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Abstract. The general theory of nonlinear anisotropic elastic-
ity is extended to describe small-amplitude motions and static de-
formations that can be superimposed on large pre-strains of fibre-
reinforced solids. The linearised governing equations of incremental
motion are derived. Then they are solved for some illustrative situa-
tions which reveal a wide spectrum of possible behaviours compared
to the case of initially isotropic materials. Particular attention is
paid to the propagation of homogeneous waves and to the formation
of static wrinkles. These objects prove useful in the investigation of
the issues of material (in the bulk) and geometrical (at boundaries)
stability. Attempts are also made at modelling some experimental
observations made on (isotropic) silicone and (anisotropic) biologi-
cal soft tissues.

1 Introduction

Consider two rectangular solid blocks, one made of silicone, the other made
of mammalian skeletal muscle (‘meat’), and subject them to a large shear.
The first block deforms smoothly and its surface remains flat; see Fig-
ure 1(a). The second block, however, experiences a form of buckling early
on, as small-amplitude wrinkles appear on its surface. From visual inspec-
tion and intuition, we can come up with an explanation for these strikingly
different behaviours. If we were careful in our moulding of the silicone block,
we can safely assume that it is isotropic. On the other hand, the piece of
meat is clearly anisotropic, as it is ‘reinforced’ with visible aligned fibres.
When sheared, these fibres and/or their entanglements resist compression
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and crumple early, lifting the surrounding tissue into a wavy pattern, with
wavefronts at right-angles to the fibres; see Figure 1(b). Hence, although
both blocks are soft and easily deformed, it is likely that they behave dif-
ferently due to the absence or presence of fibres.

(a) (b)

Figure 1. (a) A block of silicone subject to a large shear by hand; its
surface remains flat and smooth. (b) A piece of meat sheared by hand, in
a direction approximatively at 45◦ with respect to the fibres; its surface
buckles early, with wrinkles forming at right-angle to the fibres.

From a mechanics point of view, we may now ask ourselves whether there
exists a way of describing and predicting how the two blocks should behave
in shear. As seen in the course of this chapter, it turns out that the simplest
models of isotropic (for the silicone) and anisotropic (for the meat) nonlinear
incompressible elasticity can indeed capture these effects. Of course the
analysis itself is not easy and requires a good grasp of theoretical issues,
physically-based modelling, and numerical analysis.

In order to model the small-amplitude wrinkles, we need to derive the
incremental equations of motion of anisotropic non-linear elasticity. This
procedure is described in Section 2; simply put, it relies on linearising the
equations of motion in the neighbourhood of a static state of equilibrium
corresponding to a large homogeneous deformation. These equations can
be established in all generality, and in Section 3 we use them to study the
propagation of bulk waves in deformed soft solids.

Indeed, wave propagation is a straightforward tool for figuring out if a
solid is isotropic or not. Consider, for example, the experimental results
displayed in Figure 2: they clearly show two privileged directions, along
which a mechanical signal travels at different speeds than in other directions.
Again, this can be captured by very simple models of nonlinear anisotropic
elasticity. Deriving the speed v of a travelling wave explicitly also has an
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Figure 2. The Reviscometer R⃝ records the information sent by a measure-
ment probe (placed on the skin) which can be rotated to give the variation
of acoustic perturbation speed with angle. The device measures the time it
takes for an impulse generated by one needle sensor to reach another sensor
2mm away by travelling on the surface of the skin. Here, measurements
were made every 10◦ on the forearm of a young female, and averaged over
6 experiments.

advantage from the point of view of constitutive modelling, as writing down
the conditions for v2 to be positive puts physically-based restrictions on the
material parameters.

Finally in Section 4, armed with all the tools and knowledge required,
we can at last tackle the problem raised by our observation of Figure 1. In
that section we write down the incremental equations of static equilibrium
(i.e. we take v = 0) for a perturbation which is sinusoidal on the surface of a
sheared half-space (to describe the wavy pattern) and decays exponentially
with depth inside the substrate (to describe near-surface wrinkles). Then
we set out to solve these equations. For the isotropic model of choice (the
neo-Hookean model), great analytical progress and results can be found, and
they square well with experimental data. For the anisotropic models, we
must turn to numerics. Thankfully, a host of tools is at our disposal to help
us generate a robust method of resolution, based on the Stroh formalism
and its extension to include the surface impedance method.
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2 Incremental Equations

In this section we derive the equations governing the propagation of small-
amplitude (‘incremental’) motions in anisotropic hyperelastic solids sub-
jected to large static homogeneous deformations. The method of derivation
is now well established and we omit certain details which can be found
elsewhere; see references at the end of the chapter, in particular the CISM
chapter by Ogden (2001). For simplicity we write the components of vectors
and tensors in rectangular Cartesian coordinate systems, but the analysis
can generalised to other systems of coordinates at little cost.

2.1 Large Static Pre-deformation

We consider that our solid is initially at rest in the reference configuration
B0 (say). It is then brought to an equilibrium configuration (the current
configuration B, say) by the application of a pre-stress with measure σ (a
Cauchy stress). Hence a point initially at X in B0 is at x = χ(X) in B,
where χ is a one-to-one mapping; see Figure 3.

X x x+ ẋ

x =χ(X, t) x+ ẋ =χ+χ̇

B0

BLARGE

Incremental

Figure 3. Sketch of the successive deformations taking place in the soft
solid: first a large static homogeneous deformation, followed by an incre-
mental motion.

The deformation x = χ (X) is described by deformation gradient F :

F =
∂χ

∂X
, Fiα =

∂χi

∂Xα
. (1)

Here the components of F are given in the ei ⊗ Ej system, where Ei and
ei (i = 1, 2, 3) form orthonormal vector bases in B0 and B, respectively.
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Let J = detF ; this quantity measures the local volume changes, because it
relates an elementary volume dV in B0 to its counterpart in B through

dv = JdV. (2)

Using this identity, we may write the conservation of mass as follows

∫

B0

ρ0dv =

∫

B

ρdv =

∫

B0

ρJdV, so that ρ0 = ρJ, (3)

where ρ0 and ρ are the mass densities per unit volume in B0 and B, respec-
tively.

Finally, we may write the equations of equilibrium, in the absence of
body forces, as

Div S = 0,
∂Sαi

∂Xα
= 0, (4)

where S = J−1Fσ is the nominal stress tensor. We assume that the solid
is hyperelastic, so that it possesses a strain-energy density W = W (F ) per
unit mass. Then S is given by (Ogden, 2001),

S =
∂W

∂F
, Sαi =

∂W

∂Fiα
. (5)

Notice here the convention used throughout the chapter for the ordering of
the indices when differentiating tensors. For incompressible solids, volume
changes are not permitted, so that J = 1 at all times. In that case S is
given by

S =
∂W

∂F
− pF−1, (6)

where p is a Lagrange multiplier, to be determined from boundary and/or
initial conditions.

Finally, the boundary conditions are

ST N = f on ∂B0, (7)

where f are the applied tractions and the upper script T denotes the trans-
pose.

2.2 Increments

Now we ‘increment’ the quantities and equations encountered so far. In
other words, we linearise them, using a right-arrow to mean ‘is incremented
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to’, and a dot to denote an incremental quantity. Hence, for the increment
of the deformation we have

x = χ (X) −→ x + ẋ = χ (X) + χ̇ (X, t) . (8)

But X can be seen as a function of x by writing X = χ−1 (x), so that χ̇
can also be seen as a function of x. Then u (x, t) ≡ χ̇ (x, t) is called the
mechanical displacement.

Next, we increment the deformation gradient:

F =
∂χ

∂X
−→ F + Ḟ . (9)

Here, using the chain rule, we find that

Ḟiα =
∂χ̇i

∂Xα
=

∂xj

∂Xα

∂ui

∂xj
= Fjαui,j, or Ḟ = Γ F , (10)

where Γ = grad u is the Eulerian displacement gradient.
Moving on to the increment of the nominal stress tensor, we have

S = S (F ) → S = S+ Ṡ, or Sαi

(
Flβ + Ḟlβ

)
= Sαi (Flβ)+ Ṡαi (Flβ) .

