Integration of rational functions

E. Sköldberg
emil.skoldberg@nuigalway.ie
http://www.maths.nuigalway.ie/~emil/

School of Mathematics etc.
National University of Ireland, Galway

MA100

Partial fractions
A rational function is a function

$$
\left.\begin{aligned}
& f(x)=\frac{P(x)}{Q(x)} \text { where } P(x), Q(x) \text { are } \\
& \text { Polynomials }
\end{aligned} \right\rvert\, \frac{\left.\frac{2 x}{x^{3}+1} \right\rvert\,}{} \begin{aligned}
& \frac{x}{1-x}, \\
& e . \left\lvert\, \frac{x^{3}+17 x-1}{x}\right.
\end{aligned}
$$

Some rational functions, we already know how to integrate:

$$
\begin{aligned}
& \int \frac{1}{x^{n}} d x= \begin{cases}\frac{x^{-n+1}}{-n+1}+C=\frac{1}{1-n} \cdot \frac{1}{x^{n-1}}+C & n \geqslant 2 \\
\ln |x|+C & n=1\end{cases} \\
& \int \frac{1}{x^{2}+1} d x=\tan ^{-1} x+C
\end{aligned}
$$

Example
Find

$$
\int \frac{x^{3}+x}{x-1} d x
$$

(1) Ensure that the degree of the numerator is less than the degree of the denominator by using long division.
Thus:

$$
\begin{array}{c|c}
\frac{x^{2}+x+2}{x^{3}+0 \cdot x^{2}+x+0} & \\
\frac{-x^{3}-x^{2}}{x^{2}+x} & \begin{array}{l}
\frac{x^{3}+x}{x-1}= \\
-\frac{2 x}{2} \\
\\
-\frac{x^{2}+x+2}{x-1}
\end{array}
\end{array}
$$

Example
Find

$$
\int \frac{x^{3}+x}{x-1} d x
$$

So far: $\frac{x^{3}+x}{x-1}=x^{2}+x+2+\frac{2}{x-1}$ so:

$$
\begin{gathered}
\left.\left.\int \frac{x^{3}+x}{x-1} d x=\int \right\rvert\, x^{2}+x+2+\frac{2}{x-1}\right) d x= \\
=\frac{x^{3}}{3}+\frac{x^{2}}{2}+2 x+2 \log |x-1|+C
\end{gathered}
$$

Factorization of the denominator
The situation is still that we want to integrate
$\int \frac{P(x)}{Q(x)} d x$. We will now assume that
$\operatorname{deg} P(x)<\operatorname{deg} Q(x)$. The next step is to
factorise the denominator $Q(x)$.
Ex $\begin{aligned} \begin{array}{ll}\frac{2 x+3}{x^{3}-3 x^{2}+2 x} & x^{3}-3 x^{2}+2 x=x\left(x^{2}-3 x+2\right) \\ \text { So } \frac{2 x+3}{x^{3}-3 x^{2}+2 x} & =x(x-1)(x-2) \\ \text { In } & \frac{2 x+3}{x(x-1)(x-2)}\end{array} \\ \text { Integration of rational functions (National University of Ireland, Ga }\end{aligned}$

Factorization of the denominator
After fully factorising $Q(x)$, we have wite
$Q(x)$ as a product of factors each of the type:

* $x+b \quad l i n e a r ~ f a c t o r ~$
* $x^{2}+a x+b$ irreducible quadratic $\left\{\begin{array}{l}\text { e.g. } x^{2}+1 \\ \text { happens when } \\ \frac{a^{2}}{4}-b<0\end{array}\right.$
* C constant

The partial fraction theorem
Let $\frac{P(x)}{Q(x)}$ be a rational function
with deg $P(x)<\operatorname{deg} Q(x)$.
Then $\frac{P(x)}{Q(x)}$ can be written as a
sum of terming each of the form

* $\frac{A}{(x+b)^{i}}$ if $(x+b)^{n}$ is a factor of $Q(x)$

The denominator is a product of distinct linear factors
Find

$$
\int \frac{x^{2}+2 x-1}{2 x^{3}+3 x^{2}-2 x} d x
$$

(1) The degree of the numerator is less than the degree of the denominator, so wo do not need to divide
(2) Factorise the denominator:

$$
\begin{aligned}
& 2 x^{3}+3 x^{2}-2 x=x\left(2 x^{2}+3 x-2\right)= \\
&= 2 \cdot x \cdot\left(x^{2}+\frac{3}{2} x-1\right)=2 \cdot x \cdot(x+2)\left(x-\frac{1}{2}\right) \\
& \text { so: } \frac{x^{2}+2 x-1}{2 x^{3}+3 x^{2}-2 x}=\frac{A}{x}+\frac{B}{x+2}+\frac{C}{x-\frac{1}{2}}\left[\begin{array}{l}
\text { By premors } \\
\text { the. }
\end{array}\right]
\end{aligned}
$$

