Guided waves in pre-stressed hyperelastic plates and tubes

Guo-Yang Li1, Qiong He2, Robert Mangan3, Guoqiang Xu1, Chi Mo1, Jianwen Luo2, Michel Destrade3, Yanping Cao1

1Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, PR China

2Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, PR China

3School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Ireland
Mechanical properties of biological tissues

- Useful for diagnostics or for simulations (e.g. stents, head impacts)
- Found from **mechanical tests**, treating tissues as an engineering material.
- **Destructive**, can’t be applied *in vivo*
Mechanical properties of biological tissues

- Alternatively, use non-destructive acoustic waves
- Speed of the wave depends on the material properties
 - Measure wave speed to infer mechanical properties
- Can apply in vivo
Generating waves

- Probe generates a real-time **ultrasound image**
- Also generates a low frequency **shear wave** by focusing acoustic beam
- The wave is seen in the ultrasound field and its **speed is measured**
Elastic Cherenkov effect

Three similar wave phenomena observed when the velocity of the excitation source is greater than the velocities of the resulting waves in the media.
Now we consider **guided waves** (generated using Verasonics device) in a **stretched** polyvinyl alcohol (PVA) cryogel plate immersed in water.
Model wave propagation in solid as small “incremental” deformation superimposed on a large deformation.

Equations of motion:

\[\nabla \cdot \Sigma = \rho \ddot{u} \] \hspace{1cm} \text{(solid)}

where \(\Sigma = A_0 \nabla u \) and \(A_0 = \frac{\partial^2 W}{\partial F \partial \dot{F}} \),

\[\nabla (\kappa \nabla \cdot \mathbf{u}^F) = \rho^F \ddot{\mathbf{u}}^F, \] \hspace{1cm} \text{(fluid)}

where \(c_p = \sqrt{\kappa / \rho^F} \) is the speed of sound in the fluid.
Dispersion equation

Seeking a wave solution $e^{skx_2}e^{ik(x_1-ct)}$, and imposing continuity of stress and displacements across the fluid-solid interfaces, we find both symmetric and anti-symmetric solutions.

For the anti-symmetric mode, the dispersion equation reads

$$\gamma s_1(1 + s_2^2)^2 \tanh(s_1 kh) - \gamma s_2(1 + s_2^2)^2 \tanh(s_2 kh) + \frac{\rho F c^2}{\sqrt{1 - \frac{c^2}{c_p^2}}} (s_1^2 - s_2^2) = 0.$$

When the plate is not stretched, we recover the equation [3]

$$\left(2 - \frac{\rho c^2}{\mu_0}\right)^2 \tanh(kh_0) - 4 \sqrt{1 - \frac{\rho c^2}{\mu_0}} \tanh \left(\sqrt{1 - \frac{\rho c^2}{\mu_0}} kh_0\right) + \frac{\rho \rho_F c^4}{\mu_0^2 \sqrt{1 - \frac{c^2}{c_p^2}}} = 0,$$

where μ_0 is the shear modulus.
Finite element simulations

Anti-symmetric and symmetric modes
Finite element simulations

- For large radius-to-thickness ratio, FE simulation of waves in a tube agree with theoretical **plate** model.
 - Can use plate theory for tubes (e.g. arteries)
Curve fitting

Determine material parameters by fitting the theoretical curves to the experimental data. For example, the neo-Hookean model was used:

\[W = \frac{\mu_0}{2} (l_1 - 3). \] (1)

(a) dispersion curves at various stretches, (b) stress response in destructive tensile test

Li, Guo-Yang, et al. (2016). Guided waves in pre-stressed hyperelastic plates and tubes: Application to the ultrasound elastography of thin-walled soft materials. (submitted)