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Suppose that X and Y are surfaces of finite topological type, where X has genus
g ≥ 6 and Y has genus at most 2g− 1; in addition, suppose that Y is not closed if
it has genus 2g− 1. Our main result asserts that every non-trivial homomorphism
Map(X) → Map(Y) is induced by an embedding, i.e. a combination of forgetting
punctures, deleting boundary components and subsurface embeddings. In particu-
lar, if X has no boundary then every non-trivial endomorphism Map(X)→ Map(X)
is in fact an isomorphism.
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A nuestras madres, cada uno a la suya.

1 Introduction

Throughout this article we will restrict our attention to connected orientable surfaces
of finite topological type, meaning of finite genus and with finitely many boundary
components and/or cusps; we will feel free to think about cusps as marked points,
punctures or topological ends. The mapping class group Map(X) of such surface X
is the group of isotopy classes of orientation preserving homeomorphisms of X which
fix pointwise the union of the boundary and the set of punctures. In the terminology of
Farb–Margalit [13], Map(X) is the pure mapping class group.

Mapping class groups are often compared with arithmetic lattices in higher-rank
semisimple algebraic groups. This analogy, albeit limited [1, 7, 22], has motivated
many, possibly most, advances in the understanding of mapping class groups. For
example, Grossman [15] proved that Map(X) is residually finite; Birman–Lubotzky–
McCarthy [9] proved that the Tits alternative holds for subgroups of Map(X); the
Thurston classification of elements in Map(X) mimics the classification of elements
in an algebraic group [45]; Harvey [18] introduced the curve complex in analogy with
the rational Tits’ building; Harer’s [17] computation of the virtual cohomological di-
mension of Map(X) follows the outline of Borel and Serre’s argument for arithmetic
groups [10], etc...

http://www.ams.org/mathscinet/search/mscdoc.html?code=20F34,(57M07, 20F65)
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In this spirit, it is natural to ask to what extent there is an analog of Margulis’ su-
perrigidity in the context of mapping class groups. This question, in various guises,
has been addressed by a number of authors. For instance, Farb–Masur [14] proved
that every homomorphism from an irreducible lattice in a higher-rank Lie group to a
mapping class group has finite image. On the other hand, mapping class groups admit
non-trivial homomorphisms into higher-rank lattices, see Looijenga [32].

There has also been work on what is perhaps a more natural analog of superrigidity,
namely understanding homomorphisms between mapping class groups [2, 4, 5, 12, 19,
23, 26, 29, 39]. Quoting Maryam Mirzakhani, the ultimate goal would be to prove
that every homomorphism between mapping class groups of sufficiently high genus has
either finite image or is induced by some manipulation of surfaces. The aim of this
paper is to prove that this is indeed the case as long as the involved surfaces satisfy
suitable genus bounds.

Before stating our main result we need a definition:

Definition Let X and Y be surfaces of finite topological type, and consider their cusps
to be marked points. Denote by |X| and |Y| the compact surfaces obtained from X and
Y by forgetting all their marked points. By an embedding

ι : X → Y

we will understand a continuous injective map ι : |X| → |Y| with the property that
whenever y ∈ ι(|X|) ⊂ |Y| is a marked point of Y in the image of ι, then ι−1(y) is also
a marked point of X .

Every embedding ι : X → Y induces a homomorphism Map(X) → Map(Y); see
Section 3. Our main result asserts that, as long as the genus of Y is less than twice that
of X , the converse is also true:

Theorem 1.1 Suppose that X and Y are surfaces of finite topological type, of genus
g ≥ 6 and g′ ≤ 2g− 1 respectively; if Y has genus 2g− 1, suppose also that it is not
closed. Then every nontrivial homomorphism

φ : Map(X)→ Map(Y)

is induced by an embedding X → Y .

Remark As we will prove below, the conclusion of Theorem 1.1 also applies to
homomorphisms φ : Map(X) → Map(Y) when both X and Y have the same genus
g ∈ {4, 5}.
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Before going any further we give some examples that highlight the necessity for the
genus bounds in Theorem 1.1.

Example 1 Let X be a surface of genus g ≤ 1; if g = 0 then assume that X
has at least four marked points or boundary components. The mapping class group
Map(X) surjects onto PSL2 Z ' (Z/2Z) ∗ (Z/3Z). In particular, any two elements
α, β ∈ Map(Y) with orders two and three, respectively, determine a homomorphism
Map(X) → Map(Y); notice that such elements exist if Y is closed, for example.
Choosing α and β appropriately, one can in fact obtain infinitely many conjugacy
classes of homomorphisms Map(X) → Map(Y) with infinite image and with the
property that every element in the image is either pseudo-Anosov or has finite order.

