
5. Finite Element analysis of realistic arterial
deformation

Following from the idealized, analytical deformations con-
sidered above, we now highlight the practical significance of
the errors computed by using the HGO-C model for slightly
compressible tissue. We consider, in turn, two Finite Element
case studies using Abaqus (2010) to implement the HGO-C
and MA models with user-defined material subroutines (see
Appendix A).
5.1. Pressure expansion of an artery

First we simulate the deformation of an artery under a lumen
pressure (LP). A schematic of a quarter artery is shown in
Fig. 6A. The vessel has an internal radius ri of 0.6 mm and an
external radius re of 0.9 mm. The length of the artery in the
z-direction is 0.3 mm with both ends constrained in the
z-direction.

We model the wall as a homogeneous material with two
families of fibres lying locally in the ðθ; zÞ plane, where ðr; θ; zÞ
are cylindrical polar coordinates. The fibre families are sym-
metric with respect to the circumferential direction and
oriented at 7501 measured from the circumferential direc-
tion. For the fibres, the material constants are k1 ¼ 1 MPa
and k2 ¼ 2, and for the neo-Hookean matrix, they are
μ0 ¼ 0:03 MPa, κ0 ¼ 1 MPa, resulting in a slightly incompressi-
ble material (corresponding to a Poisson ratio of 0.485). A
mesh sensitivity study confirms a converged solution for a
model using a total of 1044 eight-noded full-integration
hexahedral elements.

The (dimensionless) changes in the internal and external
radii Δr=r0 as functions of increasing dimensionless lumen
pressure LP=LPmax are plotted in Fig. 6B. They reveal that the
HGO-C model predicts a far more compliant artery than the
MA model.

Notable differences in the arterial wall stress state arise
between the HGO-C and MA models. Fig. 6C, D and E presents
the von Mises stress, the pressure stress and the triaxiality,
respectively, in the arterial wall. The magnitude and the
gradient through the wall thickness of both the von Mises
stress and the pressure stress differ significantly between the
HGO-C and MA models. This contrast is further highlighted
by the differing distributions of triaxiality for both models,
confirming a fundamental difference in the multi-axial stress
state computed for the two models.
5.2. Stent deployment in an artery

The final case study examines the deployment of a stainless
steel stent in a straight artery. Nowadays most medical
device regulatory bodies insist on computational analysis
of stents (FDA, 2010) as part of their approval process.
Here we demonstrate that the correct implementation of
the constitutive model for a slightly compressible arterial



Fig. 6 – (A) Schematic illustrating the geometry, lines of symmetry and boundary conditions for modelling the inflation of an
artery under a lumen pressure LP. (B) Prediction of the internal (ri) and the external (re) radial strain Δr=r0 ¼ ðr�r0Þ=r0 in the
artery under a normalized lumen pressure LP=LPmax for the HGO-C and MA models. Panels (C), D) and (E) are contour plots
illustrating the von Mises (q), pressure (�σhyd) and triaxiality (σhyd=q) stresses, respectively, in the artery wall for the HGO-C
and MA models.
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wall is critical for the computational assessment of stent
performance.

We use a generic closed-cell stent geometry (Conway
et al., 2012) with an undeformed radius of 0.575 mm. It is
made of biomedical grade stainless steel alloy 316L with
Young's modulus of 200 GPa and Poisson's ratio 0.3 in the
elastic domain. We model plasticity using isotropic harden-
ing J2-plasticity with a yield stress of 264 MPa and ultimate
tensile strength of 584 MPa at a plastic log strain of 0.274
(McGarry et al., 2007). We mesh the stent geometry with
22,104 reduced integration hexahedral elements. We model a
balloon using membrane elements, with frictionless contact
between the membrane elements and the internal surface of
the stent. Finally, we simulate the balloon deployment by
imposing radial displacement boundary conditions on the
membrane elements.

