Indefinite integrals and the net change theorem

E. Sköldberg
emil.skoldberg@nuigalway.ie http://www.maths.nuigalway.ie/~emil/

School of Mathematics etc.
National University of Ireland, Galway
MA100

Indefinite integrals

We will use the following notation

$$
\int f(x) d x=F(x) \quad \text { means } \quad F^{\prime}(x)=f(x)
$$

So, foe example

$$
\begin{aligned}
& \int x d x=\frac{x^{2}}{2}+\frac{C}{a} \text { constant } \\
& \text { and } \\
& \int e^{x} d x=e^{x}+C
\end{aligned}
$$

Example

Verify that

$$
\int \frac{x}{\sqrt{x^{2}+1}} d x=\sqrt{x^{2}+1}+C
$$

We need to check there

$$
\begin{aligned}
& \frac{d}{d x}\left(\sqrt{x^{2}+1}+C\right)=\frac{x}{\sqrt{x^{2}+1}} \text {, so we } \\
& \frac{d}{d x}\left(\sqrt{x^{2}+1}+C\right)=\frac{d}{d x} \sqrt{x^{2}+1}=\frac{d}{d x}\left(x^{2}+1\right)^{1 / 2}= \\
& =\frac{1}{2}\left(x^{2}+1\right)^{\frac{1}{2}-1} \cdot 2 x=x\left(x^{2}+1\right)^{-\frac{1}{2}}=\frac{x}{\left(x^{2}+1\right)^{1 / 2}}=\frac{x}{\sqrt{x^{2}+1}}
\end{aligned}
$$

Table of indefinite integrals

$$
\begin{array}{rlrl}
\int c f(x) d x & =c \int f(x) d x & \int e^{x} d x & =e^{x}+C \\
\int k d x=k x+C & \int \sin x d x & =-\cos x+C \\
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, \quad n \neq-1 & \int \frac{1}{1+x^{2}} d x & =\tan ^{-1} x+C \\
\int \frac{1}{x} d x=\ln |x|+C & \int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+C
\end{array}
$$

Example
NB $\cos ^{3} x=(\cos x)^{3}$

Verify that

$$
\int \cos ^{3} x d x=\sin x-\frac{1}{3} \sin ^{3} x+C
$$

Again, we need to check that

$$
\frac{d}{d x}\left(\sin x-\frac{1}{3} \sin ^{3} x+c\right)=\cos ^{3} x
$$

We differentiate to get:

$$
\begin{aligned}
& \text { We differentiate to get: } \\
& \begin{aligned}
\frac{d}{d x} & \left(\sin x-\frac{1}{3} \sin ^{3} x+c\right)=\cos x-\frac{1}{3} \cdot 3 \sin ^{2} x \cdot \cos x \\
& =\cos x-\cos x \cdot \sin ^{2} x=\cos x \underbrace{\left(1-\sin ^{2} x\right.}_{\cos ^{2} x}) \\
& =\cos x \cdot \cos ^{2} x=\cos ^{3} x
\end{aligned}
\end{aligned}
$$

Example

Find the indefinite integral $\int\left(x^{5}+12 x^{2}\right) d x$

$$
\begin{aligned}
& \int x^{5}+12 x^{2} d x=\int x^{5} d x+\int 12 x^{2} d x= \\
= & \frac{x^{6}}{6}+C_{1}+12 \int x^{2} d x=\frac{x^{6}}{6}+c_{1}+12\left(\frac{x^{3}}{3}+c_{2}\right) \\
= & \frac{x^{6}}{6}+4 x^{3}+\underbrace{C_{1}+12 c_{2}}_{c}=\frac{x^{6}}{6}+4 x^{3}+c
\end{aligned}
$$

Example

Find the indefinite integral $\int\left(x^{5}+12 x^{2}\right) d x$

Example

Evaluate $\int_{1}^{4} \sqrt{t}(1+t) d t$
Here we have a definite integral.
ie. the answer will be a number.

