Antiderivatives

E. Sköldberg
emil.skoldberg@nuigalway.ie
http://www.maths.nuigalway.ie/~emil/

School of Mathematics etc. National University of Ireland, Galway

MA100

Antiderivatives

Sometimes we can measure the derivative of a function, without an easy way of measuring the function itself. Examples might be

- We can measure the speed of a car, and want to find the distance travelled after a given time.
- We can measure the rate at which water flows out of a reservoir, and want to find the amount that has flowed out after a month.

In each of these cases, we want to find a function F(x) whose derivative is a given function f(x), that is, we want to the opposite of differentiation.

(日) (同) (三) (三) (三) (○) (○)

Stewart: Section 4.9

Definition

A function F is an *antiderivative* of the function f on the interval I if F'(x) = f(x) for all $x \in I$.

We might have many antiderbethes of a function
e.g.
$$f(x) = x + 2$$
 $g(x) = x - 13$, then
 $f'(x) = g'(x) = 1$. So $x + 2$ and $x - 13$
Theorem are two different antidervedues of 1
If F is an antiderivative of f on I, then the most general
antiderivative of f is $F(x) + C$ where C is a constant.
Why? Suppose $F_1(x)$ and $F_2(x)$ are both
antidervetues of for. Thus $F'_1(x) = f(x) = F'_2(x)$
antidervetues of for. Thus $F'_1(x) = f(x) = F'_2(x)$
and then $\frac{1}{2x} (F(x) - F_2(x)) = f(x) - f(x) = 0$
By the mean value theorem $F_1(x) - F_2(x) = C$
by the mean value theorem $F_1(x) - F_2(x) = C$

・ロト・日本・日本・日本・日本・日本

Examples

Find the general antiderivative of the functions $f(x) = \cos x$, $g(x) = e^x$ and $h(x) = x^2$. () Let For = sin x, then F(x) = cosk = for) so the general antiderivative of fair is sin x + C for a constant C. Let $G(x) = e^{x}$ then $G(x) = e^{x} = g(x)$ x so the general antider nature of g(x) is e + C(3) Let $H(x) = \frac{1}{3}x^2$, then $H(x) = \frac{1}{3}x^2 = x^2 = h(x)$ so the general antiderivative of h(x) is $\frac{x}{3} + C$ < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Table of antidifferentiation formulas

Suppose that f, g, F, G are functions such that F'(x) = f(x) and G'(x) = g(x). Then we have

Function	Particular antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n, n \neq -1$	$\frac{x^{n+1}}{n+1}$
	$\ln x $
$\frac{1}{x}$ e^{x}	e ^x
cos x	sin x
sin x	$-\cos x$
$\frac{1}{\sqrt{1-v^2}}$	$\sin^{-1}x$
$\frac{\sqrt{1-x^2}}{\frac{1}{1+x^2}}$	$\tan^{-1} x$

Find the most general antiderivative of the following functions

•
$$f(x) = \frac{11}{x^{10}}$$

We can write $f(x) = \frac{11}{x^{10}} = 11 \cdot \frac{1}{x^{10}} = 11 \cdot x^{-10}$
So, let $F(x) = 11 \cdot \frac{x}{-10 + 1} = 11 \cdot \frac{x^{-9}}{-9} = -\frac{11}{9x^9}$
• $g(x) = \sin x + \cos 2x$ so the most generic antidenvetue
of $f(x)$ is $\frac{-11}{9x^9} + C$
We have a sum of functions, so we can
find antiderivatives of sin x and cos 2x separately.
Sin x has an antidenvetue $-\cos x$
 $\cos hx - \frac{1}{2} \sin 2x$
Therefore, the most general antidenvetue of $\sin x + \cos 2x$

Example

Find
$$f(x)$$
 if $f''(x) = 60x^4 - 2e^x$.
f(x) is an antideovertue of $60x^4 - 2e^x$
so $f(x) = 60 \cdot \frac{x}{5} - 2e^x + C = 12x^5 - 2e^x + C$
Turns f co, which is an antideovertue of f cut is
 $f(x) = 12 \cdot \frac{x^6}{6} - 2e^x + Cx + D$
 $= 2x^6 - 2e^x + Cx + D$

Rectilinear motion or linear motion is motion along a straight line. Supposing that the position of a particle at the time t is given by the function s(t), the velocity of the particle is given by v(t) and its acceleration is given by a(t). In that case we have the relationships:

- v(t) = s'(t)
- a(t) = v'(t)

We thus have a need for antiderivatives if we know the velocity or acceleration and want to find the position.

Rectilinear motion

A car is travelling with the speed of 72 km/h when it brakes with a constant deceleration of 5 m/s^s. What distance has the car travelled when it comes to a halt?

72 km/n is 20 m/s. Now we know that alt) = -5, so $V(t) = -5t + C and S(t) = -\frac{5}{2}t^{2} + Ct + D$ We know that v(0) = 20, so C = 20 We can set S(0) = 0, so 0 = 0 + 20.0 + DSOD = 0. Thus, $S(t) = 20t - \frac{5}{2}t^{2}$ We have stopped after four seconds and has travelled s(4) = 20.4 - 542 = 80-40=40 40 m