Volumes

E. Sköldberg
 emil.skoldberg@nuigalway.ie http://www.maths.nuigalway.ie/~emil/

School of Mathematics etc.
National University of Ireland, Galway

MA100

Definition of volume

Region with area $A(x)$

The volume of a sphere
Let us use the definition to calculate the volume of a sphere $y^{\text {with radius } r}$

Position the sphere so its centre is at the origin

Thus, the volume of the

$$
\begin{aligned}
& \text { sphere is } \\
& \int_{-r}^{\text {sphere is }} \pi \cdot\left(r^{2}-x^{2}\right) d x=\pi \int_{-r}^{r} r^{2}-x^{2} d x=\pi\left[r^{2} x-\frac{x^{3}}{3}\right]_{-r}^{\pi}=\pi\left(r^{2}-\frac{x^{2}}{3}+r^{3}-\frac{r^{3}}{3}\right)=\frac{4 \pi r^{3}}{3}
\end{aligned}
$$

Example

Find the volume of the solid obtained by rotating the region bounded by $y=\sqrt{x}$, the x-axis and $x=1$ about the x-axis.

The cuts are all circular of ra $\sin 0 \sqrt{x}$, so $A(x)=\pi \cdot x$ so the volume is $\int_{0}^{1} \pi x d x=\left[\frac{\pi x^{2}}{2}\right]_{0}^{1}=\frac{\pi \cdot 1}{2}-\frac{\pi \cdot 0}{2}=\frac{\pi}{2}$

Example

Find the volume of the solid obtained by rotating the region bounded by $y=x^{3}, y=8$ and $x=0$ about the y-axis.

To fund the volume we integrate with respect to y !

$$
=\int_{0}^{8} \pi y^{2 / 3} d y=\pi\left[\frac{3 y^{5 / 3}}{5}\right]_{0}^{8}=\pi\left(\frac{3 \cdot 8^{5 / 3}}{5}-\frac{3 \cdot 0^{5 / 3}}{5}\right)=\frac{\pi \cdot 3 \cdot 32}{5}
$$

