Areas

E. Sköldberg
 emil.skoldberg@nuigalway.ie http://www.maths.nuigalway.ie/~emil/

School of Mathematics etc.
National University of Ireland, Galway

MA100

The area problem

- What is the area of the shaded region?
- What do we mean by "the area of the shaded region"?

The area problem (cont.)

For what type of regions can we compute the area? In order of complexity:
(1) Squares
(2) Rectangles
(3) Triangles
(1) Triangulated regions.
(3)

(1)

2
(2) h

(4)

Area b.h squnits

Area 4 sq. units

Area: sum off triangle areas.

The area problem (cont.)
Let $n=4$

The area of the rectangles in first figure

$$
\begin{aligned}
= & f\left(x_{0}\right) \Delta x+f\left(x_{1}\right) \Delta x \\
& +f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x
\end{aligned}
$$

In second figure ${ }_{y}$ the rectangles' area is

$$
\begin{aligned}
& f(x) \Delta_{x}+f\left(x_{2} \Delta_{x}\right. \\
& +f\left(x_{y}\right) \Delta_{x}+f\left(x_{y}\right) \Delta x
\end{aligned}
$$

(the number of subinterds)
let $\Delta x=\frac{b-a}{n}=\frac{b-a}{4}$
so $x_{0}=a$
$x_{1}=a+\Delta x$
$x_{2}=a+2 \Delta x$
$x_{2}=a+3 \Delta x$

$$
\begin{aligned}
& b=x_{y}=a+y s x \\
& =x_{4}
\end{aligned}
$$

so $x_{i}=a+i \Delta x$

The area problem (cont.)
By increasing $n=\#$ subintersls, we get a better ${ }_{y}$ approximation of the area

The rectangle area is her =

$$
\begin{aligned}
& f\left(x_{1}\right) \Delta x+f\left(x_{1}\right) \Delta_{x}+f\left(x_{2}\right) \Delta_{x}+\cdots+f\left(x_{15}\right) \Delta x+f\left(x_{1}\right) \Delta x= \\
& =\sum_{i=1}^{16} f\left(x_{i}\right) \Delta x
\end{aligned}
$$

The area problem (cont.)

The more intervals, the better the approximation.

16 subintervals.

128 subintervals

32 subintervals

256 subintervals

Definition of area

Definition

The area A of the region bounded by:

- Below by the x-axis
- From the left by the line $x=a$
- From the rigth by the line $x=b$
- Above by the graph of $f(x)$
where $f(x)$ is a continuous function is the limit of the area of the union of the approximating rectangles

$$
A=\lim _{n \rightarrow \infty}\left(f\left(x_{1}\right) \Delta_{x}+f\left(x_{2}\right) \Delta_{x} f\left(x_{2}\right) \Delta_{x}+\cdots+f\left(x_{n}\right) \Delta_{x}\right)
$$

Here, $\Delta_{x}=(b-a) / n$ and $x_{i}=a+i$

Example

The speed of a runner increased steadily during the first three seconds of a race. The speed was measured at each half-second, and the readings are given in the table below.

$t(\mathrm{~s})$	0	0.5	1.0	1.5	2.0	2.5	3.0
$v(\mathrm{~m} / \mathrm{s})$	0	1.9	3.3	4.5	5.5	5.9	6.2

An approximation would be got by assuming that the speed i) construct throughout each $1 / 2$-second interesel.

- A lower estimate would be to assume that the speed on each inters is the initial speed in the interval
- An upper estimate would be obtained by instecal takiy the final speed on internal

Example

The speed of a runner increased steadily during the first three seconds of a race. The speed was measured at each half-second, and the readings are given in the table below.

$t(\mathrm{~s})$	0	0.5	1.0	1.5	2.0	2.5	3.0
$v(\mathrm{~m} / \mathrm{s})$	0	1.9	3.3	4.5	5.5	5.9	6.2

Estimate the distance she ran during the first three seconds.

- For the lower estincte we get

$$
\begin{aligned}
& 0.5 \cdot 0+0.5 \cdot 1.9+0.5 \cdot 3.3+0.5-4.5 \rightarrow 0.5 \cdot 5.5+0.5 \cdot 5.9 \\
& =0.5 \cdot 21.1=10.55 \mathrm{~m}
\end{aligned}
$$

- For the upper estimate:

$$
0.5 \cdot 1.9+\ldots+0.5 \cdot 6.2=13.65 \mathrm{~m}
$$