(11)
Here, using the chain rule and (10), we find that

Ṡαi =
∂Sαi

∂Flβ
Ḟlβ =

∂Sαi

∂Flβ
ΓlkFkβ , or Ṡαi = AαiβlΓlkFkβ , (12)

where Aαiβl = ∂Sαi/∂Flβ are the fixed-reference moduli. By (5), they are
defined as

Aαiβl =
∂2W

∂Fiα∂Flβ
. (13)

We can then increment the equations of equilibrium (4), as

Div S = 0 −→ Div Ṡ = 0, or
∂Sαi

∂Xα
−→

∂Ṡαi

∂Xα
= 0. (14)

Integrating over the volume of the solid, we perform the following series of
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operations,
∫

B0

Div Ṡ dV =

∫

∂B0

ṠT N dA (divergence theorem) (15)

=

∫

∂B

J−1ṠT F T n da (Nanson’s formula) (16)

=

∫

∂B

(
J−1F Ṡ

)T
n da (transpose of product) (17)

=

∫

B

div
(
J−1F Ṡ

)
dv (divergence theorem) (18)

so that the incremental equations of equilibrium can be put in the following
equivalent (Eulerian) form:

div Σ = 0,
∂Σji

∂xj
= 0. (19)

Here, the tensor Σ is defined as Σ = J−1F Ṡ, with components

Σji = J−1FjαṠαi = J−1FjαAαiβlΓlkFkβ , or Σji = A0jiklΓlk,
(20)

where the instantaneous elastic moduli are the following components of the
fourth-order tensor A0,

A0jikl = J−1AαiβlFjαFkβ = J−1 ∂2W

∂Fiα∂Flβ
FjαFkβ . (21)

Let us increment the boundary conditions (7) where the applied tractions
f are considered to correspond to a dead-load (i.e. f is constant).

ST N = f −→ ṠT N = ḟ = 0 on ∂B0. (22)

Using Nanson’s formula, we have the equivalent Eulerian form:

ΣT n = 0 on ∂B. (23)

In the case where the solid is incompressible, we need to increment the

constraint of incompressibility detF = 1. Recalling that
d

dτ
(detA) =

(detA) tr

(
dA

dτ
A−1

)
, we find

J = 1 −→ J tr
(
ḞF−1

)
= 0, i.e. trΓ = ui,i = 0. (24)
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Then the increment of the nominal stress for incompressible solids (6) is
found by incrementing the following identity,

F F−1 = I −→ Ḟ F−1 + F (
˙

F−1) = 0, (25)

so that
S −→ Ṡ = AFΓ − ṗF−1 + pF−1 Γ , (26)

and Σ = J−1F Ṡ = F Ṡ is now given by

Σ = A0 Γ − ṗI + pΓ , Σji = A0jiklul,k + ṗδji + puj,i. (27)

2.3 Elastic Moduli

Here we focus on the instantaneous elastic moduli, which are given by
(21), with J = 1 for incompressible materials. By swapping ji with kl in
(21), and taking into account that α and β are dummy indices, we obtain

A0klji = A0jikl, (28)

the so-called major symmetries. Owing to those symmetries, we can count
that in general, there are at most 45 independent instantaneous moduli.

The moduli do not possess the ‘minor’ symmetries, and A0jikl ̸= A0ijkl

in general. We may find out what the difference A0jikl − A0ijkl is. First,
recall that the Cauchy stress σ is symmetric: σ = J−1F S = σT . Hence,
by incrementing,

F S = (F S)T −→ Ḟ S + F Ṡ = (Ḟ S + F Ṡ)T , (29)

we get, using (10), (12) and (21),

ΓFS + JA0Γ = (ΓFS + JA0Γ )T ,

Γσ + A0Γ = (Γσ + A0Γ )T ,
Γjkσki + A0jiklΓlk = Γikσkj + A0ijklΓlk,
σkiδjlΓlk + A0jiklΓlk = σkjδilΓlk + A0ijklΓlk. (30)

Collecting the terms in Γlk, we reach the conclusion that (Chadwick, 1997)

A0jikl −A0ijkl = σjkδil − σikδjl. (31)

In particular, A0ijji −A0jiij = A0ijij − σii when i ̸= j (no sum).
For incompressible solids, the derivation of the difference in the moduli

is similar, based on (26). We then find that (Chadwick, 1997)

A0jikl −A0ijkl = (σjk + pδjk) δil − (σik + pδik) δjl. (32)
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In particular, we have

A0jiij −A0ijij = −σii − p. (33)

As explained elsewhere in this book, for general nonlinear materials with
two families of fibres, one oriented along M , the other along M ′ (in B0), the
strain energy density W can always be written as a function of the following
eight invariants

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1 = tr (C) ,

I2 = 1
2

[
(trC)2 − tr

(
C2

)]
= I3 tr

(
C−1

)
,

I3 = det (C) ,

I4 = M · CM = m · m,

I5 = M · C2M = m · Bm,

I6 = M ′ · CM ′ = m′ · m′,

I7 = M ′ · C2M ′ = m · Bm′,

I8 = M · CM ′ = m · m′,

(34)

where B = FF T is the left Cauchy–Green deformation tensor, m = FM ,
m′ = FM ′, and C = F T F is the right Cauchy–Green deformation tensor.
Hence W = W (I1, I2, . . . , I8) and we can then use the chain rule to compute
the moduli given by (21). For this task, we need expressions for the first
derivatives of the eight invariants with respect to F . They are (Ogden,
2007)

∂I1

∂Fiα
= 2Fiα,

∂I2

∂Fiα
= 2(CγγFiα − CαγFiγ),

∂I3

∂Fiα
= 2I3F

−1
αi ,

∂I4

∂Fiα
= 2MαFiγMγ ,

∂I5

∂Fiα
= 2(FiγMγCαγMβ + FiγCγβMβMα),

∂I8

∂Fiα
= Fiγ(M ′

αMγ + MαM ′
γ), (35)

and the derivatives of I6 and I7 are found from those of I4 and I5 by replacing
M with M ′. We also need expressions for the second derivatives. They
read

∂2I1

∂Fiα∂Flβ
= 2δilδαβ ,

∂2I2

∂Fiα∂Flβ
= 2 (2FiαFlβ − FiβFlα + Cγγδilδαβ − Bilδαβ − Cαβδil) ,
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∂2I3

∂Fiα∂Flβ
= 2I3

(
2F−1

αi F−1
βl − F−1

αl F−1
βi

)
,

∂2I4

∂Fiα∂Flβ
= 2δilMαMβ,

∂2I5

∂Fiα∂Flβ
= 2 [δil(CαγMγMβ + CβγMγMα) + δαβFiγMγFlδMδ

+FiγMγFlαMβ + FlγMγFiβMα + BilMαMβ] .
(36)

Again, the expressions for the derivatives of I6 and I7 are found from those
of I4 and I5 by replacing M with M ′. Finally,

∂2I8

∂FiαFlβ
= δil(M

′
αMβ + MαM ′

β). (37)

Computing the instantaneous moduli from (21) and (35)–(37) is not that
difficult in practice, and the process can be automated with a computer
algebra system if needs be. Take the case of incompressible solids reinforced
with one family of parallel fibres. Their strain-energy density is of the form

W = W (I1, I2, I4, I5), (38)

only, because I3 = 1 at all times. Then we find that

A0jikl = 2W1δilBjk

+ 2W2

[
2BijBkl − BikBjl − BilBjk + I1δilBjk − δil(B

2)jk

]

+ 2W4δilmjmk

+ 2W5 [δil(Bm)jmk + δil(Bm)kmj

+Bjkmiml + Bjlmimk + Bikmjml + Bilmjmk]