For the artery, we take a single layer with two families of
fibres symmetrically disposed in the ðθ; zÞ plane. The fibres are
oriented at 7501 to the circumferential direction and material
constants and vessel dimensions are the same as those used
in Section 5.1. Here the FE mesh consists of 78,100 full
integration hexahedral elements; a high mesh density is
required due to the complex contact between the stent and
the artery during deployment.



j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 3 9 ( 2 0 1 4 ) 4 8 – 6 0 57
“Radial stiffness”, the net radial force required to open a
stent, is a commonly cited measure of stent performance
(FDA, 2010). Fig. 7 presents plots of the predicted net radial
force as a function of radial expansion for the HGO-C and MA
Fig. 8 – Contour plots illustrating differences in the stresses com
(A) von Mises stress q, (B) pressure stress �σhyd, (C) triaxiality, (

Fig. 7 – Plot of the dimensionless radial force ðF�F0Þ=F0
required to deploy a stent in an artery with the increasing
stent radial expansion. Radial force is normalized by the
radial force at the point immediately before contact with the
artery (F0). The radial expansion is normalized using the
initial undeformed internal radius (ri) and the final fully
deployed internal radius (rf ). Note that the HGO-C model
predicts a more compliant artery than the MA model.
models. The predicted radial force required to expand the
stent to the final diameter is significantly lower for the HGO-C
model than for the MA model. This result correlates with the
previous finding in Section 5.1 that the HGO-C model under-
estimates the arterial compliance, with significant implica-
tions for design and assessment of stents.

Fig. 8 illustrates the notable differences that appear in the
artery stress state between the HGO-C and MA models. Again,
higher values of von Mises stress (Fig. 8A) and pressure stress
(Fig. 8B) are computed for the MA model. Both the triaxiality
(Fig. 8C) and the ratio of axial to circumferential stress (the
stress ratio in the plane of the fibres) (Fig. 8D) confirm that the
nature of the computed multi-axial stress state is signifi-
cantly different between the MA and HGO-C models.

A detailed examination of the stress state through the
thickness (radial direction) of the artery wall is presented in
Fig. 9. A comparison between HGO-C and MA simulations in
terms of the ratios of the Cauchy stress components empha-
sizes further the fundamentally different stresses throughout
the entire artery wall thickness. It is not merely that the MA
model calculates a different magnitude of stress, rather the
multi-axiality of the stress state has been altered.
6. Concluding remarks

The original HGO model (Holzapfel et al., 2000) is intended
for modelling of incompressible anisotropic materials.
puted for the HGO-C and MA models after stent deployment.
D) ratio of axial stress to the circumferential stress σzz=σθθ.



Fig. 9 – Stress measures computed through the arterial wall from the internal (ri) to the external radius (re) at full deployment of the
stent for the HGO-C and MAmodels. (A) Triaxiality ratio σhyd=q of the pressure stress to von Mises stress. (B) Ratio σzz=σθθ of the axial
to circumferential stress. (C) Ratio σrr=σzz of the radial to the axial stress. (D) Ratio σrr=σθθ of the radial to circumferential stress.
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A compressible form (HGO-C model) is widely used whereby
the anisotropic part of Ψ is expressed in terms of isochoric
invariants. Here we demonstrate that this formulation does
not correctly model compressible anisotropic material beha-
viour. The anisotropic component of the model is insensitive
to volumetric deformation due to the use of isochoric aniso-
tropic invariants. This explains the anomalous finite element
simulations reported in Vergori et al. (2013), whereby a
slightly compressible HGO-C sphere was observed to deform
into a larger sphere under tensile hydrostatic loading instead
of the ellipsoid which would be expected for an anisotropic
material. In order to achieve correct anisotropic compressible
hyperelastic material behaviour we present and implement a
modified (MA) model whereby the anisotropic part of the
strain energy density is a function of the total form of the
anisotropic invariants, so that a volumetric anisotropic con-
tribution is represented. This modified model correctly pre-
dicts that a sphere will deform into an ellipsoid under tensile
hydrostatic loading.