Example 1 shows that some lower bound on the genus of X is necessary in the
statement of Theorem 1.1. Furthermore, since Map(X) has non-trivial abelianization
if X has genus 2, there exist homomorphisms from Map(X) into mapping class groups
of arbitrary closed surfaces Y that are not induced by embeddings. Other examples
demonstrating the failure of Theorem 1.1 for surfaces X of genus 2 may be constructed
using that the mapping class group of such a surface contains a finite index subgroup
which surjects onto the free group F2 . On the other hand, we expect Theorem 1.1 to
be true for surfaces of genus g ∈ {3, 4, 5}.

Remark Recall that the mapping class group of a punctured disk is a finite index
subgroup of the appropriate braid group (this subgroup is commonly known as the pure
braid group). In particular, Example 1 should be compared with the rigidity results
for homomorphisms between braid groups, and from braid groups into mapping class
groups, due to Bell–Margalit [4] and Castel [12].

Next, an upper bound on the genus of the target surface is also necessary in the
statement of Theorem 1.1 since, for instance, the mapping class group of every closed
surface injects into the mapping class group of some non-trivial connected cover, see
[2]. Moreover, the following example shows that the bound in Theorem 1.1 is in fact
optimal:

Example 2 Suppose that X has non-empty connected boundary and let Y be the
double of X . Let X1,X2 be the two copies of X inside Y , and for x ∈ X denote by xi

the corresponding point in Xi . Given a homeomorphism f : X → X fixing pointwise
the boundary and the cusps define

f̂ : Y → Y, f̂ (xi) = (f (x))i ∀xi ∈ Xi



4 Javier Aramayona and Juan Souto

The map f → f̂ induces a homomorphism

Map(X)→ Map(Y)

which is not induced by any embedding.

In the body of the paper we will construct other examples of homomorphisms with
more or less undesirable properties. It goes without saying that all these examples arise
from manipulations of surfaces.

Applications. After having established that in Theorem 1.1 a lower bound for the
genus of X is necessary and that the upper bound for the genus of Y is optimal, we
discuss some consequences of our main result.

By Proposition 3.1 below, every embedding is a combination of forgetting punctures,
deleting boundary components, and subsurface embeddings. In particular, if X is
closed then any embedding ι : X → Y is a homeomorphism. Hence we obtain:

Corollary 1.2 Suppose that X and Y satisfy the hypotheses of Theorem 1.1 and that
X is closed. Then every non-trivial homomorphism φ : Map(X)→ Map(Y) is induced
by a homeomorphism X → Y ; in particular φ is an isomorphism.

Corollary 1.2 above settles Conjecture 4.5 of Berrick–Matthey [5] in the affirmative.
We remark that Castel [12] had previously obtained Corollary 1.2 in the special case
when Y is a closed surface of genus g′ = g + 1. Observe also that if there are no
restrictions on the genus of Y then Corollary 1.2 is far from true. Indeed, Theorem 1
of [2] shows that for every closed surface X there exist a closed surface Y 6= X and an
injective homomorphism Map(X)→ Map(Y).

Moving away from the closed case, if X is allowed to have marked points and/or
boundary then there are numerous non-trivial embeddings of X into other surfaces.
That said, if X has no boundary then any embedding X → Y which induces an injective
homomorphism at the level of mapping class groups is actually a homeomorphism.
Thus we get:

Corollary 1.3 Suppose that X and Y satisfy the hypotheses of Theorem 1.1 and that
X has empty boundary. Then any injective homomorphism φ : Map(X)→ Map(Y) is
induced by a homeomorphism X → Y ; in particular φ is an isomorphism.

Again, if there are no restrictions on the genus of Y then Corollary 1.3 is not true; see
[2, 26].
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Still assuming ∂X = ∅, note that any embedding ι : X → X is a homeomorphism.
Since Theorem 1.1 applies for homomorphisms between surfaces of the same genus
g ≥ 4 (see the remark following the statement of the theorem) we deduce:

Corollary 1.4 Let X be a surface of finite topological type, of genus g ≥ 4 and
with empty boundary. Then any non-trivial endomorphism φ : Map(X)→ Map(X) is
induced by a homeomorphism X → X ; in particular φ is an isomorphism.

