Noise and Multistability in the Square Root Map

Eoghan J. Staunton, Petri T. Piirainen
eoghan.staunton@nuigalway.ie

School of Mathematics, Statistics and Applied Mathematics

10 July 2018
Noise and Nonsmoothness in Dynamical Systems

Both noise and nonsmoothness have been shown to independently be the drivers of significant changes in qualitative behaviour.

- Nonsmooth systems - qualitative changes in the behavior of the system under parameter variation that do not occur in the smooth setting.
- Adding noise to (smooth) systems - does more than just blur the outcome of the system in the absence of noise
Both noise and nonsmoothness have been shown to independently be the drivers of significant changes in qualitative behaviour.

- Nonsmooth systems - qualitative changes in the behavior of the system under parameter variation that do not occur in the smooth setting.
- Adding noise to (smooth) systems - does more than just blur the outcome of the system in the absence of noise.
Noise and Nonsmoothness in Dynamical Systems

Both noise and nonsmoothness have been shown to independently be the drivers of significant changes in qualitative behaviour.

- Nonsmooth systems - qualitative changes in the behavior of the system under parameter variation that do not occur in the smooth setting.

- Adding noise to (smooth) systems - does more than just blur the outcome of the system in the absence of noise

Figure: From [CONG94].

Figure: Adapted from [LL86].
The Square Root Map

Many impacting systems, including rattling gears, moored boats impacting docks, Braille printers, percussive drilling and atomic force microscopes are described by a 1-D map known as the square root map near *grazing* impacts.

\[x_{n+1} = S(x_n) = \begin{cases}
\mu + bx_n & \text{if } x_n < 0, \\
\mu - a\sqrt{x_n} & \text{if } x_n \geq 0,
\end{cases} \]

where \(a > 0 \) and \(b > 0 \).

Symbolically, if \(x_n < 0 \) it is represented by an \(L \) and if \(x_n > 0 \) it is represented by an \(R \).
Deriving The Square Root Map

Deriving the map from the full system

Discontinuity surface

Incoming trajectory

Outgoing trajectory

\(D^- \)

\(g_D \)

\(D^+ \)

Jump map

Deriving the map from the full system

Eoghan Staunton (NUIG)
Deriving The Square Root Map

Deriving the map from the full system

Discontinuity surface

Incoming trajectory

Jump map

Outgoing trajectory

Deriving the map from the full system
Deriving The Square Root Map

Deriving the map from the full system

Discontinuity surface

Flow for a time $t_1 < 0$ from until the trajectory intersects \mathcal{D}^-

Incoming trajectory

\mathcal{D}^-

in

\mathcal{D}

\mathcal{D}^+

out

Jump map

Outgoing trajectory

Deriving the map from the full system
Deriving The Square Root Map

Deriving the map from the full system

Discontinuity surface

Flow for a time $t_1 < 0$ from until the trajectory intersects \mathcal{D}^-

Flow for a time $t_2 < 0$ until the trajectory intersects \mathcal{P}

Incoming trajectory

Jump map

Outgoing trajectory

Deriving the map from the full system
Deriving The Square Root Map

Deriving the map from the full system

Discontinuity Mapping

Flow for a time $t_1 < 0$ from until the trajectory intersects \mathcal{D}^-

Flow for a time $t_2 < 0$ until the trajectory intersects \mathcal{P}

Discontinuity surface

Incoming trajectory

Outgoing trajectory

Jump map

Eoghan Staunton (NUIG)
The Period Adding Cascade

Here we will assume that the parameter b (the slope of the linear part) is such that $0 < b < 1/4$. For values of b in this range the deterministic square root map undergoes a period-adding cascade with intervals of bistability as the bifurcation parameter μ is decreased.

![Graph showing period adding cascade](image-url)
The Period Adding Cascade

Here we will assume that the parameter b (the slope of the linear part) is such that $0 < b < 1/4$. For values of b in this range the deterministic square root map undergoes a period-adding cascade with intervals of bistability as the bifurcation parameter μ is decreased.
The Period Adding Cascade

Here we will assume that the parameter b (the slope of the linear part) is such that $0 < b < 1/4$. For values of b in this range the deterministic square root map undergoes a period-adding cascade with intervals of bistability as the bifurcation parameter μ is decreased.