+ 4W11BijBkl

+ 4W22(I1B − B2)ij(I1B − B2)kl

+ 4W12

[
Bij(I1B − B2)kl + Bkl(I1B − B2)ij

]

+ 4W14 (Bijmkml + Bklmimj)

+ 4W24

[
(I1B − B2)klmimj + (I1B − B2)ijmkml

]

+ 4W44mimjmkml
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+ 4W55 [(Bm)imj + (Bm)jmi] [(Bm)lmk + (Bm)kml]

+ 4W15 [Bijmk(Bm)l + Bijml(Bm)k

+Bklmj(Bm)i + Bklmi(Bm)j ]

+ 4W25

{
(I1B − B2)ij [(Bm)lmk + (Bm)kml]

+ (I1B − B2)kl [(Bm)imj + (Bm)jmi]
}

+ 4W45 [mimjmk(Bm)l + mimjml(Bm)k

+mjmkml(Bm)i + mimkml(Bm)j ] . (39)

Consider for example the following strain energy density of the neo-
Hookean reinforcing model (Merodio and Ogden, 2002),

W = µ(I1 − 3)/2 + F (I4), (40)

for an incompressible solid with one family of fibres, where F is a function
of I4 only and µ > 0 is the initial shear modulus of the solid when F ≡ 0.
Then the expressions above for the moduli reduce to

A0jikl = µδilBjk + 2F ′(I4)δilmjmk + 4F ′′(I4)mimjmkml. (41)

Here, in addition to the major symmetries (28), we also find that A0jilk =
A0jkli. It follows that we end up with 23 non-zero components, several of
which are equal to one another. In toto there are 13 independent moduli.

Or take the case of a plane pre-strain in the 1, 2 plane say, for an incom-
pressible solid with only one family of fibres, lying in that plane. Then, in
the coordinate system of the Eulerian principal axes,

B =

⎡

⎣
λ2 0 0
0 λ−2 0
0 0 1

⎤

⎦ , B−1 =

⎡

⎣
λ−2 0 0
0 λ2 0
0 0 1

⎤

⎦ (42)

and clearly
I1 = I2 = λ2 + λ−2 + 1, I3 = 1. (43)

Also, M = (M1, M2, 0), say, with M2
1 + M2

2 = 1, so that

I4 = λ2M2
1 +λ−2M2

2 = m2
1+m2

2, I5 = λ4M2
1 +λ−4M2

2 = λ2m2
1+λ−2m2

2.
(44)

Then we find the connection: I5 = (I1−1)I4−1. Here there are thus only 2
independent invariants, and we can introduce the following function of two
variables:

Ŵ (I1, I4) = W (I1, I1, 1, I4, (I1 − 1)I4 − 1) . (45)
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That function allows for a reduced form of the moduli (Merodio and Ogden,
2002):

A0jikl = 2Ŵ1δilBjk + 2Ŵ4δilmjmk + 4Ŵ11BijBkl

+ 4Ŵ44mjmimkml + 4Ŵ14(Bijmkml + Bklmimj). (46)

For an example in that category, take the Mooney-Rivlin standard reinforc-
ing model,

W = C(I1 − 3)/2 + D(I2 − 3)/2 + E(I4 − 1)2/4, (47)

where C, D and E are positive constants. Then Ŵ (I1, I4) = (C + D)(I1 −
3) + E(I4 − 1)2/4, and

A0jikl = (C + D)δilBjk + E(m2
1 + m2

2 − 1)δilmjmk + 2Emimjmkml. (48)

Finally, consider the following strain energy density used by Ciarletta
et al. (2013) for modelling skin tissue, when seen as reinforced with a single
family of fibres, oriented in B0 along the unit vector M . It is given by

W =
µ

2
(I1 − 3) + βIα, (49)

where µ > 0 and β > 0 are constants, and the structural anisotropic invari-
ant Iα is defined as

Iα := M ·
[
C + C−1 − 2I

]
M = (λα − λ−1

α )2. (50)

Here λα := (M · CM)
1
2 represents the fibre stretch. For this model, the

instantaneous moduli can again be computed from the formula (39), by
noticing the connection

Iα = (1 − I1)I4 + I5 + I2 − 2. (51)

This is quite a long exercise however, and it is simpler to rely on the following
formula:

∂F−1
βk

∂Fiα
= −F−1

βi F−1
αk , (52)

which can be established by differentiating the identity FF−1 = I. The
end result is that the corresponding moduli are

A0jikl = µδilBjk + 2β(δilmjmk + δikF−1
αl MαF−1

βj Mβ

+ δjlF
−1
αi MαF−1

βk Mβ + δjkF−1
αi MαF−1

βl Mβ). (53)
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3 Wave Propagation

In this section, we study small-amplitude wave propagation in infinite, ho-
mogeneous, incompressible, hyperelastic solids subject to large, static, ho-
mogeneous deformations. We look at the effect of anisotropy on the wave
speed in initially isotropic solids and initially anisotropic (fibre-reinforced)
tissues.

We take the axes of the Cartesian coordinate system in B to be aligned
with the principal axes of deformation, that is we describe the pre-strain by

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, (54)

where the λ’s are the constant principal stretch ratios. Then the constraint
of incompressibility dictates that a unit cube keeps its volume, so that
λ1λ2λ3 = 1.

Now, deriving the equations of incremental motion is a process similar
to deriving those of incremental equilibrium (19); see Ogden (2007) for
example. The end result is that they read

Σji,j = ρui,tt, uj,j = 0, (55)

where the components Σji are given by (27) and ρ is the mass density per
unit volume (ρ is constant in homogeneous bodies because of the internal
constraint of incompressibility, see (2)). Let us solve the equations for a
motion in the form of a plane homogeneous wave. For these, the mechanical
displacement is written in all generality as

u = af (n · x − vt) , ṗ = g (n · x − vt) , (56)

where f and g are arbitrary single-variable functions, n is a unit vector in
direction of propagation, a is a unit vector in direction of polarisation, and
the real scalar v is the speed.

Then, the incremental incompressibility (55)2 gives ajnjf ′ = 0, or

a · n = 0. (57)

In other words, the motion is transverse.
Next we note that the moduli A0jikl and the Lagrange multiplier p are

constants because the components Fiα of the deformation gradient F de-
rived from (54) are constants themselves. It follows that the incremental
equations of motion (55)1 read

A0jiklalnknjf
′′

− nig
′ = ρv2f

′′

ai (58)
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(note that the term involving p is puj,ij, which is zero by incremental in-
compressibility). Taking the product of this equation with ai and using
a · n = 0, we arrive at the secular equation,

ρv2 = A0jiklaialnjnk, (59)

which gives the wave speed in terms of the wave characteristics, the material
properties and the pre-strain.

3.1 Strong Ellipticity for the Isotropic Matrix

From (59), we see that the speed is real when

A0jiklnjnkaial > 0, for all a, n such that a · a = n · n = 1, a · n = 0.
(60)

This is the so-called Strong Ellipticity (SE) condition.
From here on we focus on wave propagation in a principal plane, by

taking n in the (x1, x2) plane. Hence we have

n = (n1, n2, 0) , and either (i) a = (0, 0, 1) or (ii) a = (−n2, n1, 0), (61)

where n2
1 + n2

2 = 1.
Recall that in isotropic materials, the principal axes of stress are aligned

with the principal axes of strain. Then, in the (x1, x2, x3) coordinate system,
there are only 15 non-zero components of A0 (Ogden, 1997). They are

A0iijj , A0ijij , A0ijji, (62)

where there is no sum on the repeated indices.