The analogous statement of Corollary 1.4 for injective endomorphisms was known to
be true by the work of Ivanov and McCarthy [26, 25, 39]. Castel [12] has obtained
Corollary 1.4 independently for X closed.

Corollary 1.4 may fail if X has boundary. However, any embedding ι : X → X
such that the induced homomorphism Map(X) → Map(X) is injective is isotopic to a
homeomorphism. We hence recover the following result due to Ivanov–McCarthy [26]
(see Ivanov [23] and McCarthy [39] for related earlier results):

Corollary 1.5 (Ivanov-McCarthy) Let X be a surface of finite topological type, of
genus g ≥ 4. Then any injective homomorphism φ : Map(X) → Map(X) is induced
by a homeomorphism X → X ; in particular φ is an isomorphism.

The corollaries above are group-theoretic consequences of Theorem 1.1. However, in
a separate paper [3] we use the main result of this paper to classify all non-constant
holomorphic maps M(X) → M(Y) between moduli spaces of Riemann surfaces X
and Y of finite type satisfying the same genus bounds as in Theorem 1.1.

Strategy of the proof of Theorem 1.1 Suppose that X , Y and φ are as in the statement
of the theorem. The bulk of the proof of Theorem 1.1 is to show that φ maps Dehn twists
along non-separating curves to Dehn twists along non-separating curves. Denoting by
δγ the Dehn twist about a non-separating curve γ ⊂ X , we obtain a map φ∗ from
the set of non-separating curves on X to the set of non-separating curves in Y which
satisfies φ(δγ) = δφ∗(γ) . We will prove that φ∗ preserves disjointness and intersection
number 1. In particular, φ∗ maps chains in X to chains in Y . In the closed case, it
follows easily that there is a unique embedding X → Y which induces the same map
on curves as φ∗ ; this is the embedding provided by Theorem 1.1. In the presence of
boundary and/or cusps the argument is more involved, essentially because one needs
to determine which cusps and boundary components are to be filled in.

Hoping that the reader is now convinced that Theorem 1.1 follows after a moderate
amount of work once we know that φ maps Dehn twists along non-separating curves
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to Dehn twists along non-separating curves, we sketch the proof of this fact. The
starting point is a result of Bridson [11], which asserts that φ maps Dehn twists to
roots of multitwists. We prove that, under our assumptions, φ(δγ) has infinite order for
γ ⊂ X non-separating. We can thus associate to γ the multicurve φ∗(γ) supporting
the multitwist powers of φ(δγ). In principle, and also in practice if Y has sufficiently
large genus, φ(δγ) could permute the components of φ∗(γ). However, under the genus
bounds in Theorem 1.1, we deduce from a result of Paris [42] that this is not the
case. Once we know that φ(δγ) preserves each component of φ∗(γ), a simple counting
argument yields that φ∗(γ) is actually a single curve. This implies that φ(δγ) is a root
of some power of the Dehn twist along φ∗(γ). We then deduce that φ(δγ) is a power
of a Dehn twist from a simple computation using the Riemann–Hurwitz formula and
an extension – independently due to Castel [12] – of a theorem of Harvey–Korkmaz
[19] asserting that if the genus of X is larger than the genus of Y then there are no
nontrivial homomorphisms Map(X)→ Map(Y). Once we know that φ(δγ) is a power
of a Dehn twist, it follows from the braid relation that this power has to be ±1, as we
needed to prove. This finishes the sketch of the proof of Theorem 1.1.

Tournant dangereux. The reader would be justified to think that, from the point of
view of lattice superrigidity, it would be more natural to investigate all homomorphisms
between finite index subgroups of mapping class groups instead of insisting on the
homomorphisms to be defined on the whole group. We agree. However, it should be
noticed that, so long as it is unknown whether finite index subgroups Γ ⊂ Map(X)
have finite abelianization [24], a classification of all homomorphisms Γ→ Map(Y) is
beyond reach.