These periodic orbits take the form $(RL^m)_{\infty}$ for $m = 1, 2, 3, \ldots$. This means they consist of one iterate on the right (> 0) followed by m iterates on the left (< 0).
Riddled Basins of Attraction

On regions of bistability the basins of attraction of the two periodic attractors have a complex *riddled* structure.
Riddled Basins of Attraction

On regions of bistability the basins of attraction of the two periodic attractors have a complex *riddled* structure.
Riddled Basins of Attraction

On regions of bistability the basins of attraction of the two periodic attractors have a complex *riddled* structure.
The Square Root Map With Additive Noise

In [SHK13] Simpson, Hogan and Kuske show that white noise in the piecewise smooth flow translates to additive white noise in the square root map. This noise formulation may be sensible to model systems where the forcing term or external fluctuations represent a significant source of uncertainty.
The Square Root Map With Additive Noise

In [SHK13] Simpson, Hogan and Kuske show that white noise in the piecewise smooth flow translates to additive white noise in the square root map. This noise formulation may be sensible to model systems where the forcing term or external fluctuations represent a significant source of uncertainty.

The square root map with additive Gaussian white noise is given by

\[
x_{n+1} = S_a(x_n) = \begin{cases}
\mu + bx_n + \xi_n & \text{if } x_n < 0 \\
\mu - a\sqrt{x_n} + \xi_n & \text{if } x_n \geq 0,
\end{cases}
\]

where \(\xi_n \) are identically distributed independent normal random variables with mean 0 and standard deviation \(\Delta \), \(\xi_n \sim N(0, \Delta^2) \).
Noisy Bifurcation Diagrams

\[x \]

\[\begin{array}{c}
\mu^s_2 & 6.4 & 6.6 & 6.8 & \mu^c_3 \\
0 & & & & \times 10^{-3}
\end{array} \]
Noisy Bifurcation Diagrams
Noisy Bifurcation Diagrams

\[x \]

\[\mu \times 10^{-3} \]

\[\mu_2^s \ 6.4 \ 6.6 \ 6.8 \ \mu_3^c \]

\[\mu_2^s \ 6.4 \ 6.6 \ 6.8 \ \mu_3^c \]
Noise Amplitude and Proportions of Periodic Behaviour

![Diagram showing the relationship between noise amplitude and proportions of periodic behaviour.](image)

- Eoghan Staunton (NUIG)
- SIAM AN18
- July 2018
Noise Amplitude and Proportions of Periodic Behaviour

Eoghlan Staunton (NUIG)
Noise Amplitude and Proportions of Periodic Behaviour

Eoghan Staunton (NUIG)
Inducing Bistability

We have previously seen that noise of an appropriate amplitude also has the potential to induce bistability in regions close to, but outside, intervals of bistability.
Inducing Bistability

We have previously seen that noise of an appropriate amplitude also has the potential to induce bistability in regions close to, but outside, intervals of bistability.

In the numerical simulations we have found that noise-induced transitions from period-3 to period-2 behaviour in regions where period-2 behaviour is unstable display certain similarities. In particular, we have observed that the transitions tend to take the following symbolic form

\[RLLRL \ldots RLLRLRRLRL \ldots RLRL. \]

(2)
Inducing Bistability

We have previously seen that noise of an appropriate amplitude also has the potential to induce bistability in regions close to, but outside, intervals of bistability.

