Areas between curves

E. Sköldberg
emil.skoldberg@nuigalway.ie http://www.maths.nuigalway.ie/~emil/

School of Mathematics etc.
National University of Ireland, Galway

MA100

The area between two curves

Problem: How to calculate the area of the shaded region?

$$
\text { 1.e } \int_{ू}^{b} f(x) d x-\int_{a}^{b} g(x) d x=\int_{a}^{b}\left(f(x)-g(x) d x \text { the area of "region } A^{n}\right.
$$

A formula for the area

Theorem

The area A of the region bounded by the curves $y=f(x), y=g(x)$ and the lines $x=a$ and $y=b$ where f and g are continuous and $f(x) \geq g(x)$ for all $x \in[a, b]$ is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Example

Find the area of the region bounded above by $y=e^{x}$, below by $y=x$, from the left by $x=-1$ and on the right by $x=1$.

We know that (and can see in the graph!! that $x \leqslant e^{x}$ for all x.

So, by the theorem on the previous Slide, the area is $\int_{-1}^{1}\left(e^{x}-x\right) d x=$

$$
=\left[e^{x}-\frac{x^{2}}{2}\right]_{-1}^{1}=\left(e^{1}-\frac{1}{2}\right)-\left(e^{-1}-\frac{1}{2}\right)=e^{-1} e^{-1}=e-\frac{1}{e}
$$

Example

Find the area enclosed by the parabolas $y=x^{2}$ and $y=2 x-x^{2}$.

(1) We find the points

x	x^{2}	$2 x-x^{2}$
-2	4	-8
-1	1	-3
0	0	0
1	1	1
2	4	0
$1 / 2$	$\frac{1}{4}$	$\frac{3}{4}$

$$
x^{2}=2 x-x^{2}
$$

$$
\begin{aligned}
2 x^{2} & =2 x \\
x^{2} & =x
\end{aligned} \Rightarrow\left\{\begin{array}{l}
x=0 \\
x=1
\end{array}\right.
$$

(2) Between $x=0$ \& $x=1$ $2 x-x^{2} \geqslant x^{2}$, so the area is:

$$
\int_{0}^{2}\left(2 x-x^{2} \geqslant x^{2} \text {, so the area is: } x^{2}\right) d x=\int_{0}^{1} 2 x-2 x^{2} d x=\left[x^{2}-\frac{2 x^{3}}{3}\right]_{0}^{1}=1-\frac{2}{3}-0=\frac{1}{3}
$$

When $f(x)$ is not greater than $g(x)$.

If $f(x)$ is hot always greater than $g(x)$, we divide the region calculate their area separately: and then sum'

Area of R_{1} : For $a \leq x \leq c, \quad f_{c}(x) \geqslant g(x)$ so.
Area of $R_{1}=\int_{a}^{c} f(x)-g(x) d x$
Area of R_{2}; For ${ }_{d} c \leq x \leq d \quad g(x) \geqslant f(x)$ so the area is

$$
\int_{c}^{d} g(x)-f(x) d x
$$

Area of R_{3} : In the sane way as R_{1} : $\int_{d}^{b} f(x)-g(x) d x$

Example

Find the area of the region bounded by the curves $y=\sin x, y=\cos x$,
$x=0$ and $x=\pi / 2$.

(3) Integrate:
(1) Graph
(2) Find pout (s) of intersection:

Solve

$$
\begin{aligned}
& \sin x=\cos x \\
& \frac{\sin x}{\cos x}=1 \\
& \tan x=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) Integrate: } \\
& \text { Area } A R_{1}= \\
& \int_{0}^{\pi / 4} \cos x-\sin x d x=[\sin x+\cos x]_{0}^{\pi / 4}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-(0+1)=\sqrt{2}-1
\end{aligned}
$$

Integration with respect to y

Find the area enclosed by the line $y=x-1$ and the parabola $y^{2}=2 x+6$.
Area of $R_{2}: \int_{\pi / 4}^{\pi / 2} \sin x-\cos x d x=$

$$
=[-\cos x-\sin x]_{\pi / 4}^{\pi / 2}=(0-1)-\left(-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\right)=\sqrt{2}-1
$$

So, the total area is $\operatorname{Area}\left(R_{1}\right)+\operatorname{Area}\left(R_{2}\right)=$

$$
=\sqrt{2}-1+\sqrt{2}-1=2 \sqrt{2}-2
$$

Integration with respect to y

Find the area enclosed by the line $y=x-1$ and the parabola $y^{2}=2 x+6$.

$$
\begin{aligned}
& y^{2}=2 x+6 \\
& y= \pm \sqrt{2 x+6}
\end{aligned}
$$

Hard way

$$
\begin{aligned}
& \text { Area }=\operatorname{Area}\left(R_{1}\right)+\operatorname{Arec}\left(R_{2}\right)= \\
& \int_{-3}^{?} \sqrt{2 x+6}+\sqrt{2 x+6} d x+\int_{?}^{b}(\sqrt{2 x+6}-(x-1)) d x
\end{aligned}
$$

Example (cont.)

$$
\begin{array}{ll}
x=y^{2}-3 & y^{2}=2 x+6 \Rightarrow x=\frac{y^{2}}{2}-3 \\
y=x-1 \Rightarrow x=y+1
\end{array}
$$

Better way

Now the are is

$$
\int_{a}^{b}(y+1)-\left(\frac{y^{2}}{2}-3\right) d y
$$

Find points of intersection by solving $\frac{y^{2}}{2}-3=y+1$

$$
\begin{array}{ll}
y^{2}-2 y-8=0 \\
(y-1)^{2}-9=0 & (y-1)^{2}=9 \\
y-1= \pm 3
\end{array} \quad \begin{aligned}
& a=-2 \\
& b=4
\end{aligned}
$$

Example (cont.)

So the area is

$$
\begin{aligned}
& \int_{-2}^{4}(y+1)-\left(\frac{y^{2}}{2}-3\right) d y=\int_{-2}^{4}-\frac{y^{2}}{2}+y+4 d y \\
& =\left[-\frac{y^{3}}{6}+\frac{y^{2}}{2}+4 y\right]_{-2}^{4}=\ldots
\end{aligned}
$$