Similarly, the reader could be unconvinced by the reason given above to justify the
need for an upper bound on the genus of Y . Possibly we would agree: we just asserted
that the given bound is optimal for the theorem to hold as stated, but Breuillard and
Mangahas [34] proved that if Γ ⊂ Map(X) has finite index and φ : Γ → Map(Y)
is a homomorphism where ∂Y 6= ∅, then there is a surface Ŷ containing Y and a
homomorphism φ̂ : Map(X)→ Map(Ŷ) extending φ. This implies that in the absence
of upper bounds for the genus there is no real difference between studying homomor-
phisms defined on the whole mapping class group and on finite index subgroups. We
are again facing the possibility that there is Γ ⊂ Map(X) of finite index with infinite
abelianization.

This possibility is the enemy from the beginning to the end of this paper. Recall for
example that at some point we have to show that under the assumptions of Theorem
1.1 the image under φ of a Dehn twist along a non-separating curve is infinite. That
this is actually one of the key points of the proof of our main theorem might come as
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a surprise to the reader. However, if there is Γ ⊂ Map(X) of finite index with infinite
abelianization then there is a surface Y and a homomorphism Map(X)→ Map(Y) with
infinite image such that the image of every Dehn twist has finite order; see the remark
at the end of section 5.
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2 Generalities

In this section we discuss a few well-known facts on mapping class groups. See
Farb–Margalit [13] or Ivanov [25] for details.

Throughout this article, all surfaces under consideration are orientable and have finite
topological type, meaning that they have finite genus, finitely many boundary compo-
nents and finitely many punctures. We will feel free to consider cusps as marked points,
punctures, or ends homeomorphic to S1 ×R. For instance, if X is a surface with, say,
10 boundary components and no cusps, by deleting every boundary component we
obtain a surface X′ with 10 cusps and no boundary components.

A simple closed curve on a surface is said to be essential if it does not bound a disk
containing at most one puncture; we stress that we consider boundary-parallel curves
to be essential. From now on, by a curve we will mean an essential simple closed
curve. Also, we will often abuse terminology and not distinguish between curves and
their isotopy classes.

We now introduce some notation that will be used throughout the paper. Let X be
a surface and let γ be an essential curve not parallel to the boundary of X . We will
denote by Xγ the complement in X of the interior of a closed regular neighborhood of
γ ; we will refer to the two boundary components of Xγ which appear in the boundary
of the regular neighborhood of γ as the new boundary components of Xγ . We will
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denote by X′γ the surface obtained from Xγ by deleting the new boundary components
of Xγ ; equivalently, X′γ = X \ γ .

A multicurve is the union of a, necessarily finite, collection of pairwise disjoint, non-
parallel curves. Given two multicurves γ, γ′ we denote their geometric intersection
number by i(γ, γ′).

A cut system is a multicurve whose complement is a connected surface of genus 0. Two
cut systems are said to be related by an elementary move if they share all curves but
one, and the remaining two curves intersect exactly once. The cut system complex of a
surface X is the simplicial graph whose vertices are cut systems on X and where two
cut systems are adjacent if the corresponding cut systems are related by an elementary
move.

2.1 Mapping class group

The mapping class group Map(X) of a surface X is the group of isotopy classes of
orientation preserving homeomorphisms X → X which fix the boundary pointwise and
map every cusp to itself; here, we also require that the isotopies fix the boundary point-
wise. We will also denote by Map∗(X) the group of isotopy classes of all orientation
preserving homeomorphisms of X . Observe that Map(X) is a subgroup of Map∗(X)
only in the absence of boundary; in this case Map(X) has finite index in Map∗(X).

While every element of the mapping class group is an isotopy class of homeomor-
phisms, it is well-known that the mapping class group cannot be realized by a group of
diffeomorphisms [40], or even homeomorphisms [38]. In spite of this, in order to keep
notation under control we will usually make no distinction between mapping classes
and their representatives.

2.2 Dehn twists

Given a curve γ on X , we denote by δγ the (right) Dehn twist along γ . It is important
to remember that δγ is solely determined by the curve γ and the orientation of X . In
other words, it is independent of any chosen orientation of γ .

The following well-known result will play an important role in our arguments:

Theorem 2.1 (Dehn–Lickorish) If X has genus at least 2, then Map(X) is generated
by Dehn twists along non-separating curves.
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There are a number of concrete sets of Dehn twists that generate the mapping class
group, see [13] for a description of several such sets. We will consider the generating
set depicted in Figure 1; we remark that, in the case of closed surfaces, these generators
are the ones first identified by Humphries [21].

a1 b1 a2 b2 a3 b3 bg rk

r1 r2c

Figure 1: Dehn twists along the curves ai, bi, c and ri generate Map(X).