Case (i): a = (0, 0, 1). Here SE reads A0j3k3njnk > 0, i.e. A01313n2
1 +

A02323n2
2 > 0 for all n1, n2. It follows that Strong Ellipticity imposes re-

strictions on the sign of some moduli, here

A01313 > 0, A02323 > 0. (63)

Case (ii): a = (−n2, n1, 0). Here SE can be written in the compact form

α n4
1 + 2β n2

1n
2
2 + γ n4

2 > 0, (64)

for all n1, n2, where

α = A01212, 2β = A01111+A02222−2A01122−2A01221, γ = A02121. (65)
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Taking in turn n2 = 0 and n1 = 0 imposes α > 0 and γ > 0. Then, taking
(n2/n1)4 = α/γ gives β +

√
αγ > 0. Conversely, if the inequalities α > 0,

γ > 0, β +
√

αγ > 0 are assumed, then

αn4
1 + 2βn2

1n
2
2 + γn4

2 > αn4
1 − 2βn2

1n
2
2 + γn4

2 =
(√

αn2
1 −

√
γn2

2

)
> 0, (66)

and SE is satisfied. In conclusion, the SE condition is equivalent to

α > 0, γ > 0, β +
√

αγ > 0. (67)

From now on, we assume that the SE condition holds for the isotropic ma-
trix.

If for example the isotropic matrix is modelled by the Mooney–Rivlin
material: W = C(I1 − 3)/2 + D(I2 − 3)/2, as in (47), then we find that

α = λ2
1

(
C + Dλ2

3

)
, γ = λ2

2

(
C + Dλ2

3

)
, 2β = α + γ. (68)

Hence, SE reads: C + Dλ2
3 > 0, for all λ3, so that we must have C > 0,

D > 0. Similarly, if the matrix is modelled by the neo-Hookean model:
W = µ(I1 − 3)/2, as in (40) and (49), then SE leads to µ > 0.

3.2 Acoustic Tensor

Now we go back to the incremental equations of motion (58) for plane
homogeneous waves. Multiplying the first equation by ni and using (57) we
obtain g′ = A0jiklninjnkmlf ′′. Then we substitute back this expression for
g′ and drop the common factor f ′′ to arrive at

(A0jiklnjnk −A0jpklnjnpnkni)al = ρv2ai. (69)

By introducing the symmetric acoustic tensor Q(n), with components

Qil(n) = A0jiklnjnk, (70)

the equations above can be written in the compact form

[I − n ⊗ n]Q(n)a = ρv2a, a · n = 0. (71)

Note that the tensor [I −n ⊗ n]Q(n) is not symmetric. However, because
the motion is transverse, we may write the equation above in the following
equivalent form

[I − n ⊗ n]Q(n)[I − n ⊗ n]a = ρv2a, a · n = 0. (72)
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By introducing Ī = I −n⊗n, the projection tensor onto the plane normal
to n, this reads as

Q̄(n)a = ρv2a, a · n = 0, where Q̄(n) = ĪQ(n)Ī (73)

is a symmetric tensor. Note that this symmetrization of the acoustic ten-
sor in constrained materials (including incompressible materials as here) is
attributed to M.A. Hayes in the PhD thesis of N.H. Scott (see Scott and
Hayes, 1985).

For any given direction of propagation n, we now have (73), a 2D sym-
metric algebraic eigenvalue problem for determining ρv2 and a. Thanks
to the symmetry of Q̄, we know that there are two mutually orthogonal
eigenvectors a and b, say, and that the two corresponding eigenvalues ρv2

a

and ρv2
b , say, must be real. They are obtained by solving the characteristic

equation
det[Q̄(n) − ρv2I] = 0, (74)

which factorises into the product of ρv2 by a quadratic. The eigenvalue
ρv2 = 0 corresponds to eigenvector n and is discarded; the two other eigen-
values correspond to two purely transverse waves. When the eigenvalues
coincide, we can superpose the two corresponding waves to form a circularly-
polarized wave, which propagates along one of the so-called acoustic axes.

3.3 Example: Deformed Isotropic Material

First we treat the case of wave propagation when the anisotropy is strain-
induced only. We take the deformed body to be made of an incompressible
isotropic Mooney–Rivlin material, with strain-energy density W = C(I1 −
3)/2 + D(I2 − 3)/2, which is (47) when E ≡ 0.

First we consider waves travelling in a principal plane of pre-deformation,
so that n = (cos θ, sin θ, 0) say, where θ is the angle of propagation in the
principal plane with respect to the x1-direction. Then the two transverse
eigenvectors are a = (− sin θ, cos θ, 0) and b = (0, 0, 1), with corresponding
eigenvalues

ρv2
a = λ2

1(C + Dλ2
3) cos2 θ + λ2

2(C + Dλ2
3) sin2 θ,

ρv2
b = λ2

1(C + Dλ2
2) cos2 θ + λ2

2(C + Dλ2
1) sin2 θ, (75)

respectively. To find these compact expressions we used the connections
(68).

For our numerical calculations, we pick λ1 = 2, λ2 = 0.45, λ3 = (λ1λ2)−1

for the pre-stretch, and C = 0.6µ, D = 0.4µ for the material parameters,
where µ is the initial shear modulus (in Pa). In this example, the sinusoidal
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variations of the speeds according to (75) are found to coincide twice over
a half-period, indicating the presence of two acoustic axes in the deformed
solid. To see this, we can either solve (75) for θ when va = vb, or plot the
variations of both speeds with θ and look for intersections, see Figure 4(a).

In wave acoustics, it is common to plot the slowness surface, because
its shape is related to vibrational wavefronts which can be visualised ex-
perimentally (Musgrave, 1970; Wolfe, 1995). This is a spherical plot of the
slowness s := 1/v for each propagation direction n. Hence for our waves
propagating in the x3−principal plane, the propagation vector is of the form
n = (cos θ, sin θ, 0). For each angle of propagation θ, there are two slow-
nesses sa := 1/va and sb := 1/vb giving 2 points on the slowness surface:
(sa, θ, 0) and (sb, θ, 0). Clearly, the two slowness sheets intersect in the di-
rections of acoustic axes, see Figure 4(b) for the intersection of the slowness
surface with the plane orthogonal to (0, 0, 1).

ca

cb

θ

(a)

sa

sb

(b)

Figure 4. Homogeneous plane wave travelling in a principal plane in a
deformed (initially isotropic) Mooney–Rivlin material. (a) Variations of the
non-dimensional speeds ca :=

√
ρv2

a/µ and cb :=
√

ρv2
b/µ with the angle

of propagation θ measured with respect to the direction of greatest stretch.
(b) Polar plot of the variations of the non-dimensional slownesses sa := 1/ca

and sb := 1/cb with θ. The intersections of the plots point to the directions
of 2 acoustic axes, along which circularly-polarised waves propagate.

Now for waves propagating in any direction n, not necessarily in a prin-
cipal plane, we specialise (70) and (73) to the Mooney–Rivlin strain energy
function. We find that the reduced acoustic tensor reads

Q̄(n) = C (n · Bn) Ī + DĪB−1Ī. (76)

Hence here, it is perfectly possible to find explicit expressions for the wave
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speeds and polarisation, simply by solving the eigenvalue problem for this
tensor. In particular we can see straightaway that the polarisation vectors
a and b are along the axes of the ellipsoidal section of the x · B−1x = 1
ellipsoid by the plane normal to n, as they are eigenvectors of both the
ĪB−1Ī and Ī tensors. The corresponding speeds are then

ρv2
a = C (n · Bn) + D

(
a · B−1a

)
, ρv2

b = C (n · Bn) + D
(
b · B−1b

)
;

(77)
see Boulanger and Hayes (1992) for a full analysis of this problem.

To plot the entire slowness surface, we can take advantage of the graph-
ical abilities of any mathematical/numerical package using a simple algo-
rithm: Pick a propagation direction n with Cartesian components n =
(cos θ sin φ, sin θ sin φ, cosφ), where θ and φ are its azimuthal and polar an-
gles, respectively; Compute the corresponding reduced acoustic tensor Q̄
and its two eigenvalues ρv2

a and ρv2
b ; Plot the two points with spherical

coordinates (1/va, θ, φ) and (1/vb, θ, φ). Figure 5 illustrates the results of
this algorithm for the same material and pre-strain parameter values used
in Figure 4.

