Modelling the evolving ductility of biodegradable polymers

A. Hill¹, K.S. Bezela¹, R.N. Shirazi¹, M. Destrade², W. Ronan¹

¹ Biomechanics Research Centre, Biomedical Engineering, NUI Galway
² School of Mathematics, Statistics and Applied Mathematics, NUI Galway

Postgraduate Modelling Research Group

email: a.hill5@nuigalway.ie
Research objective

- Develop a modelling framework for biodegradable polymers;
- For use in the medical device industry, specifically cardiovascular stents
- Overcome risks associated with metal stents
Biodegradable polymers

H_2O — Polymer chain — Monomers

Amorphous
Crystalline
Semi-crystalline
Experimental observations

Ductile-to-brittle transition for increasing degradation duration in PLA:

![Diagram showing 3-point flexure test](www.substech.com)

- **σ** (Flexural stress, [N/mm²])
- **ε_f** (Flexural strain at failure)
- **E_f** (Flexural strain at failure, [ε_f])
- **Degradation duration**
- **Initial pH 3**
- **Initial pH 7.4**

Aoife Hill Modelling the evolving ductility of biodegradable polymers 4
Fayolle et al., 2004

\[M_w (g \text{ mol}^{-1}) \]

\[\varepsilon_f (\%) \]

\[\Delta [CO] (\text{mol kg}^{-1}) \]
Fayolle et al., 2004

\[M_W (g \text{ mol}^{-1}) \]

\[\xi_f (\%) \]

\[M_W (kg \text{ mol}^{-1}) \]

\[\Delta [CO] (\text{mol kg}^{-1}) \]

\[T = 110^\circ C \]

\[Time (h) \]
Current work

 Degradation:

- End scissions
- Random scissions

Diagram showing the relationship between molecular weight and the number of molecules, with degradation processes illustrated.
Current work

Degradation:
- End scissions
- Random scissions

Track chain lengths in MATLAB:

<table>
<thead>
<tr>
<th>Molecular weight</th>
<th># of molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>1020</td>
<td>0</td>
</tr>
<tr>
<td>1040</td>
<td>0</td>
</tr>
<tr>
<td>1060</td>
<td>0</td>
</tr>
<tr>
<td>1080</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Aoife Hill Modelling the evolving ductility of biodegradable polymers 8
Current work

Track chain lengths in MATLAB:

\[
\begin{pmatrix}
1000 & 0 & 0 & \ldots \\
1020 & 0 & 0 & \ldots \\
1040 & 0 & 0 & \ldots \\
1060 & 0 & 0 & \ldots \\
1080 & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots
\end{pmatrix}
\]

Degradation:

- End scissions
- Random scissions
Current work

Molecular weight

of molecules

Degradation:

- End scissions
- Random scissions

Track chain lengths in MATLAB:

<table>
<thead>
<tr>
<th>Molecular weight</th>
<th># of molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>999</td>
<td>0</td>
</tr>
<tr>
<td>1020</td>
<td>0</td>
</tr>
<tr>
<td>400 640</td>
<td>0</td>
</tr>
<tr>
<td>1060</td>
<td>0</td>
</tr>
<tr>
<td>1080</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Molecular weight

Degradation:

- End scissions
- Random scissions

Track chain lengths in MATLAB:

<table>
<thead>
<tr>
<th>Molecular weight</th>
<th># of molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>999</td>
<td>0</td>
</tr>
<tr>
<td>1020</td>
<td>0</td>
</tr>
<tr>
<td>400 640</td>
<td>0</td>
</tr>
<tr>
<td>1060</td>
<td>0</td>
</tr>
<tr>
<td>1080</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Current work

Molecular weight

of molecules

Degradation:

➢ End scissions
➢ Random scissions

Track chain lengths in MATLAB:

<table>
<thead>
<tr>
<th>Molecular weight</th>
<th># of molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>999</td>
<td>0</td>
</tr>
<tr>
<td>1020</td>
<td>0</td>
</tr>
<tr>
<td>400</td>
<td>640</td>
</tr>
<tr>
<td>1060</td>
<td>0</td>
</tr>
<tr>
<td>1080</td>
<td>0</td>
</tr>
</tbody>
</table>

...
Current work

Track chain lengths in MATLAB:

\[
\begin{array}{ccc}
999 & 0 & 0 \\
1020 & 0 & 0 \\
\textbf{398} & 640 & 2 \\
1060 & 0 & 0 \\
1079 & 0 & 0 \\
\vdots & \vdots & \vdots \\
\end{array}
\]

