### The fundamental theorem of calculus

E. Sköldberg
emil.skoldberg@nuigalway.ie
http://www.maths.nuigalway.ie/~emil/

School of Mathematics etc. National University of Ireland, Galway

### MA100

# Comparison properties of the integral

### Theorem

Let f(x) and g(x) be continuous<sup>a</sup>, then • If  $f(x) \ge g(x)$  for all  $x \in [a, b]$ , then

$$\int_a^b f(x)\,dx \ge \int_a^b g(x)\,dx.$$

• If  $f(x) \ge 0$  for all  $x \in [a, b]$ , then

$$\int_a^b f(x)\,dx\geq 0.$$

• If  $m \leq f(x) \leq M$  for all  $x \in [a, b]$ , then

$$m(b-a) \leq \int_a^b f(x) dx \leq M(b-a).$$

<sup>a</sup>or integrable

Sköldberg (National University of Ireland, Ga

If  $f(x) \ge g(x)$  for all  $x \in [a, b]$ , then

$$\int_a^b f(x)\,dx \ge \int_a^b g(x)\,dx.$$



. . . . . . .

If  $f(x) \ge 0$  for all  $x \in [a, b]$ , then



MA100 18 / 1

If  $m \leq f(x) \leq M$  for all  $x \in [a, b]$ , then



Sketch a graph of  $g(x) = \int_0^x f(t) dt$  where

$$y = f(x)$$



## The fundamental theorem of calculus part 1

#### Theorem

If f is continuous on [a, b], then the function g defined by

$$g(x) = \int_a^x f(t) \, dt$$

is continuous on [a, b], and differentiable on (a, b) with

$$g'(x)=f(x).$$

Find the derivative of the function  $g(x) = \int_0^x \sin(\sqrt{t}) dt$ .

The function f(t) = s = 0 It is continuous, so, therefore, by the fundamental theorem of calculus g'(x) = s = 0

伺下 くまト くまト

## The fundamental theorem of calculus part 2

### Theorem

If f is continuous on [a, b], then

$$\int_a^b f(x) \, dx = F(b) - F(a)$$

where F is any antiderivative of f.

The fundamental theorem of calculus part 2 (cont) g(x) = Sf(t) dt Then, by past 1 let of the fundamental thesen of calculus, q'(x) = f(x)If F(x) is any other antidernative of f, F(x) = q(x) + C, C constant. F(b) - F(a) = g(b) + C - (g(a) + C)Now : = q(b) - q(a) $q(a) = \int f(t)dt = 0$ = g(b) = Sfandt = Sfandx

# What if f is not continuous?



# What if f is not continuous?



# What if f is not continuous?

Can we evaluate  $\int_{-\infty}^{2} \frac{1}{x^4} dx?$ 24 is continuous on the 24 though. So, if we may 2 2 > 0 mstead wanted we would get to calculak S I die  $\int \frac{1}{2^{4}} dx = \left[ -\frac{1}{3x^{3}} \right]^{2} = -\frac{1}{3 \cdot 2^{3}} - \left( -\frac{1}{3 \cdot 1^{3}} \right)$  $=\frac{-1}{2.8}+\frac{1}{3}=\frac{7}{04}$  $\left[F(x)\right]^{b} = F(b) - F(a)$ Notatim

Evaluate the integral  $\int_0^{\pi} \sin(x) dx$ . sm x is continu  $\mathbb{N}$ The function use the fundamental Thus, we can calculus to get. <del>گ</del>(بر ces x = - jsm x dx de - cosoc = --smol = sinx so - cos x is an antidementel of sinx  $= \int -\cos x \int_{1}^{1} =$ 

$$= -\cos \pi - (-\cos 0) = -(-1) - (-1) = 2$$

MA100 10 / 1

< 3 > < 3 >

Find the area below the parabola  $y = 4 - x^2$  between x = -2 and x = 2. The area of the -2 D -1 3 0 4 1 3 shaded region is  $x = \sqrt{(4-x^2)} dx$ 4-2 is continuous, so by the funk. then of cele.  $\int_{-\infty}^{\infty} 4x^{2} dx = \int_{-\infty}^{\infty} 4x - \frac{x}{3} \int_{-\infty}^{\infty} dx = \left(4 \cdot 2 - \frac{x}{3}\right) - \left(4(-2) - \frac{(-2)^{3}}{3}\right)$  $\frac{-2}{2} = \frac{16}{2} - \left(-\frac{16}{2}\right) = \frac{32}{2}$ 

Find g'(x) when

$$g(x) = \int_{-1}^{x^3} \sin \sqrt{t} \, dt$$

Now we have a composition of functions.  
If 
$$F(x)$$
 is an antiderivative of  $\sin \sqrt{3x}$   
then  $\int \sin \sqrt{4t} \, dt = F(x) - F(1)$   $|F(x)| = \sinh \sqrt{4t}$   
 $\int \sin \sqrt{4t} \, dt = F(x^3) - F(1)$   $|F(x)| = \sinh \sqrt{4t}$   
 $\int \sin \sqrt{4t} \, dt = F(x^3) - F(1)$   
Then, by the chain onle  $g'(x) = F(x^3) \cdot 3x^2 = \sinh \sqrt{4t} \cdot 3x^2$   
 $= 3x^2 \cdot \sin x^{3/2}$ 

# The fundamental theorem of calculus (both parts)

#### Theorem

Let f(x) be continuous on [a, b], then:

• If 
$$g(x) = \int_{a}^{x} f(t) dt$$
, then  $g'(x) = f(x)$ .

3  $\int_{a}^{b} f(x) dx = F(b) - F(a)$ , for F(x) any antiderivative of f(x).