Maximum Principles in Differential Equations

Faiza Alssaedi
Supervisor: Niall Madden

School of Mathematics, Statistics and Applied Mathematics, NUI Galway
Outline

1 The Maximum Principle

2 Maximum Principles for ODEs

3 Conclusion

4 References

For more, see [1].
The Maximum Principle

Suppose a function u that is continuous on $[0, 1]$ takes on its maximum at a point on this interval. If u has a continuous second derivative, and has local maximum at some point c between 0 and 1, then

$$u'(c) = 0 \text{ and } u''(c) \leq 0.$$

Suppose that in an open interval $(0, 1)$, u is known to satisfy a differential inequality of the form

$$L(u) \equiv u'' + K(x)u' > 0,$$

where $K(x)$ is any bounded function. The maximum of u in the interval cannot be attained anywhere except at the endpoints, 0 or 1. We have here the simplest example of maximum principle.
Maximum Principles for ODEs

If u is the solution to

$$-u''(x) + b(x)u(x) = f(x) \quad \text{with } u(0) = u(1) = 0 \text{ on } (0, 1)$$

where b is some function such that $b(x) \geq \beta > 0$, β is constant. Then, we can prove $u(x) \geq 0$ for all x.

Proof:
We now have a lower bound for \(u(x) \), \(u \geq 0 \).

- Can we find an upper bound?
- Yes! Using the maximum principal, we can show that \(u(x) \leq \|f\|/\beta \).

Proof:
Suppose $\beta \leq b(x) \leq B$, where B is constant.

Let u_B be the solution to the constant coefficient ODE:

$$L_B u_B := -u_B'' + B u_B = f \quad \text{with} \quad u_B(0) = u_B(1) = 0.$$

Let $w = u - u_B$. Then,

$$L_B w(x) = L_B u(x) - L_B u_B(x) = (-u''(x) + B u(x)) - f(x)$$

$$\geq \left(-u'' + b(x)u \right) - f(x) = 0$$

because $B \geq b(x)$ and $u \geq 0$. So

$$L_B w \geq 0 \text{ and thus } w \geq 0.$$

It follows that $u(x) \geq u_B(x)$.
Maximum Principles for ODEs

Similarly, let \(u_\beta \) solve

\[
L_\beta u_\beta := -u_\beta'' + bu_\beta = f
\]

So

\[
u_B \leq u(x) \leq u_\beta.
\]

So we can bound \(u \) above and below by solutions to constant coefficient equations.
Conclusion

There are many other applications and generalisations of Maximum Principles:
* the extend to time-dependent problems, and elliptic PDEs;
* they can be used to show that the solution to a PDE shares the qualitative properties of the phenomenon it models (e.g., where a negative solution makes no physical sense);
* there are versions that apply to finite difference equations, known as ”Discrete Maximum Principles”, and with can be used to analyse finite difference methods.
* in that context, they are related to M-matrices in linear algebra.
Murray H. Protter and Hans F. Weinberger.

Maximum principles in differential equations.
Corrected reprint of the 1967 original.