Degradation:

- End scissions
- Random scissions
Current work

Track chain lengths in MATLAB:

\[
\begin{bmatrix}
999 & 0 & 0 & \ldots \\
1020 & 0 & 0 & \ldots \\
398 & 640 & 2 & \ldots \\
1060 & 0 & 0 & \ldots \\
1079 & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots \\
\end{bmatrix}
\]

Degradation:
- End scissions
- Random scissions

\[M_n \approx \text{time}\]
Predicted stiffness
Relating strain failure to polymer units

Maximum length of extended chain before failure, \(L_f = N \)

Root mean-square end-to-end distance, \(\sqrt{N} = L_0 \)

Strain failure, \(\varepsilon_f \):

Engineering strain:

\[
e_f = \frac{L_f - L_0}{L_0} = \frac{N - N_{\frac{1}{2}}}{N_{\frac{1}{2}}} = \frac{1}{N_{\frac{1}{2}}} - 1
\]

True strain:

\[
\varepsilon_f = \ln(1 + e_f) = \frac{1}{2} \ln(N)
\]

\(N \) = number of polymer units

Freely jointed chain:

- Behaves as entropic spring

\(\varepsilon^M_n \) - related to \(M_n \)

\(\varepsilon^N_n \) - related to chains above \(M_n^{\text{crit}} \)
Results

\[\varepsilon_f^{\text{Mn}} \]
\[\varepsilon_f^{\text{N}} \]

Monomers included

Monomers excluded

\[\varepsilon_f \]

Random:End = 1:10

\[\text{Random:End} = 1:1 \]

\[\text{Random:End} = 10:1 \]

\[\varepsilon_f \times 10^6 \]

\[\varepsilon_f \times 10^5 \]

Scissions
Results

\[\varepsilon^\text{M}_f \]

\[\varepsilon^\text{N}_f \]

Monomers included

Monomers excluded

Random:End = 1:10

Random:End = 1:1

Random:End = 10:1

Scissions

\(\times 10^6 \)

\(\times 10^5 \)

\[\varepsilon_f \]

\[M_n \]

\(\times 10^4 \)
Comparing results

Current results:

Fayolle et al., 2004:

\[
\varepsilon_f = M_n^{\varepsilon_{fN}}
\]

\[
\varepsilon_f = M_w^{\varepsilon_{fMn}}
\]

\[
\varepsilon_f (\%) = M_w (kg \ mol^{-1})
\]
Further work

Molecular dynamics

Continuum material models

Continuum device models

Area of interest

Wang et al., 2008:

\[
\frac{\partial M_n}{\partial t} = - \left(k_1 M_n + k_2 M_n C_m^\beta \right)
\]

\[
\frac{\partial C_m}{\partial t} = k_1 M_n + k_2 M_n C_m^\beta + \nabla \cdot (D \nabla C_m)
\]
Further work

Molecular dynamics

Continuum material models

Continuum device models

Area of interest

Wang et al., 2008:

$$\frac{\partial M_n}{\partial t} = - (k_1 M_n + k_2 M_n C_m^\beta)$$

$$\frac{\partial C_m}{\partial t} = k_1 M_n + k_2 M_n C_m^\beta + \nabla \cdot (D \nabla C_m)$$

$$\begin{pmatrix}
999 & 0 & 0 & \ldots \\
1020 & 0 & 0 & \ldots \\
398 & 640 & 2 & \ldots \\
1060 & 0 & 0 & \ldots \\
1079 & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \ldots
\end{pmatrix}$$

$$\begin{pmatrix}
\varepsilon_f^M_n \\
\varepsilon_f^N
\end{pmatrix}$$
References

R. N. Shirazi, W. Ronan, Y. Rochev, P. E. McHugh.
Modelling the degradation and elastic properties of poly(lactic-co-glycolic acid) films and regular open-cell tissue engineering scaffolds.

K. S. Bezela.
Examination of biodegradable materials for medical devices.
Unpublished ME thesis. RWTH Aachen University; National University of Ireland, Galway, 2017.

Degradation Model of Bioabsorbable Cardiovascular Stents.

B. Fayolle, L. Audouin, J. Verdu.
A critical molar mass separating the ductile and brittle regimes as revealed by thermal oxidation in polypropylene.

Y. Wang, J. Pan, X. Han, et al.
A phenomenological model for the degradation of biodegradable polymers.