Differential equation

- A differential equation is an equation containing an unknown function and one or more of its derivatives.
- The order of a differential equation is the order of the highest derivative of the unknown function that occurs in the equation.

Example

Show that the function $y=\frac{1}{x+C}$ is a solution to the differential equation $y^{\prime}=-y^{2}$ for all C.

$$
\begin{aligned}
\text { L.H.S. : } y^{\prime} & =\frac{d}{d x}\left(\frac{1}{x+c}\right)=\frac{d}{d x}\left((x+C)^{-1}\right)= \\
& =-1 \cdot(x+C)^{-2}=-\frac{1}{(x+c)^{2}}=-\left(\frac{1}{x+c}\right)^{2} \\
& =-y^{2}
\end{aligned}
$$

Example (cont.)
Solve the initial value problem

$$
y^{\prime}=-y^{2}, \quad y(0)=0.5
$$

From previous slide, we know that $y=\frac{1}{x+c}$ is

- solution to the $D E$ for all C.

Using that $y(0)=\frac{1}{2}$, we get:

$$
\frac{1}{0+c}=\frac{1}{2} \quad \Rightarrow \quad c=2
$$

so the solution is $y(t)=\frac{1}{x+2}$

Separable equations

Definition

A separable differential equation is a first-order differential equation of the form

$$
\frac{d y}{d x}=g(x) f(y)
$$

Examples of separable equations

- $y^{\prime}=\sin x \cdot \cos y$

$$
\frac{d y}{d x}=\underbrace{(x+1)(y+1)}_{\text {since }}
$$

The solution of a separable equation
Suppose we are given the separable D.E.

$$
\frac{d y}{d x}=g(x) f(y)
$$

Rewrite this as $\frac{1}{f(y)} d y=g(x) d x$
and integrate

$$
\frac{\int \frac{1}{f(y)} d y}{\text { in } y}=\frac{\int g(x) d x}{\text { function in } x}
$$ and then solve for y

Example

Find the solution of

$$
\frac{d y}{d x}=\frac{x^{2}}{y^{2}}
$$

This is a separable equation since $\frac{d y}{d x}=x^{2} \cdot \frac{1}{y^{2}}$ and we write

$$
y^{2} d y=x^{2} d x
$$

Optional:
We can tidy up then integrate:

$$
\begin{array}{ll}
\int y^{2} d y=\int x^{2} d x & \text { by lettmy } c_{1}=3 c \\
y^{3} & =\frac{x^{3}}{3}+C \quad \text { and gel } \\
y^{3}=x^{3}+3 c & y=\sqrt[3]{x^{3}+c_{1}} \\
y=\sqrt[3]{x^{3}+3 C}
\end{array}
$$

Example

Find the solution of

$$
y^{\prime}=x^{2} y
$$

Write it in Leibniz form $\left(\frac{d y}{d x}\right.$ instead of $\left.y^{\prime}\right)$,

$$
\begin{aligned}
& \frac{d y}{d x}=x^{2} \cdot y \\
& \frac{1}{y} d y=x^{2} d x
\end{aligned}
$$

Now integrate both sides.
Don't forget to include a constant of mtegration

$$
\begin{aligned}
& \int \frac{1}{y} d y=\int x^{2} d x \\
& \ln |y|=\frac{x^{3}}{3}+c
\end{aligned}
$$

Solve for y :

$$
\begin{aligned}
& \text { Solve for } y \text { : } x^{3} \\
& e^{\ln |y|}=e^{\frac{x^{3}}{3}+c} \\
& |y|=e^{\frac{x^{3}}{3}+c}=e^{c} \cdot e^{x^{3} / 3}
\end{aligned}
$$

Example

$$
\left\lvert\, \begin{aligned}
& |y|=a \\
& \Rightarrow y= \pm a
\end{aligned}\right.
$$

Find the solution of
So for: : $|y|=e^{c} \cdot e^{x^{3} / 3}$
Thus $y=\underbrace{ \pm e^{c}}_{\text {any number }} e^{x^{3} / 3}$
$\left[\right.$ Note: $y(x)=0$ is a solution, since $\left.\begin{array}{l}y^{\prime}=0 \\ x^{2} \cdot y=x^{2} \cdot 0=0\end{array}\right]$
$\Rightarrow y=D \cdot e^{x^{3} / 3}, D$ is an arbitrary constant
Let us check that we have a solution:

$$
\begin{aligned}
& \text { et us check that we have a solution: } \\
& L H S=y^{\prime}=D \cdot e^{x^{3} / 3} \cdot \frac{3 x^{2}}{3}=x^{2} \cdot D e^{x^{3}}=x^{2} \cdot y
\end{aligned}
$$

Example

Find the solution of

$$
y^{\prime}=x^{2} y
$$

$$
\underline{\ell} \text { not } \frac{1}{-}
$$

A tank contains 10001 of beer with 4% alcohol. Beer with 6% alcohol is pumped into the tank at a rate of 201 per minute, and the mixture is pumped out at the same rate. What is the percentage of alcohol in the mixture after 1 hour?

Let $y(t)$ be the volume of alcohol in tank at time t. thus $y(0)=0.04 \cdot 1000=40$
The rate of change of y i given by

$$
\begin{aligned}
\frac{d y}{d t}= & (\text { inflow of alcohol } / \text { min })-(\text { outflow of al./win }) \\
= & 0.06 \cdot 20-\frac{y(t)}{1000} \cdot 20=1.2-0.02 y \\
\text { Summing up } & \frac{d y}{d t}=1.2-0.02 y \quad y(0)=40
\end{aligned}
$$

A tank contains 10001 of beer with 4% alcohol. Beer with 6% alcohol is pumped into the tank at a rate of 201 per minute, and the mixture is pumped out at the same rate. What is the percentage of alcohol in the mixture after 1 hour?

$$
\frac{d y}{d t}=1.2-0.02 y, y(0)=40
$$

This is a separable equation:

$$
\begin{aligned}
\frac{1}{1.2-0.02 y} d y & =1 \cdot d t \\
i n+g \Omega k & \int \frac{1}{1.2-0.02 y} d y \\
-50=-\frac{1}{-0.02}-50 \cdot \ln |1.2-0.02 y| & =t+C
\end{aligned}
$$

$$
\begin{aligned}
& \ln |1.2-0.02 y|=-\frac{t+c}{50} \\
& 1.2-0.02 y= \pm e^{-\frac{t+c}{50}} \\
& 0.02 y=1.2 \pm e^{-\frac{t+c}{50}} \\
& y=60 \pm 50 e^{-\frac{t+c}{50}} \\
& T . B c
\end{aligned}
$$