Algebraic relations among Dehn twists are often given by particular configurations of
curves. We now discuss several of these relations; see [13, 16, 35] and the references
therein for proofs and details:

Conjugate Dehn twists. For any curve γ ⊂ X and any f ∈ Map(X) we have

δf (γ) = f δγ f−1

Hence, Dehn twists along any two non-separating curves are conjugate in Map(X).
Conversely, if the Dehn twist along γ is conjugate in Map(X) to a Dehn twist along
a non-separating curve, then γ is non-separating. Observe that Theorem 2.1 and the
fact that Dehn twists along any two non-separating curves are conjugate immediately
imply the following useful fact:

Lemma 2.2 Let X be a surface of genus at least 3 and let φ : Map(X) → G be a
homomorphism of groups. If δγ ∈ Ker(φ) for some γ ⊂ X non-separating, then φ is
trivial.

Disjoint curves. Suppose γ, γ′ are disjoint curves, meaning i(γ, γ′) = 0. Then δγ
and δγ′ commute.

Curves intersecting once. Suppose that i(γ, γ′) = 1. Then

δγδγ′δγ = δγ′δγδγ′

This is the so-called braid relation; we say that δγ and δγ′ braid.
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It is known [16] that if γ and γ′ are two curves in X and k ∈ Z is such that
|k · i(γ, γ′)| ≥ 2, then δk

γ and δk
γ′ generate a free group F2 of rank 2. In particular we

have:

Lemma 2.3 Suppose that k ∈ Z \ {0} and that γ and γ′ are curves such that δk
γ and

δk
γ′ satisfy the braid relation. Then either γ = γ′ or k = ±1 and i(γ, γ′) = 1.

Chains. Recall that a chain in X is a finite sequence of curves γ1, . . . , γk such that
i(γi, γj) = 1 if |i− j| = 1 and i(γi, γj) = 0 otherwise. Let γ1, . . . , γk be a chain in X
and suppose first that k is even. Then the boundary ∂Z of a regular neighborhood Z
of ∪γi is connected and we have

(δγ1δγ2 . . . δγk )
2k+2 = δ∂Z

If k is odd then ∂Z consists of two components ∂1Z and ∂2Z and the appropriate
relation is

(δγ1δγ2 . . . δγk )
k+1 = δ∂Z1δ∂Z2 = δ∂Z2δ∂Z1

These two relations are said to be the chain relations.

Lanterns. A lantern is a configuration in of seven curves a, b, c, d, x, y and z in X as
represented in Figure 2.

a

b

c

x y

z

d

Figure 2: A lantern

If seven curves a, b, c, d, x, y and z in X form a lantern then the corresponding Dehn
twists satisfy the so-called lantern relation:

δaδbδcδd = δxδyδz

Conversely, it is due to Hamidi–Tehrani [16] and Margalit [35] that, under mild hy-
potheses, any seven curves whose associated Dehn twists satisfy the lantern relation
form a lantern. More concretely:
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Theorem 2.4 (Hamidi–Tehrani, Margalit) Let a, b, c, d, x, y, z be essential curves
whose associated Dehn twists satisfy the lantern relation

δaδbδcδd = δxδyδz

If the curves a, b, c, d, x are paiwise distinct and pairwise disjoint, then a, b, c, d , x ,
y and z form a lantern.

In the course of this paper we will continuously discriminate against separating curves.
By a non-separating lantern we understand a lantern with the property that all the
involved curves are non-separating. We remark that X contains a non-separating
lantern if X has genus at least 3; in particular we deduce that, as long as X has genus
g ≥ 3, every non-separating curve belongs to a non-separating lantern.

2.3 Centralizers of Dehn twists

Observe that the relation f δγ f−1 = δf (γ) , for f ∈ Map(X) and γ ⊂ X a curve, implies
that

Z(δγ) = {f ∈ Map(X) | f (γ) = γ},
where Z(δγ) denotes the centralizer of δγ in Map(X). Notice that Z(δγ) is also equal
to the normalizer N (〈δγ〉) of the subgroup of Map(X) generated by δγ .

An element in Map(X) which preserves γ may either switch the sides of γ or may
preserve them. We denote by Z0(δγ) the group of those elements which preserve sides;
observe that Z0(δγ) has index at most 2 in Z(δγ).