$$
\begin{aligned}
& \int_{t}^{4} \sqrt{t}(1+t) d t=\int_{1}^{4}(\sqrt{t}+t \sqrt{t}) d t=\int_{1}^{4 / 2}\left(t^{3 / 2}+t^{3} d t\right. \\
& =\left[\frac{t^{1 / 2+1}}{1 / 2+1}+\frac{t^{\frac{3}{2}+1}}{\frac{3}{2}+1}\right]_{1}^{1}=\left[\frac{t}{3 / 2}+\frac{t}{5 / 2}\right]_{1}^{1 / 2}=\left[\frac{2}{3} t^{3 / 2}+\frac{2}{5} t^{5 / 2}\right]_{1}^{4} \\
& {\left[\frac{2}{3} t \sqrt{t}+\frac{2}{5} t^{2} \sqrt{t}\right]_{1}^{4}=\left(\frac{2}{3} 4 \sqrt{4}+\frac{2}{5} 4 \sqrt{4}\right)-\left(\frac{2}{3} 1 \sqrt{1}+\frac{2}{5} 1^{2} \sqrt{1}\right)^{4}} \\
& 1=\frac{16}{3}+\frac{64}{5}-\frac{2}{3}-\frac{2}{5}=\frac{14}{3}+\frac{62}{5}=\frac{276}{15}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { Example } \\
& \left.\begin{array}{l}
\tan 30^{\circ}=\frac{\sin 30^{\circ}}{\cos 30^{\circ}}=\frac{\sqrt{3} / 2}{1 / 2}=\sqrt{3} \\
\text { Evaluate } \int_{0}^{1 / \sqrt{3}} \frac{t^{2}-1}{t^{4}-1} d t \\
\int_{0}^{1 / \sqrt{3}} \frac{t^{2}-1}{t^{4}-1} d t=\int_{0}^{1 / \sqrt{3} 60^{\circ}} \frac{t^{2}-1}{\left(t^{2}+1\right)\left(t^{2}-1\right)} d t=\int_{0}^{\cos 60^{\circ}}=\frac{1 / 2}{\sqrt{3} / 2}=\frac{1}{\sqrt{3}} \\
t^{2}+1
\end{array}\right] t \\
& =\left[\tan ^{-1} t\right]_{0}^{1 / \sqrt{3}}=\tan ^{-1} \frac{1}{\sqrt{3}}-\tan ^{-1} 0=\frac{\pi}{3}-0=\frac{\pi}{3}
\end{aligned}
$$

The net change theorem

Theorem
The integral of a rate of change is the net change.

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

Example

A particle moves along a line so that its velocity at time t is $v(t)=t^{2}-t-6$ measured in metres per second.
(1) Find the displacement of the particle during the time period $1 \leq t \leq 4$.
(2) Find the distance travelled during this time period.
(1) By the net chang theorem we get the net change of position by integrating the velocity?

$$
\begin{aligned}
& s(4)-s(1)=\int_{1}^{4} s^{1}(t) d t=\int_{1}^{4} v(t) d t=\int^{4}\left(t^{2}-t-6\right) d t \\
& =\left[\frac{t^{3}}{3}-\frac{t^{2}}{2}-\frac{1}{6}\right]_{1}^{4}=\left(\frac{4^{3}}{3}-\frac{4^{2}}{2}-6 \cdot 4\right)-\left(\frac{1}{3}-\frac{1}{2}-6\right)= \\
& =\frac{64}{3}-8-24-\frac{1}{3}+\frac{1}{2}+6=-\frac{16}{3}
\end{aligned}
$$

Example (cont.)
(2) Distance truelled:

$$
\begin{aligned}
& v(t)=t^{2}-t-6 \\
& 1 \leq t \leq 4
\end{aligned}
$$

t	$v(t)$
0	-6
1	-6
2	-4
3	0
4	6

$$
v(t) \geqslant 0 \text { for } t \geqslant 3
$$

$$
v(t) \leq 0 \text { for } 1 \leq t \leq 3
$$

$$
\begin{aligned}
& \Rightarrow|v(t)|=\left\{\begin{array}{ll}
t^{2}-t-6 & 3 \leq t \leq 4 \\
-t^{2}+t+6 & 1 \leq t \leq 3
\end{array} \quad\right. \text { so } \\
& \int_{1}^{4}\left|t^{2}-t-6\right| d t=\int_{1}^{4}\left|t^{2}-t-6\right| d t+\int_{3}^{4}\left|t^{2}-t-6\right| d t= \\
&
\end{aligned}
$$

Example (cont.)

$$
\begin{aligned}
&= \int_{1}^{3}-t^{2}+t+6 d t+\int_{1}^{4} t^{2}-t-6 d t= \\
&= {\left[-\frac{t^{3}}{3}+\frac{t^{2}}{2}+6 t\right]_{1}^{3}+\left[\frac{t^{3}}{3}-\frac{t^{2}}{2}-6 t\right]_{3}^{4}=} \\
&=\left(-\frac{27}{3}+\frac{9}{2}+18\right)-\left(-\frac{1}{3}+\frac{1}{2}+6\right)+\left(\frac{64}{3}-\frac{16}{2}-24\right) \\
&-\left(\frac{27}{3}-\frac{9}{2}-18\right)=\frac{11}{3}+\frac{1}{2}+6=6+\frac{25}{6}= \\
&=10 \frac{1}{6}
\end{aligned}
$$