In the case of (plane strain) pure shear, a kinematically
enforced isochoric deformation, we have shown that a
correct stress state is computed for the MA model, whereas
the HGO-C model yields incorrect results. Correct results are
obtained for the HGO-C model only when incompressibility
is effectively enforced via the use of a large bulk modulus,
which acts as a Lagrange multiplier in the volumetric
contribution to the isotropic terms (in this case HGO-C model
is effectively the same as the original incompressible HGO
model). In the case of a nearly incompressible material (with
Poisson's ratio¼0.490, for example) we have shown that the
in-plane stress components computed by the HGO-C model
are reduced by an order of magnitude. Bulk modulus sensi-
tivity has been pointed out for isotropic models by Suh et al.
(2007) and Destrade et al. (2012), and for the HGO-C model by
Ní Annaidh et al. (2013). Here, we have demonstrated that a
ratio of bulk to shear modulus of κ0=μ0 ¼ 2� 106 (equivalent to
Poisson's ratio of 0.49999975) is required to compute correct
results for the HGO-C model. By contrast, the MA model is
highly robust with correct results being computed for all
levels of material compressibility during kinematically pre-
scribed isochoric deformations.

From the view-point of general finite element implemen-
tation, the requirement of perfect incompressibility (as in the
case of a HGO material) can introduce numerical problems
requiring the use of selective reduced integration and mixed
finite elements to avoid mesh locking and hybrid elements to
avoid ill-conditioned stiffness matrices. Furthermore, due to
the complex contact conditions in the simulation of balloon
angioplasty (both between the balloon and the stent, and
between the stent and the artery), explicit Finite Element
solution schemes are generally required. However, Abaqus/
Explicit for example has no mechanism for imposing an
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incompressibility constraint and assumes by default that
κ0=μ0 ¼ 20 (ν¼ 0:475). A value of κ0=μ04100 (ν¼ 0:495) is found
to introduce high frequency noise into the explicit solution.
We have demonstrated that the HGO-C model should never
be used for compressible or slightly compressible materials.
Instead, due to its robustness, we recommend that the MA
model is used in FE implementations because (i) it accurately
models compressible anisotropic materials, and (ii) if mate-
rial incompressibility is desired but can only be approximated
numerically (e.g., Abaqus/Explicit) the MA model will still
compute a correct stress state.

A paper by Sansour (2008) outlined the potential problems
associated with splitting the free energy for anisotropic
hyperelasticity into volumetric and isochoric contributions;
see also Federico (2010) for a related discussion. A study of
the HGO-C model by Helfenstein et al. (2010) considered
the specific case of uniaxial stress with one family of fibres
aligned in the loading direction, and suggested that the use of
the ‘total’ anisotropic invariant Ii is appropriate. The current
paper demonstrates the importance of a volumetric aniso-
tropic contribution for compressible materials, highlighting
the extensive range of non-physical behaviour that may
emerge in the simulation of nearly incompressible materials
if the HGO-C model is used instead of the MA model.
Examples include the Finite Element analysis of artery infla-
tion due to the increasing lumen pressure and stent deploy-
ment. Assuming nearly incompressible behaviour (ν¼ 0:485)
the HGO-C model is found to significantly underpredict artery
compliance, with important implications for simulation and
the design of stents (FDA, 2010). We have shown that
the multiaxial stress state in an artery wall is significantly
different for the HGO-C and MA models. Arterial wall stress is
thought to play an important role in-stent restenosis (neo-
intimal hyperplasia) (Thury et al., 2002; Wentzel et al., 2003).
Therefore, a predictive model for the assessment of the
restenosis risk of a stent design must include an appropriate
multiaxial implementation of the artery constitutive law.
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Appendix A. Consistent tangent matrix

To write a UMAT, we need to provide the Consistent Tangent
Matrix (CTM) of the chosen model. When expressed in terms
of Cauchy stress the CTM given in Abaqus (2010) may be
written as

Cijkl ¼ σijδkl þ
1
2

∂σij
∂Fkα

Flα þ
∂σij
∂Flα

Fkα

� �
; ðA:1Þ

which has both the i2j and k2l minor symmetries.
The CTM may be estimated using either numerical tech-

niques or an analytical solution. Here we first describe
a numerical technique for estimation of the CTM. We
then present the analytical solution for the MA and the
HGO-C CTM.