The group Z0(δγ) is closely related to two different mapping class groups. First, let
Xγ be the surface obtained by removing the interior of a closed regular neighborhood
γ × [0, 1] of γ from X . Every homeomorphism of Xγ fixing pointwise the boundary
and the punctures extends to a homeomorphism X → X which is the identity on X\Xγ .
This induces a homomorphism Map(Xγ)→ Map(X). The sequence

(2.1) 0→ Z→ Map(Xγ)→ Z0(δγ)→ 1

is exact unless X is a torus without boundary and/or marked points. Here, the group
Z is generated by the difference δη1δ

−1
η2

of the Dehn twists along η1 and η2 , the new
boundary curves of Xγ .

Instead of deleting a regular neighborhood of γ we could also delete γ from X .
Equivalently, let X′γ be the surface obtained from Xγ by deleting the new boundary
curves of Xγ . Every homeomorphism of X fixing γ induces a homeomorphism of X′γ .
This yields a second exact sequence

(2.2) 0→ 〈δγ〉 → Z0(δγ)→ Map(X′γ)→ 1
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2.4 Multitwists

To a multicurve η ⊂ X we associate the group

Tη = 〈{δγ , γ ⊂ η}〉 ⊂ Map(X)

generated by the Dehn twists along the components of η . We refer to the elements
in Tη as multitwists along η . Observe that Tη is abelian; more concretely, Tη is
isomorphic to the free abelian group with rank equal to the number of components of
η (see Lemma 3.17 of Farb-Margalit [13] for a detailed proof of the latter fact).

Let η ⊂ X be a multicurve. An element f ∈ Tη which does not belong to any Tη′ , for
some η′ properly contained in η , is said to be a generic multitwist along η . Conversely,
if f ∈ Map(X) is a multitwist, then the support of f is the smallest multicurve η such
that f is a generic multitwist along η .

Much of what we just said about Dehn twists extends easily to multitwists. For instance,
if η ⊂ X is a multicurve, then we have

Tf (η) = fTηf−1

for all f ∈ Map(X). In particular, the normalizer N (Tη) of Tη in Map(X) is equal to

N (Tη) = {f ∈ Map(X)|f (η) = η}

On the other hand, the centralizer Z(Tη) of Tη is the intersection of the centralizers
of its generators; hence

Z(Tη) = {f ∈ Map(X)|f (γ) = γ for every component γ ⊂ η}

Notice that N (Tη)/Z(Tη) acts by permutations on the set of components of η . For
further use we remark that if the multicurve η happens to be a cut system, then
N (Tη)/Z(Tη) is in fact isomorphic to the group of permutations of the components
of η .

Denote by Z0(Tη) the subgroup of Z(Tη) fixing not only the components but also the
sides of each component. Notice that Z(Tη)/Z0(Tη) is a subgroup of (Z/2Z)|η| and
hence is abelian.

Observe that it follows from the definition of the mapping class group and from the
relation δf (γ) = f δγ f−1 that every Dehn twist along a boundary component of X is
central in Map(X). In fact, as long as X has at least genus 3, such Dehn twists generate
the center of Map(X):
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Theorem 2.5 If X has genus at least 3 then the group T∂X generated by Dehn twists
along the boundary components of X is the center of Map(X). Moreover, we have

1→ T∂X → Map(X)→ Map(X′)→ 1

where X′ is the surface obtained from X by deleting the boundary.

If X is a surface of genus g ∈ {1, 2}, with empty boundary and no marked points, then
the center of Map(X) is generated by the hyperelliptic involution.

2.5 Roots

It is a rather surprising, and annoying, fact that such simple elements in Map(X) as
Dehn twists have non-trivial roots [36]. Recall that a root of f ∈ Map(X) is an element
g ∈ Map(X) for which there is k ∈ Z with f = gk . Being forced to live with roots, we
state the following simple but important observation:

Lemma 2.6 Suppose that δη ∈ Map(X) is a Dehn twist along an essential curve η .
For f ∈ Z0(δη) the following are equivalent:

• f is a root of a power of δη , and

• the image of f in Map(X′η) under the third arrow in (2.2) has finite order.

Moreover, f is itself a power of δη if and only if the image of f in Map(X′η) is trivial.

2.6 Torsion

The key to understanding torsion in mapping class groups is the resolution by Kerckhoff
[27] of the Nielsen realization problem: the study of finite subgroups of the mapping
class group reduces to the study of groups of automorphisms of Riemann surfaces. For
instance, it follows from the classical Hurwitz theorem that the order of such a group
is bounded from above solely in terms of the genus of the underlying surface. Below
we will need the following bound, due to Maclachlan [33] and Nakajima [41], for the
order of finite abelian subgroups of Map(X).