Figure 5. One quarter of a slowness surface composed of two sheets, each
corresponding to the non-dimensional slownesses sa :=

√
µ/(ρv2

a) and sb :=√
µ/(ρv2

b ), using the same material and pre-strain parameter values used
in Figure 4. The sheets are represented by a collection of points (s, θ, φ)
in the spherical coordinate system, where θ and φ are the azimuthal and
polar angles of propagation, respectively. The solid lines correspond to
the intersection of the slowness surface sheets with the plane orthogonal to
(0, 0, 1).
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3.4 Example: Deformed Anisotropic Material

To present a representative example, we focus here on a material rein-
forced by one family of parallel fibres behaving according to the Mooney–
Rivlin standard reinforcing model (47).

Putting together Equations (70) and (73) for a general propagation di-
rection n, we arrive in that case at the following expression for the reduced
acoustic tensor,

Q̄(n) =
[
C (n · Bn) + E (m · m − 1) (m · n)2

]
Ī

+ DĪB−1Ī + 2E (m · n)2 Īm ⊗ Īm. (78)

This expression makes it clear that it not obvious at all now to find polarisa-
tion vectors as analytical eigenvectors for Q̄ in general, except in the special
case where the direction of the fibres lies in a principal plane of deformation.
Then, the two eigenvectors are clearly b := n × m and a := n × b.

For an illustration, we take C = 0.6µ, D = 0.4µ, E = 40µ in (47),
where µ (in Pa) can be seen as the initial shear modulus of the soft ma-
trix. We let the fibres be originally at 45◦ between the X1− and X2−axes,
i.e. M = (1/

√
2, 1/

√
2, 0). Then we subject the solid to the pre-strain

(54), with λ1 = 1.4, λ2 = 0.8, λ3 = (λ1λ2)−1, so that m = FM is at
angle tan−1 [λ2 sinα/(λ1 cosα)] ≃ 27.4◦ with the x1−axis, which gives the
direction of the fibres in the deformed configuration.

By taking n = (cos θ, sin θ, 0) and varying θ, we obtain the dispersion
curves and slowness surface principal sections of Figure 6. Clearly, the
introduction of fibres brings in a more colourful behaviour, as their presence
is strongly felt in the variations of ca and sa for the wave polarised in the
principal plane. In particular we see that this transverse wave travels at
its slowest in the direction perpendicular to the fibres. The speed ca is at
a local minimum when the corresponding wave travels in the direction of
the fibres, and reaches its maximum at an intermediate angle. Meanwhile
the speed cb of the wave polarised along the x3−direction has more regular
(sinusoidal) variations. Although the variation of these speeds could be
studied analytically, we do not pursue this avenue here, as they are attached
to the special case of principal plane propagation. In general, it is better to
turn to a numerical treatment of the eigenvalues, following the algorithm
presented in the previous subsection. For the present case study, it leads to
the slowness surface depicted in Figure 7.
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ca

cb

θ

(a)

sa

sb

(b)

Figure 6. Homogeneous plane wave travelling in a principal plane in a
deformed (initially anisotropic) Mooney–Rivlin material reinforced with
one family of parallel fibres. (a) Variations of the non-dimensional speeds
ca :=

√
ρv2

a/µ and cb :=
√

ρv2
b/µ with the angle of propagation θ measured

with respect to the direction of greatest stretch. Here the fibres are in the
principal plane, originally aligned in the direction θ = 45◦. (b) Polar plot
of the variations of the non-dimensional slownesses sa := 1/ca, sb := 1/cb

with θ.

4 Surface Stability

Now we move on from the study of infinitesimal waves in unbounded (in-
finite) deformed solids to the study of small-amplitude perturbations in a
deformed bounded media reinforced with fibres. The complexity of the anal-
ysis increases dramatically and we must be careful to take a step-by-step
approach to tackling this complexity. Hopefully then, each result we estab-
lish along the way can serve as a benchmark or limiting case for the next
degree of difficulty.

Hence we look at the simplest boundary problem possible, that of a semi-
infinite solid limited by a plane. Since there is no characteristic length in
a half-space geometry, the results ought to be non-dispersive (independent
of a wavelength). Then we focus on small-amplitude static wrinkles instead
of waves, again to decrease the number of parameters. To fix the ideas, we
select simple shear as the base large pre-strain, as it described by a single
kinematic parameter, the amount of shear K, say, and we imagine that it
takes place in planes parallel to the free surface. Thus we take the solid to
fill the half-space X2 ≥ 0 in the reference configuration. We subject it to
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Figure 7. One quarter of a slowness surface composed of two sheets, each
corresponding to the non-dimensional slownesses sa :=

√
µ/(ρv2

a) and sb :=√
µ/(ρv2

b ), using the same material and pre-strain parameter values used
in Figure 6. The sheets are represented by a collection of points (s, θ, φ)
in the spherical coordinate system, where θ and φ are the azimuthal and
polar angles of propagation, respectively. The solid lines correspond to
the intersection of the slowness surface sheets with the plane orthogonal to
(0, 0, 1).

the simple shear

x1 = X1 + KX2, x2 = X2, x3 = X3, (79)

so that it fills the region x2 ≥ 0 in the deformed configuration, and the
planes X2 = 0 and x2 = 0 are assumed to be free of traction. We call Ei

and ei (i = 1, 2, 3) the unit vectors along the Xi− and xi−axes, respectively.
Then, in the Ei⊗ej and ei⊗ej bases, respectively, the deformation gradient
F = ∂x/∂X and the left Cauchy–Green deformation gradient B = FF T

have components

F =

⎡

⎣
1 K 0
0 1 0
0 0 1

⎤

⎦ , B =

⎡

⎣
1 + K2 K 0

K 1 0
0 0 1

⎤

⎦ . (80)

We expect that as the magnitudes of the strains increase during a large
simple shear, there will be directions of severe compression developing for
some line elements and eventually, at a critical amount of shear Kcr, say,
the surface will buckle and let wrinkles appear. For the solid, we consider in
turn an isotropic neo-Hookean model, and then a soft neo-Hookean matrix
reinforced with a single family of stiffer parallel fibres lying in the planes
parallel to the free surface.
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In other words, our ultimate goal in this section is to model the physical
behaviours reported in Figure 1.

4.1 Surface Instability for a Sheared Isotropic Material

We start off by studying the onset of wrinkles in a sheared isotropic
neo-Hookean material, with strain-energy density

W = µ(I1 − 3), (81)

where µ > 0 is the shear modulus.
Biot (1963) showed that surface instability occurs for this material when

the following wrinkling condition is met

λ2
1λ3 = σ0, (82)

where σ0 ≃ 0.296 is the real root of the cubic σ3 +σ2 +3σ−1 = 0. Here it is
assumed that the free surface is parallel to a principal plane of pre-strain. In
that plane, λ1 < 1 and λ3 ≥ 1 are the principal stretches and λ2 = (λ1λ3)−1

is the principal stretch in the direction normal to the surface (the depth).
The wrinkles decay exponentially with depth and have sinusoidal variations
along the surface, with their front running parallel to the principal Eulerian
axis where λ3 occurs. That is, they are parallel to the direction of greatest
tension and thus, orthogonal to the direction of greatest compression.

The simple shear described by (79) is a plane strain deformation, such
that

λ1 = λ, λ2 = 1, λ3 = λ−1, (83)

say. Then Biot’s wrinkling condition clearly gives the critical stretch of
compression as λcr = σ0 ≃ 0.296, and thus the critical stretch of extension
as λ3 = σ−1

0 ≃ 3.38. We conclude that the wrinkles appear when the solid
is compressed by 71%, or equivalently, when it is stretched by 238%.