The denominator is a product of distinct linear factors
Find

$$
\begin{aligned}
& \int \frac{x^{2}+2 x-1}{2 x^{3}+3 x^{2}-2 x} d x \\
& \frac{x^{2}+2 x-1}{2 x^{3}+3 x^{2}-2 x}=\frac{A}{x}+\frac{B}{x+2}+\frac{C}{x-\frac{1}{2}} \\
&= \frac{A \cdot 2 \cdot(x+2)\left(x-\frac{1}{2}\right)}{2 \cdot x \cdot(x+2)\left(x-\frac{1}{2}\right)}+\frac{B \cdot 2 \cdot x\left(x-\frac{1}{2}\right)}{2 \cdot x(x+2)\left(x-\frac{1}{2}\right)}+\frac{C \cdot 2 \cdot x \cdot(x+2)}{2 \cdot x(x+2)\left(x-\frac{1}{2}\right)} \\
& \Rightarrow x^{2}+2 x-1=2 A(x+2)\left(x-\frac{1}{2}\right)+2 B x\left(x-\frac{1}{2}\right)+2 C x(x+2)
\end{aligned}
$$

Identifying the coefficients of $x^{2}, x, 1$ in LHS $\&$ RHS

$$
\text { gives }\left\{\begin{array}{l}
1=2 A+2 B+2 C \quad \text { so } A=\frac{1}{2} \Rightarrow \\
2=3 A-B+4 C \quad\left\{\begin{array}{l}
2 B+2 C=0 \\
-B+4 C=\frac{1}{2} \\
-1
\end{array} \quad-2 A\right.
\end{array}\right.
$$

The denominator is a product of distinct linear factors
Find

$$
\int \frac{x^{2}+2 x-1}{2 x^{3}+3 x^{2}-2 x} d x
$$

The integrand $i \quad \frac{A}{x}+\frac{B}{x+2}+\frac{C}{x-\frac{1}{2}}$

$$
\begin{aligned}
A=\frac{1}{2} \quad C=-B \quad & -B+4 C=\frac{1}{2} \\
& -B-4 B=\frac{1}{2} \\
& -5 B=\frac{1}{2} \quad B=-\frac{1}{10} \quad C=\frac{1}{10}
\end{aligned}
$$

$$
\text { so } \begin{aligned}
& \int \frac{x^{2}+2 x-1}{2 x^{3}+3 x^{2}-2 x} d x=\int \frac{1}{2 x}-\frac{1}{10(x+2)}+\frac{1}{10\left(x-\frac{1}{2}\right)} d x \\
= & \left.\left.\int \frac{1}{2 x}-\frac{1}{10 x+20}+\frac{1}{10 x-5} d x=\frac{1}{2} \ln |2 x|-\frac{1}{10} \ln |10 x+20|+\frac{1}{60} \ln \right\rvert\, 10 x-5\right)
\end{aligned}
$$

The denominator is a product of (possibly repeated) linear factors

Find

$$
\int \frac{x^{4}-2 x^{2}+4 x+1}{x^{3}-x^{2}-x+1} d x
$$

(1) Make sue deg of numerator < deg of denominator

$$
\frac{x^{3}-x^{2}-x+1 \sqrt{x^{4}-2 x^{2}+4 x+1}}{\frac{-x^{4}-x^{3}-x^{2}+x}{x^{2}+1}} \frac{x^{3}-x^{2}+3 x+1}{4 x}
$$

so $\frac{x^{4}-2 x^{2}+4 x+1}{x^{3}-x^{2}-x+1}=x+1+\frac{4 x}{x^{3}-x^{2}-x+1}$

The denominator is a product of (possibly repeated) linear factors
Find

$$
\int \frac{x^{4}-2 x^{2}+4 x+1}{x^{3}-x^{2}-x+1} d x
$$

(2) Factorise the denominator:

Let $Q(x)=x^{3}-x^{2}-x+1$, then $Q(1)=0$
So $\quad x-1$ divides $Q(x)$

$$
\begin{aligned}
& x-1 \frac{x^{2}-1}{x^{3}-x^{2}-x+1} \text { so } Q(x)=(x-1)\left(x^{2}-1\right) \\
& \frac{x^{3}-x^{2}}{-x+1}=(x-1) \underbrace{(x+1)(x-1)}_{x^{2}-1} \\
& \frac{-x+1}{0}=(x-1)^{2}(x+1)
\end{aligned}
$$

The denominator is a product of (possibly repeated) linear factors

Find

$$
\int \frac{x^{4}-2 x^{2}+4 x+1}{x^{3}-x^{2}-x+1} d x
$$

(3) Decompose into partial fractions:

$$
\begin{aligned}
& \frac{\frac{P(x)}{Q(x)}=x+1+\frac{4 x}{x^{3}-x^{2}-x+1}=x+1+\frac{4 x}{4 x}}{\frac{(x-1)^{2}(x+1)}{L}} \\
& \rightarrow \frac{4 x}{(x-1)^{2}(x+1)}=\frac{A}{(x-1)^{2}}+\frac{B}{x-1}+\frac{C}{x+1_{2}} \\
& \text { Multiply } \stackrel{x^{2}-1}{(x-1)^{2} \sim} \stackrel{x^{2}-2 x+1}{2} \\
& \text { by } Q(x): 4 x=A(x+1)+B \widetilde{(x+1)(x-1)}+C \widetilde{(x-1)^{2}} \\
& \left\{\begin{array} { l }
{ 0 = B + C } \\
{ 4 = A - 2 C } \\
{ 0 = A - B + C }
\end{array} \quad \left\{\begin{array}{l}
A=2 \\
B=1 \\
C=-1
\end{array}\right.\right.
\end{aligned}
$$

