Areas between curves

E. Sköldberg emil.skoldberg@nuigalway.ie http://www.maths.nuigalway.ie/~emil/

School of Mathematics etc. National University of Ireland, Galway

MA100

∃ → (∃ →

The area between two curves

A formula for the area

Theorem

The area A of the region bounded by the curves y = f(x), y = g(x) and the lines x = a and y = b where f and g are continuous and $f(x) \ge g(x)$ for all $x \in [a, b]$ is

$$A = \int_a^b [f(x) - g(x)] \, dx$$

Example

Find the area of the region bounded above by $y = e^x$, below by y = x, from the left by x = -1 and on the right by x = 1.

Example

Find the area enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$. (1) We find the points $\chi^2 = 2\chi - \chi$ of intersection between the curves: $2x^{2} = 2x$ $x^{2} = x = x$ (2) Between x = 0 & x = (between x = 0 $2x - x^2 = x^2$, so the area 3: $\int (2x - x^2 - x^2) dx = \int 2x - 2x^2 dx = \int x^2 - \frac{2x}{3} = \left[-\frac{2}{3} - 0 \right] = \frac{1}{3}$

Sköldberg (National University of Ireland, Ga

Example

Find the area of the region bounded by the curves $y = \sin x$, $y = \cos x$, x = 0 and $x = \pi/2$. Saph (2) Frid point (s) of y=smx R, intersection: Solve Sin x = LOJ JL Sin x Π = 603 24 tan x =) () Integrate: ۲5° ス = ----Area A R, -7/4 12 + 2 - (0+1) = 12 -1 5 Cos x - sin x dx = 5in x + cos x A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Integration with respect to y

Find the area enclosed by the line y = x - 1 and the parabola $y^2 = 2x + 6$. Where $A = R_2$: $\int sm x - cos z dz = \frac{\pi}{l_1}$ $= \left[-cos z - sm z \right]_{\pi/l_2}^{\pi/2} = \left(O - 1 \right) - \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \right) = \sqrt{2} - 1$

So, the total area is Aiea
$$(R_1) + Area (R_2) =$$

= $\sqrt{2} - 1 + \sqrt{2} - 1 = 2\sqrt{2} - 2$

Integration with respect to y

Find the area enclosed by the line y = x - 1 and the parabola $y^2 = 2x + 6$. y=x-1 y = 2x+6 + 1 22+6 χ = 2 > 4 6 Area = Area (R_1) + Area (R_2) = ? $\int \sqrt{2x+6} + \sqrt{2x+6} \, dx + \int (\sqrt{2x+6} - (x-1)) \, dx$ Hard ,

Sköldberg (National University of Ireland, Ga

Example (cont.)

So the area ъ $\int (y+1) - (\frac{y}{2} - 3) \, dy = \int -\frac{y}{2} + y + 4 \, dy$ $= \left[-\frac{3}{4} + \frac{3}{2} + \frac{3}{4} + \frac{3}{2} \right]^{7} =$

(日) (周) (三) (三)