1st Year Calculus MA101/MA160

PROBLEM SHEET 1

1. Using Newton's method, find approximations up to the 5 decimal places for the zeros in the interval [1, 2] of the following functions.

(a)
$$f(x) = -x^2 + x + 1$$
 (b) $g(x) = x^4 - x - 3$

2. Use Newton's method to find approximations of the numbers

$$(a) \quad \sqrt[6]{18}, \qquad (b) \quad \sqrt[50]{50},$$

that are correct to six decimal places.

3. Find the most general antiderivative of the functions:

(a)
$$f(x) = 1 - x$$
 (b) $g(x) = \frac{12}{x^7}$ (c) $h(x) = \sqrt[3]{x}$

- 4. Find, in each case, the function f:
 - (a) f'(x) = 1 6x, f(0) = 8.
 - (b) $f'(x) = 2x 3/x^4$, x > 0, f(1) = 3.
 - (c) $f''(\theta) = \sin \theta + \cos \theta$, f(0) = 3, f'(0) = 4
- 5. Graph the function $f(x) = \cos(x^2)$, $0 \le x \le 1$, and estimate the area below the graph of f using four approximating rectangles and taking the sample points to be
 - (a) left endpoints
 - (b) right endpoints
 - (c) midpoints

in each case sketch the curve and the rectangles.

- 6. Evaluate the following integrals by interpreting them in terms of areas:
 - (a) $\int_{2}^{4} x \, dx$ (b) $\int_{-2}^{3} |x| \, dx$ (c) $\int_{-3}^{3} \sqrt{9 - x^2} \, dx.$
- 7. Evaluate the following integrals.

(a)
$$\int_{-1}^{1} \left(\frac{2}{5}x^5 - 4x^3 + 1\right) dx$$

(b) $\int_{0}^{1} \left(\sqrt{x} + \cos x\right) dx$
(c) $\int_{0}^{\frac{\pi}{4}} \cos 3x \, dx$