The fundamental theorem of calculus

E. Sköldberg
emil.skoldberg@nuigalway.ie http://www.maths.nuigalway.ie/~emil/

School of Mathematics etc.
National University of Ireland, Galway

MA100

Comparison properties of the integral

Theorem
Let $f(x)$ and $g(x)$ be continuous ${ }^{a}$, then

- If $f(x) \geq g(x)$ for all $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x .
$$

- If $f(x) \geq 0$ for all $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) d x \geq 0 .
$$

- If $m \leq f(x) \leq M$ for all $x \in[a, b]$, then

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a) .
$$

[^0]If $f(x) \geq g(x)$ for all $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x
$$

If $f(x) \geq 0$ for all $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) d x \geq 0
$$

If $m \leq f(x) \leq M$ for all $x \in[a, b]$, then

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a) .
$$

Example
Sketch a graph of $g(x)=\int_{0}^{x} f(t) d t$ where

Let us calculate some values of $g(x)$

$$
\begin{aligned}
& \left.g(0)=\int_{0}^{0} f(t) d t=0 \quad g(1)=\int_{0}^{1} f(x) d x=\frac{1}{2} \quad \right\rvert\, g(7)=\frac{11}{2}-1=\frac{9}{2} \\
& \left.g(2)=\int_{0}^{2} f(t) d t=\frac{2 \cdot 2}{2}=2 \quad g(3)=\int_{0}^{1} f(t) d t=2+2=4 \right\rvert\, \\
& g(5)=2+2+2=6 \quad g(4)=6-\frac{1}{2}=\frac{11}{2} \quad g(6)=6-\frac{1}{2}=\frac{11}{2}
\end{aligned}
$$

Example
Sketch a graph of $g(x)=\int_{0}^{x} f(x) d x$ where

The fundamental theorem of calculus part 1

Theorem
If f is continuous on $[a, b]$, then the function g defined by

$$
g(x)=\int_{a}^{x} f(t) d t
$$

is continuous on $[a, b]$, and differentiable on (a, b) with

$$
g^{\prime}(x)=f(x) .
$$

Example

Find the derivative of the function $g(x)=\int_{0}^{x} \sin (\sqrt{t}) d t$.
The function $f(t)=\sin \sqrt{t}$ is continuous, so, therefore, by the fundamental theorem of calculus

$$
g^{\prime}(x)=\sin \sqrt{x}
$$

The fundamental theorem of calculus part 2

Theorem
If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f.

The fundamental theorem of calculus part 2 (cont) Let $g(x)=\int_{a}^{x} f(t) d t$ Then, by part 1 of the fundamental thesen of calculus,

$$
g^{\prime}(x)=f(x)
$$

If $F(x)$ is any other antidenstre of f,

$$
F(x)=g(x)+C, C \text { constant. }
$$

Now:

$$
g(a)=\int_{a}^{a} f(t) d t=0
$$

$$
\begin{aligned}
F(b)-F(a) & =g(b)+c-(g(a)+c) \\
& =g(b)-g(a) \\
& =g(b)
\end{aligned}
$$

What if f is not continuous?

Can we evaluate

$$
\int_{-2}^{2} \frac{1}{x^{4}} d x ?
$$

If we forgot to check the continuity of $\frac{1}{x^{4}}$ on $[-2,2]$ we might get
(where $\left.F(x)=-\frac{1}{3} x^{-3}=-\frac{1}{3 x^{3}}\right)$

$$
\begin{aligned}
& \frac{1}{x^{4}}=x^{-4} \\
& \text { so } \frac{d}{d x} \frac{x^{-3}}{-3}=\frac{(-3)}{(-3)} \cdot x^{-3-1} \\
& =x^{-4}
\end{aligned}
$$

$$
=-\frac{1}{3 \cdot 2^{3}}-\left(-\frac{1}{3(-2)^{3}}\right)=-\frac{1}{24}-\frac{1}{24}=-\frac{1}{12}{ }^{\prime 2}\left\{\begin{array}{c}
\text { False! } \\
\text { See next } \\
\text { slide! }
\end{array}\right\}
$$

What if f is not continuous?