This is quite an extreme deformation for a soft solid. To connect it with
the kinematics of simple shear, we recall the links between the principal
stretches and the amount of shear (Ogden, 1997)

K = λ3 − λ1, λ3 = K/2 +
√

1 + K2/4, (84)

and that the angle of shear is tan−1 K (when the solid is not sheared, this
angle is zero; when it is infinitely sheared, this angle tends to 90◦ as a limit).

So here, surface instability in a sheared isotropic neo-Hookean material
occurs when

K = Kcr = σ−1
0 − σ0 ≃ 3.09, and tan−1 K = tan−1 Kcr ≃ 72.0◦.

(85)

22



This is a very large shear, as seen Figure 8. These values go a long way
to explaining why the surface of the sheared silicone in Figure 1(a) remains
stable, as the angle of shear there is clearly less than 72◦.

X2

X1

72◦

x2

x1

Figure 8. The amount of shear required to reach surface instability for
an isotropic neo-Hookean half-space is Kcr = 3.09, which represents an
enormous strain, as shown here.

However large, it is nonetheless possible to create a homogeneous pre-
strain of that magnitude in a soft solid, and to observe the appearance of
surface instability when a critical threshold is reached. To produce the ex-
periment photographed in Figure 9, we filled up the third of a four-sided
plexiglass box with commercial gelatine. The four connecting edges of the
box are hinged so that a large homogeneous ‘shear-box’ deformation is pos-
sible, which can be decomposed into the combination of a simple shear and
a tri-axial stretch (Stolz, 2010). At a very large amount of pre-strain, we
see small-amplitude wrinkles form on the surface, and they are aligned with
the long diagonal of the deformed shear-box, which is in the direction of
largest stretch.

To complete the picture, we can ask ourselves an additional question: Do
the wrinkles always occur along the direction of greatest stretch? Indeed,
Biot (1963) only studied wrinkles appearing along a principal direction,
at a certain degree of compression. But what if ‘non-principal’ wrinkles
had appeared prior to reaching his critical state of deformation? Intuition
and the observation of Figure 9 tell us that ‘principal’ wrinkles should be
the general case, but we must keep in mind that wrinkling in a principal
direction is not necessarily the sole outcome of a surface instability analysis
(Gower and Destrade, submitted) nor of experiments: for instance, ‘oblique’
buckling wrinkles have been observed in polymeric strips (Wang et al., 2011)
or in meta-sedimentary rocks (Meere et al., 2013).

Thankfully, answering this question for the neo-Hookean surface insta-
bility problem is easy, as we can rely on the works of Flavin (1963). He
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Figure 9. Large homogenous strain of soft gelatine in a shear-box appa-
ratus, up to the critical threshold of surface instability, as indicated by the
formation of small-amplitude wrinkles aligned with the long diagonal.

showed that wrinkles develop parallel to the direction making an angle θ
with the principal direction of strain associated with the largest stretch λ3

when the following wrinkling condition is met

λ2
1λ

2
3(λ

2
1 cos2 θ + λ2

3 sin2 θ) = σ2
0 . (86)

In the plane strain situation above, this condition reads as

λ4 cos2 θ − λ2σ2
0 + sin2 θ = 0. (87)

This quadratic in λ2 < 1 has real roots provided θ is in the range −θ0 ≤ θ ≤
θ0, where θ0 = (1/2) sin−1 σ2

0 ≃ 2.51◦. In that narrow range, λ reaches a
maximum of 0.296 when θ = 0◦, indicating that wrinkles take place at that
level of compression and are aligned with the direction of greatest stretch.
We expect this situation to be completely different for anisotropic materials,
because the fibres and their orientation should play a major role in the onset
of wrinkles, see Figure 1(b).

4.2 Surface Instability for a Sheared Anisotropic Material

Now we introduce one family of parallel fibres, orientated along the unit
vector M with components

M = cosΦE1 + sinΦE3 (88)
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in the reference configuration, where Φ is the angle between the direction
of shear and the fibres. Simple shear is a homogeneous deformation and so,
using (80), we see that M is transformed into m = FM in the current
configuration,

m = (cosΦ + K sin Φ)e1 + sin Φe3. (89)

It follows that the anisotropic invariant I4 ≡ m · m is given by

I4 = 1 + K sin 2Φ + K2 sin2 Φ. (90)

Recall that I4 is the squared stretch in the fibre direction: if I4 ≥ 1
then the fibres are in extension, if I4 ≤ 1 then they are in compression. For
our constitutive assumptions, we move on from the isotropic neo-Hookean
material to the standard reinforcing neo-Hookean material, a subcase of
(47):

W = µ(I1 − 3)/2 + E(I4 − 1)2/4. (91)

In that case, it is a simple exercise to show that the corresponding Cauchy
stress tensor σ is

σ = −pI + µB + E(I4 − 1)m ⊗ m, (92)

where p is the Lagrange multiplier introduced by the constraint of incom-
pressibility. Its value is found by imposing that the surface x2 = 0 be free
of traction: σ22 = 0, which gives p = µ.

Thus, the pre-stress required to maintain the large static simple shear is

σ = µ(B − I) + E(I4 − 1)m ⊗ m, (93)

showing clearly that the directions of principal stress and of principal strain
do not coincide in general (except of course in the special cases where m is
aligned with principal directions of strain).

Finally, we note that according to the Appendix, the quantity 2E/3µ is
a measure of the stiffness of the fibres compared to that of the soft matrix:
if it is greater than 1, then the fibres are stiffer than the matrix, at least in
a tensile, infinitesimal, tensile test.

Now we seek a perturbation solution in the following form,

{u, ṗ} = {U(kx2), ikP (kx2)}eik(cos θx1+sin θx3), (94)

where k is the “wave”-number and U , P are functions of kx2 alone. This
form describes wrinkles in the deformed configuration with sinusoidal varia-
tions in the direction of n = (cos θ, sin θ, 0), and depth variations according
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to the amplitude functions U and P , to be determined later. Then, accord-
ing to (27), the components Σji for the incremental traction are of a similar
form,

Σji = ikSji(kx2)e
ik(cos θx1+sin θx3), (95)

say, where the amplitude functions Sij are to be determined. All the kine-
matical quantities of interest are represented in Figure 10.

X

1

0
1

3

1X
F

1

1

n

x
3

x
1

tan K
-1

q
0

M m

Figure 10. Simple shear of a unit cuboid in the boundary of a half-space
by amount K. The face shown is parallel to the free surface. The solid
is reinforced with a family of parallel fibres aligned in the direction of
M = (cos Φ, sin Φ, 0) in the reference configuration and of m = FM in
the current configuration. The unit vector n = (cos θ, sin θ, 0) in the cur-
rent configuration is orthogonal to the wavefront of wrinkles which may
develop if the shear is severe enough.

By relying on a systematic procedure devised by Chadwick (1997), we
can eliminate P and write the governing equations (19) as a first-order linear
ordinary differential system. This is known as the Stroh formulation of the
problem (Stroh, 1962),

[
U ′

S′

]
= iN

[
U
S

]
, where U :=

⎡

⎣
U1

U2

U3

⎤

⎦ , S :=

⎡

⎣
S21

S22

S23

⎤

⎦ , N :=

[
N1 N2

N3 N1

]
,

(96)
and the prime denotes differentiation with respect to the argument kx2.
Here the symmetric 3 × 3 matrices N1, N2, N3 are given by

−N1 =

⎡

⎣
0 cos θ 0

cos θ 0 sin θ
0 sin θ 0

⎤

⎦ , N2 =

⎡

⎣
1/µ 0 0
0 0 0
0 0 1/µ

⎤

⎦ , −N3 =

⎡

⎣
η 0 κ
0 ν 0
κ 0 χ

⎤

⎦ ,
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with

η = (A01111 + 3µ) cos2 θ + 2A01131 cos θ sin θ + A03131 sin2 θ,

ν = A01212 cos2 θ + 2A01232 cos θ sin θ + A03232 sin2 θ − µ,

χ = A01313 cos2 θ + 2A01333 cos θ sin θ + (A03333 + 3µ) sin2 θ,

κ = A01113 cos2 θ + (2A01133 + 3µ) cos θ sin θ + A03133 sin2 θ,

and the components of A0 are given explicitly by (41), with F ′ = 2E(I4−1)
and F ′′ = 2E. Notice how all the “anisotropy” information is located in the
N3 sub-matrix. For details of this derivation, see Destrade et al. (2008).