In the numerical simulations we have found that noise-induced transitions from period-3 to period-2 behaviour in regions where period-2 behaviour is unstable display certain similarities. In particular, we have observed that the transitions tend to take the following symbolic form

\[RLLRLL \ldots RLRRLRRLRL \ldots RLRL. \quad (2) \]

The significant feature of the symbolic representation of the transition above is the repeated \(R \), corresponding to repeated iteration on the right-hand side of the square root map, i.e. repeated low-velocity impacts in the physical system.
Noise and Deterministic Structures

We note that the set of initial values that are on the right which remain on the right after iteration by the deterministic square root map are given by the interval

\[A_{RR} = (0, (\mu/a)^2) \]

(3)

We also note that the last left iterate of the period-3 orbit is very close to 0 for values of \(\mu \) close to the interval of multistability.
Noise and Deterministic Structures

We note that the set of initial values that are on the right which remain on the right after iteration by the deterministic square root map are given by the interval

$$A_{RR} = \left(0, \left(\frac{\mu}{a}\right)^2\right).$$ \hspace{1cm} (3)

We also note that the last left iterate of the period-3 orbit is very close to 0 for values of μ close to the interval of multistability.

Therefore, it is not hard to see that noise has the potential to push the last left iterate of a period-3 orbit into A_{RR} inducing repeated R’s or repeated grazing impacts.
Noise and Deterministic Structures

$RL \quad -$
$RLL \quad -$
Noise and Deterministic Structures

\[RL \quad - \quad RLL \quad - \]
Noise and Deterministic Structures

\[RL \quad \longrightarrow \quad RLL \quad \longrightarrow \]
Noise and Deterministic Structures

\mathbf{RL}

\mathbf{RLL}

\[\times 10^4 \]

\[\times 10^{-4} \]

T_f

x

$S^2_R(T_f)$

x

Iterates to Transition

\mathbf{x}

\mathbf{n}

Eoghlan Staunton (NUIG)
Generalising to Higher Periodicities

The features of this transition are repeated as we look at transitions from RL^m behaviour to RL^{m-1} behaviour for increasing m. In particular we observe transitions of the form

$$RL^m RL^m ... RL^m R L^{m-1} RL^{k-2} R L^{m-1} R L^{m-1} ... R L^{m-1}$$

(4)

for μ in a neighbourhood of μ^s_m such that $\mu < \mu^s_m$ and $k \in \{2, 3, \ldots, m\}$.

Generalising to Higher Periodicities

The features of this transition are repeated as we look at transitions from RL^m behaviour to RL^{m-1} behaviour for increasing m. In particular we observe transitions of the form

$$RL^m RL^m \ldots RL^m RL^{m-1} RL^{k-2} RL^{m-1} RL^{m-1} \ldots RL^{m-1}$$

(4)

for μ in a neighbourhood of μ_m^s such that $\mu < \mu_m^s$ and $k \in \{2, 3, \ldots, m\}$. The most significant feature of this transition is the sequence $RL^{k-2} R$ for $k \in \{2, 3, \ldots, m\}$, corresponding to iterations on the right-hand side of the map being repeated more quickly than is usual for a settled system with $\mu < \mu_m^s$.
Generalising to Higher Periodicities

The features of this transition are repeated as we look at transitions from RL^m behaviour to RL^{m-1} behaviour for increasing m. In particular we observe transitions of the form

$$RL^m RL^m \ldots RL^m RL^{m-1} RL^{k-2} RL^{m-1} RL^{m-1} \ldots \ldots RL^{m-1}$$

for μ in a neighbourhood of μ^s_m such that $\mu < \mu^s_m$ and $k \in \{2, 3, \ldots, m\}$. The most significant feature of this transition is the sequence $RL^{k-2}R$ for $k \in \{2, 3, \ldots, m\}$, corresponding to iterations on the right-hand side of the map being repeated more quickly than is usual for a settled system with $\mu < \mu^s_m$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{chart.png}
\caption{Diagram of the system with different regions for $A_{RR}, A_{RL1R}, A_{RL2R}, A_{RL3R}$.
\end{figure}
Generalising to Higher Periodicities

The features of this transition are repeated as we look at transitions from RL^m behaviour to RL^{m-1} behaviour for increasing m. In particular we observe transitions of the form

$$RL^m RL^m \ldots RL^m RL^{m-1} RL^{k-2} RL^{m-1} RL^{m-1} \ldots \ldots RL^{m-1} \tag{4}$$

for μ in a neighbourhood of μ_m^s such that $\mu < \mu_m^s$ and $k \in \{2, 3, \ldots, m\}$. The most significant feature of this transition is the sequence $RL^{k-2}R$ for $k \in \{2, 3, \ldots, m\}$, corresponding to iterations on the right-hand side of the map being repeated more quickly than is usual for a settled system with $\mu < \mu_m^s$.

