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The definition of the definite integral

Inspired by the definition of area below the graph of a function from the
last lecture, we make the following definition.

Definition

If f is a function defined on [a, b], we define the definite integral of f from
a to b to be ∫ b

a
f (x) dx = lim

n→∞

n∑
i=1

f (x∗i )∆x

where

∆x = (b − a)/n

xi = a + i∆x , so a = x0 and b = xn

x∗i ∈ [xi−1, xi ].

provided that the limit exists. If the limit exists, the function f is said to
be integrable on [a, b].
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The definition of the definite integral

In the expression ∫ b

a
f (x) dx

∫
is the integral sign

a and b are the limits of integration (a is the lower, and b is the
upper).

f (x) is the integrand
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Integrable functions

Theorem

If f is continuousa on [a, b] then f is integrable on [a, b], i.e. the definite

integral
∫ b
a f (x) dx exists.

aor if f has only a finite number of jump discontinuities
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The integral

If f is continuous1 on the interval [a, b], then the actual points in the
intervals [xi−1, xi ] we use does not matter, and we can for simplicity
choose the right endpoint, giving us the following result.

Theorem

If f (x) is continuousa on the interval [a, b], then∫ b

a
f (x) dx = lim

n→∞

n∑
i=1

f (xi )∆x

where

∆x =
b − a

n
and xi = a + i∆x .

aor integrable

1or, more generally, integrable
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Net area
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Interpreting integrals in terms of areas
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Interpreting integrals in terms of areas (cont.)
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Theorem

Let f (x) be a continuousa function. Then∫ b

a
f (x) dx = −

∫ a

b
f (x) dx

aintegrable
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Properties of the integral

Theorem

Let f and g be continuous functions and c a constant. Then∫ b

a
c dx = c(b − a) (1)∫ b

a
(f (x) + g(x)) dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx (2)∫ b

a
c · f (x) dx = c

∫ b

a
f (x) dx (3)∫ b

a
(f (x)− g(x)) dx =

∫ b

a
f (x) dx −

∫ b

a
g(x) dx (4)
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Properties of the integral (cont.)

∫ b

a
c dx = c(b − a), c is a constant.
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Properties of the integral (cont.)

∫ b

a
(f (x) + g(x)) dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx
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Properties of the integral (cont.)

∫ b

a
c · f (x) dx = c

∫ b

a
f (x) dx
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Properties of the integral (cont.)

∫ b

a
(f (x)− g(x)) dx =

∫ b

a
f (x) dx −

∫ b

a
g(x) dx
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Properties of the integral (cont.)

∫ b

a
f (x) dx +

∫ c

b
f (x) dx =

∫ c

a
f (x) dx
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