The system (96) can be written in compact form as

ξ′ = iNξ, where ξ := [U , S]T , (97)

is the Stroh displacement–traction vector, a function of the dimensionless
quantity kx2. Its solution is clearly an exponential:

ξ(kx2) =
[
U0, S0

]T
eikqx2 , (98)

say, where U0, S0 are constant vectors and q is an eigenvalue of N . In effect
we now have to solve an eigenvalue problem for the Stroh matrix N :

(N − qI)ξ0 = 0. (99)

The associated characteristic equation det(N − qI) = 0 is a cubic in q2,

q6 −
(

2 −
χ + η

µ

)
q4 +

(
1 +

ν − 2ϵ

µ
+

χη − κ2

µ2

)
q2 +

ϵ(µ + ν)

µ2
= 0, (100)

where the quantity ϵ is defined by

ϵ := χ cos2 θ − 2κ cos θ sin θ + η sin2 θ. (101)

Here we focus on complex roots to the bicubic, because we are looking
for solutions with amplitudes decaying with depth–real roots would lead to
inadequate sinusoidal non-decaying depth variations. Since the polynomial
characteristic equation has real coefficients, the complex roots come in pairs
of complex conjugate numbers. Specifically, out of the six possible complex
roots, we can only keep those three satisfying Im q > 0; see the form of the
solution in (98). These three adequate roots q1, q2, q3 allow us to find three
independent solutions to the differential system, which we combine to form
its general solution as

ξ(kx2) = c1ξ
(1)eiq1kx2 + c2ξ

(2)eiq2kx2 + c3ξ
(3)eiq3kx2 , (102)
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where the ci are scalar constants and the ξ(i) are the eigenvectors. We write
this general solution as

ξ(kx2) =
[
ξ(1)|ξ(2)|ξ(3)

] 〈
eiqkx2

〉
⎡

⎣
c1

c2

c3

⎤

⎦ , (103)

where we adopted the notation
〈
eiqkx2

〉
:= diag

(
eiq1kx2 , eiq2kx2 , eiq3kx2

)
. We

re-write it even more compactly as

ξ(kx2) =

[
A
B

] 〈
eiqkx2

〉
c, (104)

where A (B) is the 3× 3 matrix made with the top (bottom) three rows of[
ξ(1)|ξ(2)|ξ(3)

]
. Hence now

U(kx2) = A
〈
eiqkx2

〉
c, S(kx2) = B

〈
eiqkx2

〉
c. (105)

Now that we have the general solution, we can solve the boundary value
problem, which states that there should be no incremental traction on the
free surface, that is

S(0) = 0. (106)

According to (105)2, this is possible for non-trivial c only when detB = 0,
which is the bifurcation criterion. However this is not expressed in the
most optimal way. In particular, computing numerically the eigenvalues and
corresponding linearly independent eigenvectors of N is quite demanding
from a computational point of view. For certain cases, the complex matrix
B becomes ill-conditioned and finding numerically for which values of K
it becomes singular is not an easy task at all. So we turn to a much more
efficient method, based on the notion of mechanical impedance.

We remark that it follows from (105) that c =
〈
e−iqkx2

〉
A−1U(kx2),

and that

S(kx2) = iZU(kx2), where Z := −iBA−1 (107)

is the so-called surface impedance matrix. Clearly, the matrix Z is constant
(independent of x2). Also, it is singular, because the boundary condition
(106) can only be satisfied for a nontrivial surface displacement U(0) when

detZ = 0. (108)

Finally, it can be shown (e.g., Shuvalov, 2000; Mielke and Fu, 2004) that Z
is Hermitian so that it is of the form

Z =

⎡

⎣
Z1 Z4 + iZ5 Z6 + iZ7

Z4 − iZ5 Z2 Z8 + iZ9

Z6 − iZ7 Z8 − iZ9 Z3

⎤

⎦ , (109)
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where the Zi are real constants.
Then, using (107), the governing equations (97) read as

U ′ = iN1U + iN2S = iN1U + N2ZU , (110)

S′ = iN3U + iN1S = iN3U + N1ZU = −iZU ′. (111)

Substitute the first line into the second to end up with

ZN2Z + iZN1 − iN1Z + N3 = 0, (112)

an algebraic Riccati matrix equation. Because the Ni are real symmetric
matrices and Z is Hermitian, writing separately the real and imaginary
parts of this equation yields nine real quadratic equations for the Zi of
(109). Together with the traction-free boundary condition (106), we have
an algebraic system of 10 equations for the 10 unknowns Z1, Z2, . . . , Z9 and
K. It goes as follows

2µ cos θZ5 − Z2
1 − Z2

6 − Z2
7 + µη = 0,

µ sin θZ7 − Z1Z4 − Z6Z8 − Z7Z9 = 0,

µ sin θZ5 − µ cos θZ9 − Z1Z6 − Z3Z6 + µκ = 0,

µ cos θ(Z1 − Z2) + µ sin θZ6 + Z1Z5 − Z6Z9 + Z7Z8 = 0,

2µ cos θZ5 − 2µ sin θZ9 + Z2
5 + Z2

9 + Z2
4 + Z2

8 − µν = 0,

µ cos θZ7 + Z5Z7 + Z3Z8 + Z4Z6 = 0,

µ cos θZ8 − µ sin θZ4 − Z1Z7 − Z3Z7 = 0,

µ cos θZ6 − µ sin θ(Z2 − Z3) − Z3Z9 − Z4Z7 + Z5Z6 = 0,

2µ sin θZ9 + Z2
7 + Z2

3 + Z2
6 − µχ = 0,

Z1Z2Z3 − Z1Z
2
8 − Z1Z

2
9 − Z2Z

2
6 − Z2Z

2
7 − Z3Z

2
4 − Z3Z

2
5

+ 2Z4Z6Z8 + 2Z4Z7Z9 − 2Z5Z6Z9 + 2Z5Z7Z8 = 0. (113)

The system is non-linear and may thus have several solutions, but there is
only one for which Z is positive semi-definite, corresponding to the decaying
solution (Fu and Mielke, 2002). This system provides us with the following
algorithm for solving the bifurcation criterion.

We prescribe the material parameters: µ the shear modulus, E the fibre
modulus, and Φ the angle of the fibres. Then we fix θ, the wrinkles angle.
Then, the only remaining unknowns are the solutions, if they exist, to the
system above.

We start at K = 0 (no shear) and increment slowly this quantity, until
it reaches a value Kcr at which the system has a solution. If it exists, then
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that is the point at which the bifurcation criterion is met. Of course, it
could be that wrinkles have appeared earlier, at a lower amount of shear,
for another θ. We must thus vary θ from 0◦ to 180◦ and find the angle
θ∗ for which the amount of shear Kcr is minimal, Kcr = K∗, say, which
corresponds to the earliest onset of wrinkling in an oblique direction.

At the end of this process, we have access to the critical amount of shear
K∗ for a given material. It tells us how much the body can be sheared
before instability, and gives us the deformation gradient and the current
orientation of the fibres. With the value of θ∗ we know how the wrinkles
are oriented with respect to the fibres. With the value of Z, we can solve
ZU(0) = 0 for U(0) to find the shape of the wrinkles on the free surface
(up to an arbitrary multiplicative parameter: recall that this is a linearised
stability analysis). In fact, by solving numerically the differential equation
(110) we can find the variations of the full incremental field displacements
with depth, and then use (107) to obtain those of the traction field.

