Models for population growth

E. Sköldberg
emil.skoldberg@nuigalway.ie
http://www.maths.nuigalway.ie/~emil/

School of Mathematics etc.
National University of Ireland, Galway
MA100

Example continued from last week

A tank contains 10001 of beer with 4% alcohol. Beer with 6% alcohol is pumped into the tank at a rate of 201 per minute, and the mixture is pumped out at the same rate. What is the percentage of alcohol in the mixture after 1 hour?

$$
-50 \ln |1.2-0.02 y|=t+C
$$

We use that $y(0)=40$ to calculate C :
$-50 \ln |1.2-0.02 \cdot 40|=0+C$
$-50 \ln 0.4=c$
So our equation becomes $-50 \ln |1.2-0.02 y|=t-50 \ln 0.4$

$$
\Rightarrow \ln |1.2-0.02 y|=\ln 0.4-\frac{t}{50}
$$

Example continued from last week

A tank contains 10001 of beer with 4% alcohol. Beer with 6% alcohol is pumped into the tank at a rate of 201 per minute, and the mixture is pumped out at the same rate. What is the percentage of alcohol in the mixture after 1 hour?

$$
\begin{aligned}
& \ln |1.2-0.02 y|=\ln 0.4-\frac{t}{50} \\
& \text { exponentiate both sides to get rid of ln } \\
& |1.2-0.02 y|=e^{\ln 0.4-\frac{t}{50}} \\
& |\underbrace{1.2-0.02 y}|=e^{\ln 0.4} \cdot e^{-t / 50}=\underbrace{0.4 e^{-\frac{t}{50}}\left|\frac{60-20 e^{-1.2}}{\frac{60}{1000}}\right|}_{\geqslant 0} \\
& \begin{array}{l}
\geqslant 0 \text { at } t=0 \\
\Rightarrow 1.2-0.02 y=0.4 e^{-t / 50} \Rightarrow\left|y=60-20 e^{-t / 50}\right|
\end{array}
\end{aligned}
$$

The law of natural growth
P is the population (depends of t) t is the time
$\frac{d P}{d t}$ is the rate of change of the population

Blue curve:
solution passing through $(0,2)$
i.e $\quad P(0)=2 P$

Red curve:
solution s.t

$$
P(0)=1
$$

Green curve:

$$
\begin{aligned}
& \underline{\sum x} \\
& k=1 \\
& \frac{d P}{d z}=P
\end{aligned}
$$

Solution s.t. $P(0)=-1$

The law of natural growth

$$
\frac{d P}{d t}=k P
$$

This differential equation is separable.

$$
|P|=e^{\ln |P|}=e^{k \cdot t+c}=e^{c} \cdot e^{k t}
$$

$$
\begin{aligned}
& {\left[\frac{d P}{d t}=f(P) \cdot g(t)\right]} \\
& \text { So } \\
& \frac{d P}{d t}=k \cdot P \quad \text { collect } \begin{array}{l}
P \text { in LHS } \\
t \text { in RHS }
\end{array} \\
& \Rightarrow \quad \frac{1}{P} \cdot d P=k \cdot d t \\
& \int \frac{1}{P} d P=\int k d t \\
& \ln |P|=k \cdot t+C \quad \text { Exponentiate } \\
& \text { Now : integrate } \\
& \text { SD } P= \pm e^{c} \cdot e^{k \cdot t} \\
& 0 \quad P=A \cdot e^{k t} \\
& \text { for some } A
\end{aligned}
$$

The law of natural growth
Theorem
The solution to the initial value problem

$$
\frac{d P}{d t}=k P, \quad P(0)=P_{0}
$$

is

$$
P(t)=P_{0} e^{k t}
$$

From the last slide, we know the t

$$
\begin{aligned}
& P(t)=A e^{k \cdot t} \text { set } t=0 \text {, so } P(0)=P_{0} \\
& P_{0}=A \cdot e^{k \cdot 0}=A e^{0}=A . \\
& =\quad \text { Hence, we get solution } P(t)=P_{0} e^{k t} .
\end{aligned}
$$

Radioactive decay

Radioactive material decays at a rate that is proportional to the amount of the material. This gives the differential equation

$$
\frac{d m}{d t}=k m
$$

where m is the mass of the sample. The rate of decay is usually measured by the half-life, the time it takes for half of a sample to decay.

Radioactive decay (cont.)

Cesium -137 has a half live of 30.17 years. A sample of cesium has a mass of 1000 g . How much remains after 10 years?

The differential equation is $\frac{d m}{d t}=k \mathrm{~m}$
where t is the time in years
m is the mass of cesium in the sample.
The solution is $m(t)=m_{0} e^{k \cdot t}$ where $m_{0}=1000$
so

$$
\begin{aligned}
& m(t)=m_{0} \\
& m(t)=1000 e^{k \cdot t} 5 n 0-1000 e^{30.17 k}
\end{aligned}
$$

We want to find $m(10)$
so $\quad 500=1000 e$

$$
e^{30.17 k}=\frac{1}{2}
$$

we know that $m(30.17)=500$

$$
30.17 k=\ln 1 / 2=-\ln 2
$$

$$
k=-\frac{\ln 2}{30.17}
$$

Radioactive decay (cont.)

Cesium -137 has a half live of 30.17 years. A sample of cesium has a mass of 1000 g . How much remains after 10 years?

$$
m(t)=1000 e^{-\frac{\ln 2}{30.17} t} \text { is the solution, so }
$$

$m(10)$, the amount of cesium after 10 year is

$$
m(10)=1000 e^{-\frac{\ln 2}{30.10} 10} \approx 795 \mathrm{~g}
$$