The denominator is a product of (possibly repeated) linear factors

Find

$$
\int \frac{x^{4}-2 x^{2}+4 x+1}{x^{3}-x^{2}-x+1} d x
$$

So for: $\quad \int \frac{x^{4}-2 x^{2}+4 x+1}{x^{3}-x^{2}-x+1}=\int x+1+\frac{4 x}{x^{3}-x^{2}-x+1} d x$

$$
\begin{aligned}
& =\int x+1+\frac{\overbrace{2}^{2(x-1)^{-2}}}{(x-1)^{2}}+\frac{1}{x-1}-\frac{1}{x+1} d x= \\
& =\frac{x^{2}}{2}+x-\frac{2}{\frac{2}{x-1}}+\ln |x-1|-\ln |x+1|+C
\end{aligned}
$$

The denominator is a product of (possibly repeated) linear factors
Find

$$
\int \frac{x^{4}-2 x^{2}+4 x+1}{x^{3}-x^{2}-x+1} d x
$$

The denominator contains irreducible quadratic factors
Find

$$
\int \frac{2 x^{2}-x+4}{x^{3}+4 x} d x
$$

(1) $P(x)=2 x^{2}-x+4 \quad Q(x)=x^{3}+4 x$
$\operatorname{deg} P<$ deg Q : no division necessary!
(2) Factorise the denominator: $Q(x)=x^{3}+4 x=x \underbrace{\left(x^{2}+4\right)}_{\text {irreducible }}$
(3) Decomose using partial fractions:

$$
\frac{2 x^{2}-x+4}{x^{3}+4 x}=\frac{2 x^{2}-x+4}{x\left(x^{2}+4\right)}=\frac{A}{x}+\frac{C x+D}{x^{2}+4}
$$

The denominator contains irreducible quadratic factors
Find

$$
\begin{gathered}
\int \frac{2 x^{2}-x+4}{x^{3}+4 x} d x \\
\frac{2 x^{2}-x+4}{x\left(x^{2}+4\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+4} \quad \text { c gives the } \\
\text { system: }
\end{gathered}
$$

Multiply both

$$
\begin{aligned}
& 2 x^{2}-x+4=A\left(x^{2}+4\right)+(B x+C) x \\
& 2 x^{2}-x+4=A x^{2}+4 A+B x^{2}+C x \\
\Rightarrow & \left\{\begin{array} { l }
{ 2 = A + B } \\
{ - 1 = C } \\
{ 4 = 4 A }
\end{array} \Rightarrow \left\{\begin{array}{l}
A=1 \\
B=1 \\
C=-1
\end{array}\right.\right.
\end{aligned}
$$

Cont.
So the integral is equal to

$$
\int \frac{1}{x}+\frac{x-1}{x^{2}+4} d x=\int \frac{1}{x}+\frac{x}{x^{2}+4}-\frac{1}{x^{2}+4} d x
$$

Let us integrate each term separately:

$$
\begin{aligned}
& \text { - } \int \frac{1}{x} d x=\ln |x|+c \\
& \text { - } \int \frac{x}{x^{2}+4} d x=\left[\begin{array}{l}
t=x^{2}+4 \\
\frac{d t}{d x}=2 x
\end{array} d t=2 x d x\right] \frac{1}{2} \cdot \frac{1}{t} d t \\
& =\frac{1}{2} \ln |t|+c=\frac{1}{2} \ln \left(x^{2}+4\right) \\
& \text { - } \int \frac{1}{x^{2}+4} d x=\frac{1}{4} \int \frac{1}{\frac{x^{2}}{4}+1} d x=\frac{1}{4} \int \frac{1}{\left(\frac{x}{2}\right)^{2}+1} d x=\left[\begin{array}{l}
t=\frac{x}{2} \\
\left.d t=\frac{1}{2} d x\right]
\end{array}\right.
\end{aligned}
$$

Cont.

$$
=\frac{1}{2} \int \frac{1}{t^{2}+1} d t=\frac{1}{2} \tan ^{-1} t=\frac{1}{2} \tan ^{-1} \frac{x}{2}+c
$$

Summoning all the integrals of the terms:

$$
\int \frac{2 x^{2}-x+4}{x^{3}+4 x}=\ln |x|+\frac{1}{2} \ln \left(x^{2}+4\right)-\frac{1}{2} \tan ^{-1} \frac{x}{2}+c
$$

The denominator contains repeated irreducible quadratic factors
Find

$$
\int \frac{1-x+2 x^{2}-x^{3}}{x\left(x^{2}+1\right)^{2}} d x
$$

Here we would get a partial frecron expansion

$$
\frac{A}{x}+\frac{B x+c}{\left(x^{2}+1\right)^{2}}+\frac{D x+E}{x^{2}+1}
$$

