Antiderivatives

E. Sköldberg
emil.skoldberg@nuigalway.ie
http://www.maths.nuigalway.ie/~emil/

School of Mathematics etc.
National University of Ireland, Galway

MA100

Antiderivatives

Sometimes we can measure the derivative of a function, without an easy way of measuring the function itself. Examples might be

- We can measure the speed of a car, and want to find the distance travelled after a given time.
- We can measure the rate at which water flows out of a reservoir, and want to find the amount that has flowed out after a month.

In each of these cases, we want to find a function $F(x)$ whose derivative is a given function $f(x)$, that is, we want to the opposite of differentiation.
Stewart: Section 4.9

Definition
A function F is an antiderivative of the function f on the interval I if $F^{\prime}(x)=f(x)$ for all $x \in I$.

Examples
Let $F(x)=x^{3}$, then $F^{\prime}(x)=3 x^{2}$
So x^{3} is an antiderivative of $3 x^{2}$ on \mathbb{R}
Let $G(x)=\sin x^{2}$, then $g(x)=G^{\prime}(x)=2 x \cos x^{2}$ $\rightarrow \sin x^{2}$ is the autidenvatre of $2 x \cos x^{2}$.

We might have many antidenizitues of a function e.g $f(x)=x+2 \quad g(x)=x-13$, then

$$
f^{\prime}(x)=g^{\prime}(x)=\frac{1}{t w o} \text {. So } x+2 \text { and } x-13
$$

Theorem are two different autioneratres of 1 If F is an antiderivative of f on I, then the most general antiderivative of f is $F(x)+C$ where C is a constant.
Why. Suppose $F_{1}(x)$ and $F_{2}(x)$ are both antidenvetwes of $f(x)$. Thus $F_{1}^{\prime}(x)=f(x)=F_{2}^{\prime}(x)$ and then $\frac{d}{d x}\left(F_{1}(x)-F_{2}(x)\right)=f(x)-f(x)=0$ By the uncan vale theorem $F_{1}(x)-F_{2}(x)=C$ for C a constant.

Examples

Find the general antiderivative of the functions $f(x)=\cos x$, $g(x)=e^{x}$ and $h(x)=x^{2}$.
(1) Let $F(x)=\sin x$, then $F^{\prime}(x)=\cos x=f(x)$ so the general antiderivative of $f(x)$ is $\sin x+C$ for a constant C.
(2) Let $G(x)=e^{x}$, then $G^{\prime}(x)=e^{x}=g(x)$ so the general antiderivature of $g(x)$ is $e^{x}+C$
(3) Let $H(x)=\frac{1}{3} x^{3}$, then $H^{\prime}(x)=\frac{1}{3} \cdot 3 x^{2}=x^{2}=h(x)$ so the general antiderivative of $h(x)$ is $\frac{x^{3}}{3}+C$

Table of antidifferentiation formulas

Suppose that f, g, F, G are functions such that $F^{\prime}(x)=f(x)$ and $G^{\prime}(x)=g(x)$. Then we have

Function	Particular antiderivative
$c f(x)$	$c F(x)$
$f(x)+g(x)$	$F(x)+G(x)$
$x^{n}, n \neq-1$	$\frac{x^{n+1}}{n+1}$
$\frac{1}{x}$	$\ln \|x\|$
e^{x}	e^{x}
$\cos x$	$\sin x$
$\sin x$	$-\cos x$
$\frac{1}{\sqrt{1-x^{2}}}$	$\sin ^{-1} x$
$\frac{1}{1+x^{2}}$	$\tan ^{-1} x$

Find the most general antiderivative of the following functions

- $f(x)=\frac{11}{x^{10}}$

We can write $f(x)=\frac{11}{x^{10}}=11 \cdot \frac{1}{x^{10}}=11 \cdot x^{-10}$
So. Let $F(x)=11 \cdot \frac{x^{-10+1}}{-10+1}=11 \cdot \frac{x^{-9}}{-9}=-\frac{11}{9 x^{9}}$

- $g(x)=\sin x+\cos 2 x$ so the most geneal antidenvative
of $f(x)$ is $-\frac{11}{9 x^{9}}+C$
We have a sum of functions, so we can find antiderivatives of $\sin x$ and $\cos 2 x$ separtely.
$\sin x$ has an antidenvative $-\cos x$

$$
\cos 2 x=\frac{1}{2} \sin 2 x
$$

Therefore, the most general anticienvative of $\sin x+\cos 2 x$ is $1-\cos x+\frac{1}{2} \sin 2 x+C 1$

Example

Find $f(x)$ if $f^{\prime \prime}(x)=60 x^{4}-2 e^{x}$.
$f^{\prime}(x)$ is an antidenivetive of $60 x^{4}-2 e^{x}$
so $\quad f^{\prime}(x)=60 \cdot \frac{x^{5}}{5}-2 e^{x}+C=12 x^{5}-2 e^{x}+C$
Thus $f(x)$, which is an antidernctive of $f(x)$ is

$$
\begin{aligned}
f(x) & =12 \cdot \frac{x^{6}}{6}-2 e^{x}+C x+D \\
& =2 x^{6}-2 e^{x}+C x+D
\end{aligned}
$$

Rectilinear motion

Rectilinear motion or linear motion is motion along a straight line. Supposing that the position of a particle at the time t is given by the function $s(t)$, the velocity of the particle is given by $v(t)$ and its acceleration is given by $a(t)$. In that case we have the relationships:

- $v(t)=s^{\prime}(t)$
- $a(t)=v^{\prime}(t)$

We thus have a need for antiderivatives if we know the velocity or acceleration and want to find the position.

Rectilinear motion

A car is travelling with the speed of $72 \mathrm{~km} / \mathrm{h}$ when it brakes with a constant deceleration of $5 \mathrm{~m} / \mathrm{s}^{\mathrm{s}}$. What distance has the car travelled when it comes to a halt?
$72 \mathrm{~km} / \mathrm{h}$ is $20 \mathrm{~m} / \mathrm{s}$.
Now we know that $a(t)=-5$, so

$$
\begin{aligned}
& \text { Now we know that } \\
& V(t)=-5 t+C \text { and } s(t)=-\frac{5}{2} t^{2}+C t+D
\end{aligned}
$$

We know that $v(0)=20$, so $c=20$
We can ser $s(0)=0$, so $0=0+20 \cdot 0+D$

So $D=0$.

$$
D=0 \quad i(t)=20 t-\frac{5}{2} t^{2}
$$

We have stopped after for seconds and

$$
\begin{aligned}
& \text { are stopped after fou sech } \\
& s(4)=20.4-\frac{5}{2} 4^{2}=80-40=40
\end{aligned}
$$

Thus, the car has travelled 40 m