![Graph showing iterations on the right-hand side of the map being repeated more quickly](image)
Generalising to Higher Periodicities

The features of this transition are repeated as we look at transitions from RL^m behaviour to RL^{m-1} behaviour for increasing m. In particular we observe transitions of the form

$$RL^m RL^m \ldots RL^m RL^{m-1} RL^{k-2} RL^{m-1} RL^{m-1} \ldots \ldots RL^{m-1}$$

(4)

for μ in a neighbourhood of μ^s_m such that $\mu < \mu^s_m$ and $k \in \{2, 3, \ldots, m\}$. The most significant feature of this transition is the sequence $RL^{k-2}R$ for $k \in \{2, 3, \ldots, m\}$, corresponding to iterations on the right-hand side of the map being repeated more quickly than is usual for a settled system with $\mu < \mu^s_m$.

![Image of bar chart and graphs]
Conclusions

- Additive noise has a complex nonmonotonic effect on the proportion of iterates spent in coexisting periodic behaviours on intervals of bistability.
Conclusions

- Additive noise has a complex nonmonotonic effect on the proportion of iterates spent in coexisting periodic behaviours on intervals of bistability.
- Noise can
 - significantly shift the proportion of iterates spent in each behaviour
 - effectively destroy one of the attractors
Conclusions

- Additive noise has a complex nonmonotonic effect on the proportion of iterates spent in coexisting periodic behaviours on intervals of bistability.
- Noise can
 - significantly shift the proportion of iterates spent in each behaviour
 - effectively destroy one of the attractors
- The relationship observed is highly dependent on the value of the bifurcation parameter μ.
Conclusions

- Additive noise has a complex nonmonotonic effect on the proportion of iterates spent in coexisting periodic behaviours on intervals of bistability.
- Noise can
 - significantly shift the proportion of iterates spent in each behaviour
 - effectively destroy one of the attractors
- The relationship observed is highly dependent on the value of the bifurcation parameter μ.
- Additive noise has the potential to induce bistability outside such intervals.
Conclusions

- Additive noise has a complex nonmonotonic effect on the proportion of iterates spent in coexisting periodic behaviours on intervals of bistability.
- Noise can
 - significantly shift the proportion of iterates spent in each behaviour
 - effectively destroy one of the attractors
- The relationship observed is highly dependent on the value of the bifurcation parameter μ.
- Additive noise has the potential to induce bistability outside such intervals.
- Repeated low-velocity impacts play an important role in noise-induced transitions from stable to unstable periodic behaviour.
Conclusions

- Additive noise has a complex nonmonotonic effect on the proportion of iterates spent in coexisting periodic behaviours on intervals of bistability.
- Noise can
 - significantly shift the proportion of iterates spent in each behaviour
 - effectively destroy one of the attractors
- The relationship observed is highly dependent on the value of the bifurcation parameter μ.
- Additive noise has the potential to induce bistability outside such intervals.
- Repeated low-velocity impacts play an important role in noise-induced transitions from stable to unstable periodic behaviour.
- This behaviour can be generalised to higher periodicities.
Conclusions

- Additive noise has a complex nonmonotonic effect on the proportion of iterates spent in coexisting periodic behaviours on intervals of bistability.
- Noise can
 - significantly shift the proportion of iterates spent in each behaviour
 - effectively destroy one of the attractors
- The relationship observed is highly dependent on the value of the bifurcation parameter μ.
- Additive noise has the potential to induce bistability outside such intervals.
- Repeated low-velocity impacts play an important role in noise-induced transitions from stable to unstable periodic behaviour.
- This behaviour can be generalised to higher periodicities.
- The effect of the addition of noise on intervals of multistability of increasing minimal periodic orbit obeys a scaling law.

______, *Noise induced multistability in the square root map*, Under Review (2018), TBC.