Theorem 2.7 Suppose that X has genus g ≥ 2. Then Map(X) does not contain finite
abelian groups with more than 4g + 4 elements.
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We remark that if g ≤ 5 all finite subgroups, abelian or not, of Map(X) have been
listed [30, 31]. In the sequel we will make use of this list in the case that g = 3, 4.

Finally, a finite order diffeomorphism which is isotopic to the identity is in fact the
identity. This implies, for instance, that if X is obtained from X by filling in punctures,
and τ : X → X is a finite order diffeomorphism representing a non-trivial element in
Map(X), then the induced mapping class of X is non-trivial as well.

2.7 Centralizers of finite order elements

By (2.1) and (2.2), centralizers of Dehn twists are closely related to other mapping
class groups. Essentially the same is true for centralizers of other mapping classes. We
now discuss the case of torsion elements. The following result follows directly from
the work of Birman–Hilden [8]:

Theorem 2.8 (Birman–Hilden) Suppose that [τ ] ∈ Map(X) is an element of finite
order and let τ : X → X be a finite order diffeomorphism representing [τ ]. Consider
the orbifold O = X/〈τ〉 and let O∗ be the surface obtained from O by removing the
singular points. Then we have an exact sequence

1→ 〈[τ ]〉 → Z([τ ])→ Map∗(O∗)

where Map∗(O∗) is the group of isotopy classes of all homeomorphisms O∗ → O∗ .

Hidden in Theorem 2.8 we have the following useful fact: If X has negative Euler
characteristic, then two finite order diffeomorphisms τ, τ ′ : X → X which are isotopic
are actually conjugate as diffeomorphisms (see the remark in [6, p.10]). Hence, it
follows that the surface O∗ in Theorem 2.8 depends only on the mapping class [τ ].
Abusing notation, in the sequel we will speak about the fixed-point set of a finite order
element in Map(X).

3 Homomorphisms induced by embeddings

In this section we define what is meant by an embedding ι : X → Y between surfaces.
As we will observe, any embedding induces a homomorphism between the corre-
sponding mapping class groups. We will discuss several standard examples of such
homomorphisms, notably the so-called Birman exact sequences. We will conclude the
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section with a few observations that will be needed later on. Besides the possible dif-
ferences of terminology, all the facts that we will state are either well known or simple
observations in 2-dimensional topology. A reader who is reasonably acquainted with
Farb–Margalit [13] or Ivanov [25] will have no difficulty filling in the details.

3.1 Embeddings

Let X and Y be surfaces of finite topological type, and consider their cusps to be
marked points. Denote by |X| and |Y| the compact surfaces obtained from X and Y ,
respectively, by forgetting all the marked points, and let PX ⊂ |X| and PY ⊂ |Y| be the
sets of marked points of X and Y .

We now recall the definition of embedding; note that the definition below is equivalent
to the one given in the introduction.

Definition An embedding ι : X → Y is a continuous injective map ι : |X| → |Y|
such that ι−1(PY ) ⊂ PX . An embedding is said to be a homeomorphism if it has an
inverse which is also an embedding.

We will say that two embeddings ι, ι′ : X → Y are equivalent or isotopic if there is a
continuous map

[0, 1]× |X| → |Y|, (t, x) 7→ ft(x)

with f0 = ι, f1 = ι′ and such that ft is an embedding for all t .

Given an embedding ι : X → Y and a homeomorphism f : X → X which pointwise
fixes the boundary and the marked points of X , we consider the homeomorphism

ι(f ) : Y → Y

given by ι(f )(x) = (ι◦ f ◦ ι−1)(x) if x ∈ ι(X) and ι(f )(x) = x otherwise. Clearly, ι(f ) is
a homeomorphism which pointwise fixes the boundary and the marked points of Y . In
particular ι(f ) represents an element ι#(f ) in Map(Y). We thus obtain a well-defined
group homomorphism

ι# : Map(X)→ Map(Y)

characterized by the following property: for any curve γ ⊂ X we have ι#(δγ) = δι(γ) .
Notice that this characterization immediately implies that if ι and ι′ are isotopic, then
ι# = ι′# .
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3.2 Birman exact sequences

As we mentioned above, notable examples of homomorphisms induced by embeddings
are the so-called Birman exact sequences, which we now describe.