A.1. Numerical approximation of the CTM

The CTM may be approximated numerically (Sun et al., 2008),
and a short overview is presented here. This numerical
approximation is based on a linearized incremental form of
the Jaumann rate of the Kirchhoff stress:

Δτ�ΔWτ�τΔWT ¼ C : ΔD; ðA:2Þ
where τ is the Kirchhoff stress, Δτ is the Kirchhoff stress rate,
ΔD is the rate-of-deformation tensor, ΔW is the spin tensor
are the symmetric and anti-symmetric parts of the spatial
velocity gradient ΔL (where ΔL¼ΔFF�1), and C is the CTM.

To obtain an approximation for each of components of the
CTM, a small perturbation is applied to (A.2) through ΔD. This
is achieved by perturbing the deformation gradient six times,
once for each of the independent components of ΔD, using

ΔFðijÞ ¼ ϵ

2
ei � ejFþ ej � eiF
� �

; ðA:3Þ

where ϵ is a perturbation parameter, ei is the basis vector in
the spatial description, ðijÞ denotes the independent compo-
nent being perturbed.

The ‘total’ perturbed deformation gradient is given by
F̂
ðijÞ ¼ΔFðijÞ þ F. The Kirchhoff stress is then calculated using

this perturbed deformation gradient (τðF̂ ijÞ). The CTM is
approximated using

CðijÞ 	 1
Jϵ

τ F̂
ðijÞ	 


�τ Fð Þ
	 


; ðA:4Þ

where J is the determinant of the deformation gradient. Each
perturbation of (A.4) will produce six independent compo-
nents. This is performed six times for each independent ðijÞ,
giving the required 6�6 CTM matrix.

A.2. Analytical solutions for the MA and the HGO-C CTM

Here we present an analytical solution for the CTM for the MA
and HGO models. For convenience we give the volumetric,
isotropic and anisotropic contributions separately.

For the MA model the stress is given by Eqs. (8) and (17).
We can calculate Cijkl from

ðσvolÞijδkl þ
∂ðσvolÞij
∂Fkα

Flα ¼ κ0 2J�1ð Þδijδkl; ðA:5Þ

ðσ isoÞijδkl þ
∂ðσ isoÞij
∂Fkα

Flα ¼ μ0J
�1 Bjlδik þ Bilδjk�

2
3
Bijδkl�

2
3
Bklδij þ

2
9
I1δijδkl

� �
; ðA:6Þ

ðσanisoÞijδkl þ
∂ðσanisoÞij

∂Fkα
Flα ¼ 2k1J�1 ∑

n ¼ 4;6
In�1ð Þexp k2ðIn�1Þ2� �

anjanlδik þ anianlδjk
� �

þ4k1J�1 ∑
n ¼ 4;6

½2ðIn�1Þ2k2 þ 1�exp½k2ðIn�1Þ2�anianjankanl; ðA:7Þ

where we have used ani, n¼4, 6, i¼1, 2, 3, which is the ith
component of an ¼ Fa0n.

For the HGO-C model the stress is given by Eqs. (8) and (9).
Once again the isotropic contributions to Cijkl are given by Eqs.
(A.5) and (A.6). The anisotropic contribution to Cijkl for the
HGO-C model is given as

ðσanisoÞijδkl þ
∂ðσanisoÞij

∂Fkα
Flα
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¼ 4k1J�1 ∑
n ¼ 4;6

1þ 2k2ðIn�1Þ2� �
exp k2ðIn�1Þ2� �

� anianj�
1
3
Inδij

� �
ankanl�

1
3
Inδkl

� �

þ2k1J�1 ∑
n ¼ 4;6

In�1
� �

exp k2ðIn�1Þ2� ��
δikanjanl þ δjkanianl

� 2
3
δklanianj�

2
3
δijankanl þ

2
9
Inδijδkl

�
; ðA:8Þ

where ani is the ith component of an ¼ Fa0n.
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