Can we evaluate

$$
\int_{-2}^{2} \frac{1}{x^{4}} d x ?
$$

Since $\frac{1}{x^{4}} \geqslant 0, \int_{\text {if it exists }}^{2} \frac{1}{x^{4}} d x \geqslant 0$
This contradicts our calculation on previous slide

From the graph we see that x the integrand $\frac{1}{x^{4}}$ is not continuous Hence, calculation on previous slide nonsense!

What if f is not continuous?

Can we evaluate

$$
\int_{-2}^{2} \frac{1}{x^{4}} d x ?
$$

$\frac{1}{x^{4}}$ is contmuous on the internal $x>0$ though. So, if we instead wanted to calculck $\int_{1}^{2} \frac{1}{x^{4}} d x$ we would get

$$
\begin{aligned}
& \int_{1}^{2} \frac{1}{x^{4}} d x=\underbrace{\left[-\frac{1}{3 x^{3}}\right]_{1}^{2}}=\underbrace{3 \cdot 2^{3}}_{-1}-\left(-\frac{1}{3 \cdot 1^{3}}\right) \\
& =\frac{-1}{3 \cdot 8}+\frac{1}{3}=\frac{7}{24}
\end{aligned}
$$

Notation $\left[F(x]_{a}^{b}=F(b)-F(a)\right.$

Example

Evaluate the integral $\int_{0}^{\pi} \sin (x) d x$.
The function $\sin x$ is continuous on \mathbb{R}
Thus, we can use the fundamental theorem of calculus to get.

$$
\frac{d^{0}}{d x} \cos x=-\sin x
$$

$$
\begin{aligned}
& \frac{d}{d x}-\cos x=-\sin x=\sin x \\
& \text { sin an }-\cos x \text { is }
\end{aligned}
$$

$$
=[-\cos x]_{0}^{\pi}=
$$

so $-\cos x$ is an

$$
\begin{aligned}
& =[-\cos x]_{0}^{\pi}= \\
& =-\cos \pi-(-\cos 0)=-(-1)-(-1)=2
\end{aligned}
$$

$$
\text { antidervatire of } \sin x
$$

Example

Find the area below the parabola $y=4-x^{2}$ between $x=-2$ and $x=2$.

x	y
-2	0
-1	3
0	4
1	3
2	0

The area of the shaded region is

$$
\int_{-2}^{2}\left(4-x^{2}\right) d x
$$

$4-x^{2}$ is continuous, so by the fund. them. of coals.

$$
\begin{aligned}
\int_{-2}^{2} 4-x^{2} d x=\left[4 x-\frac{x^{3}}{3}\right]^{2}=\left(4 \cdot 2-\frac{2^{3}}{3}\right)-\left(4(-2)-\frac{(-2)^{3}}{3}\right) \\
-\frac{16}{3}-\left(-\frac{16}{3}\right)=\frac{32}{3}
\end{aligned}
$$

Example

Find $g^{\prime}(x)$ when

$$
g(x)=\int_{1}^{x^{3}} \sin \sqrt{t} d t
$$

Now we have a composition of functions. If $\quad F(x)$ is an antiderivative of $\sin \sqrt{x}$
then

$$
\begin{aligned}
& F(x) \text { is an antiderivative of } \sin 0 x \\
& \int_{3}^{x} \sin \sqrt{t} d t=F(x)-F(1) \quad \mid F^{\prime}(x)=\sin \sqrt{x}
\end{aligned}
$$

$$
\text { so } g(x)=\int_{1}^{x^{3}} \sin \sqrt{t} d t=F\left(x^{3}\right)-F(1)
$$

Then, by the chain cull $g^{\prime}(x)=F^{\prime}\left(x^{3}\right) \cdot 3 x^{2}=\sin \sqrt{x^{3}} \cdot 3 x^{2}$

$$
\begin{aligned}
& =F(x) \cdot \sin x^{3 / 2}
\end{aligned}
$$

The fundamental theorem of calculus (both parts)

Theorem
Let $f(x)$ be continuous on $[a, b]$, then:
(1) If $g(x)=\int_{a}^{x} f(t) d t$, then $g^{\prime}(x)=f(x)$.
(2) $\int_{a}^{b} f(x) d x=F(b)-F(a)$, for $F(x)$ any antiderivative of $f(x)$.

[^0]: ${ }^{\text {a }}$ or integrable