Now if we want to investigate the effect of the orientation of the fibres
with respect to the direction of shear, we can vary Φ and eventually obtain
a K∗ − Φ stability plot. Then we can vary the value of E/µ to investigate
the effect of the relative strength of the fibres compared to the soft matrix.
It transpires that those later curves are quite tricky to acquire due the
following reason.

At Φ = 0, the critical amount of shear is very close to the value σ−1
0 −σ0 ≃

3.09 found in (85) for the isotropic neo-Hookean half-space (E ≡ 0). Then
as Φ is increased, a smooth increase in K∗ follows. Hence for each increase
in Φ, the natural inclination is to look for the next K∗ in the neighborhood
of the previous one. However, the search should always start from K = 0
instead, because as it happens, the K∗ − Φ stability plot is discontinuous:
at a certain angle Φ0, the material stops being made more stable by the
fibres and instead, becomes unstable at a very low value of K∗. This is
illustrated by the example in Figure 11, where the situation is summarised
in the caption. In that example it is found that when E/µ = 10.0, and the
fibres are originally at an angle Φ = 106◦, then the surface of the half-space
buckles as soon as K reaches K∗ ≃ 0.052, a tiny amount of shear. In the
current configuration, the direction of the fibres is found from (89) as 103◦.
The normal to the wrinkles-front is oriented at an angle θ∗ ≃ 107◦, which
means that the wrinkles are almost at right-angle with the fibres, a nice
agreement with the observation in the simple experiment of Figure 1(b).

In Figure 12 we collect the K∗ − Φ plots for different values of E/µ.
The Appendix shows that in the linear regime of a tensile test along the
fibres, the Young modulus of the material is 3µ + 2E, so that in a sense,
2E/3µ represents the fibre-to-matrix stiffness ratio. For the figure we take
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Figure 11. A half-space made of neo-Hookean soft matrix with standard
reinforcement can buckle very early in simple shear. Here the E/µ ratio is
equal to 10.0. When the fibres are originally at Φ = 106◦ to the shear direc-
tion, wrinkles appear at K∗ ≃ 0.052, with the normal to the wrinkle front
at θ∗ ≃ 107◦ from the wrinkles. (a) The Kcr−θ curve, leading to the deter-
mination of the critical values K∗ and θ∗ (intersection of the dashed lines).
(b) The corresponding surface buckling pattern, with wrinkles forming at
right angle to the fibres.

E/µ = 1.0 (fibres softer than the matrix), 2.0, 4.0, 8.0, 16.0 (fibres stiffer
than the matrix). We find that when the fibres are originally more or less
oriented along the direction of shear, the stability is enhanced compared to
the non-reinforced case and K∗ > 3.09. Then, as mentioned earlier for the
E/µ = 10.0 case, a dramatic drop in the value of K∗ occurs at some angle
Φ, whose value decreases as E/µ increases. In other words, the stiffer the
fibres, the wider the range of early surface instability in shear.

4.3 Surface Instability for Another Sheared Anisotropic Material

Finally, we consider materials with a neo-Hookean soft matrix, also re-
inforced by one family of fibres, but this time modelled according to the
strain energy density (49). According to Ciarletta et al. (2011, 2013), this
constitutive modelling ensures strong convexity of the whole tissue (matrix
and fibres) in planar deformations, in contrast with standard models of fibre
reinforcement.

Again, it is easy to find the Lagrange multiplier p such that the surface
x2 = 0 is free of traction as p = µ. We then find that the Cauchy pre-stress
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Figure 12. Bifurcation plots for surface instability of a neo-Hookean soft
matrix with standard reinforcement in simple shear: Critical amount of
shear K∗ vs orientation Φ of the fibres in the reference configuration, for
E/µ = 1.0, 2.0, 4.0, 8.0, 16.0 (increasing values indicated by arrows).

required to maintain the large static simple shear is

σ = µ(B − I) + 2β(FM ⊗ FM − F−T M ⊗ F−T M), (114)

where F and B are given by (80).
Now we can conduct a surface stability analysis similar to the previous

one, by using the moduli of (53). For the details see Ciarletta et al. (2013).
Figure 13 displays the end result in the form of the K∗ − Φ plots obtained
for several values of the ratio β/µ. According to the Appendix, the quantity
8β/3µ measures the infinitesimal matrix-to-fibres stiffness ratio. Here we
consider in turn the cases β/µ = 0.0 (no fibres), 0.8 (fibres softer than
matrix), 2.0, and 4.0 (fibres stiffer than matrix.)

We remark that all the curves have a common point at (K∗, Φ) =
(3.09, 73.3◦), but this is an artefact due to the model. It can be explained
by computing the components of the Stroh matrix in the coordinate sys-
tem aligned with the Eulerian principal axes of deformation; see Ciarletta
et al. (2013). Otherwise, the inclusion of fibres clearly makes the half-space
more unstable in shear, as all the curves are below the isotropic K∗ = 3.09
horizontal line. In the process of determining K∗ numerically we also find
that the wrinkle wavefronts are almost orthogonal to the fibres, in line with
experimental observations, and also in line with the results of the previous
subsection.
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Figure 13. Bifurcation plots for surface instability of a neo-Hookean soft
matrix with convex reinforcement in simple shear: Critical amount of shear
K∗ vs orientation Φ of the fibres in the reference configuration, for β/µ =
0.0, 0.8, 2.0, 4.0 (increasing values indicated by arrows).

The main difference between the predictions of the standard reinforcing
model (91) and of the anisotropic model of Ciarletta et al. (2011) is the
disappearance of the discontinuities in the dispersion curves. This is to be
expected, because of the strong convexity associated with the latter model.
Whether one model is more accurate than the other (or accurate at all) is
of course a matter for experimentalists to determine. This comment leads
us naturally to the conclusion of this chapter, for which we invoke the wise
recommendations of Golomb (1970).

5 Epilogue

The five DONT’s of Modelling (Golomb, 1970)

1. Don’t believe that the model is the reality;

2. Don’t extrapolate beyond the region of fit;

3. Don’t distort reality to fit the model;

4. Don’t retain a discredited model;

5. Don’t fall in love with your model.
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A Appendix: Fibre to Matrix Stiffness Ratio

To compare the stiffness of the isotropic matrix to that of the fibres (in
the case of a material reinforced with a single family of parallel fibres),
we perform a tensile test in the direction of the fibres. For this test, the
lateral contractions are equal by symmetry and the deformation gradient
has components F = diag

(
λ, λ−1/2, λ−1/2

)
, where λ is the stretch ratio in

the direction of uniaxial stretch. Then the left Cauchy–Green deformation
tensor is B = diag

(
λ2, λ−1, λ−1

)
, and I4 = λ2, I5 = λ4. It follows that the

Cauchy stress has the following components

σ1 = −p + 2W1λ
2 − 2W2λ

−2 + 2W4λ
2 + 4W5λ

4,

σ2 = σ3 = 0 = −p + 2W1λ
−1 − 2W2λ. (115)

Subtracting one equation from the other to eliminate p, we find that

σ1 = λŴ ′(λ), where Ŵ (λ) := W (λ2 + 2λ−1, λ−2 + 2λ, λ2, λ4). (116)

When there is no stress (σ1 = 0), there is no stretch (λ = 1), so that

Ŵ ′(1) ≡ 0. Then, for a small elongation, λ = 1 + ϵ, say, we have by
expansion of (116),

σ1 = E11ϵ, where E11 = Ŵ ′′(1) (117)

is the Young modulus in the fibre direction. Hence, in the case of the neo-
Hookean standard reinforcing model (91), where

Ŵ (λ) = µ(λ2 + 2λ−1 − 3)/2 + E(λ2 − 1)2/4, (118)

we find that
E11 = 3µ + 2E, (119)

In the case of the strain energy density (49), where

Ŵ (λ) = µ(λ2 + 2λ−1 − 3)/2 + β(λ − λ−1)2, (120)

we find that
E11 = 3µ + 8β. (121)
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