Let X and Y be surfaces of finite topological type. We will say that Y is obtained
from X by filling in a puncture if there is an embedding ι : X → Y and a marked
point p ∈ PX , such that the underlying map ι : |X| → |Y| is a homeomorphism, and
ι−1(PY ) = PX \ {p}. If Y is obtained from X by filling in a puncture we have the
following exact sequence:

(3.1) 1 // π1(|Y| \ PY , ι(p)) // Map(X)
ι# // Map(Y) // 1

The second arrow in (3.1) can be described concretely. For instance, if γ is a simple
loop in |Y| \PY based at ι(p), then the image of the element [γ] ∈ π1(|Y| \PY , ι(p)) in
Map(X) is the difference of the two Dehn twists along the curves forming the boundary
of a regular neighborhood of ι−1(γ).

Similarly, we will say that Y is obtained from X by filling in a boundary component if
there is an embedding ι : X → Y , with ι−1(PY ) = PX , and such that the complement
in |Y| of the image of the underlying map |X| → |Y| is a disk which does not contain
any marked point of Y . If Y is obtained from X by filling in a boundary component
then we have the following exact sequence:

(3.2) 1→ π1(T1(|Y| \ PY ))→ Map(X)→ Map(Y)→ 1

Here T1(|Y| \ PY ) is the unit-tangent bundle of the surface |Y| \ PY .

We refer to the sequences (3.1) and (3.2) as the Birman exact sequences. It follows
from the work of Ivanov–McCarthy [26] that the Birman exact sequences do not split
if the involved surfaces have genus at least 2.

3.3 Other building blocks

Continuing with the same notation as above, we will say that Y is obtained from X by
deleting a boundary component if there is an embedding ι : X → Y with ι(PX) ⊂ PY

and such that the complement of the image of the underlying map |X| → |Y| is a disk
containing exactly one point in PY .

If X is not homeomorphic to a closed disk and Y is obtained from X by deleting a
boundary component then we have

(3.3) 1→ Z→ Map(X)→ Map(Y)→ 1
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where Z is the group generated by the Dehn twist along the forgotten boundary
component.

Finally, we will say that ι : X → Y is a subsurface embedding if ι(PX) ⊂ PY and if no
component of the complement of the image of the underlying map |X| → |Y| is a disk
containing at most one marked point. If ι : X → Y is a subsurface embedding then the
homomorphism

ι# : Map(X)→ Map(Y)

is injective if and only if ι is anannular, i.e. if no component of the complement of the
image of the underlying map |X| → |Y| is an annulus without marked points; compare
with (2.1) above. We refer the reader to Farb–Margalit [13] or Paris–Rolfsen [43] for
a proof of this fact.

3.4 General embeddings

Clearly, the composition of two embeddings is an embedding. For instance, filling in a
boundary component is isotopic to first forgetting it and then filling in a puncture. The
following proposition, whose proof we leave to the reader, asserts that every embedding
is isotopic to a suitable composition of the elementary building blocks we have just
discussed.

Proposition 3.1 Every embedding ι : X → Y is isotopic to a composition of the
following three types of embedding: filling punctures, deleting boundary components,
and subsurface embeddings. In particular, the homomorphism ι# : Map(X)→ Map(Y)
is injective if and only if ι is an anannular subsurface embedding.

We conclude this section with an observation that will be needed below. Suppose that
ι : X → Y is an embedding and let η ⊂ X be a multicurve. The image ι(η) of η
in Y is an embedded 1-manifold, but it need not be a multicurve. For instance, some
component of ι(η) may not be essential in Y ; also two components of ι(η) may be
parallel in Y . If this is not the case, that is, if ι(η) is a multicurve in Y , then ι# maps
the subgroup Tη of multitwists supported on η isomorphically onto Tι(η) . We record
this observation in the following lemma:

Lemma 3.2 Let ι : X → Y be an embedding and let η ⊂ X be a multicurve. If ι(η)
is a multicurve in Y , then the homomorphism ι# maps Tη ⊂ Map(X) isomorphically
to Tι(η) ⊂ Map(Y). Moreover, the image of a generic multitwist in Tη is generic in
Tι(η) .
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Notation. In order to avoid notation as convoluted as T1(|Y| \PY ), most of the time we
will drop any reference to the underlying surface |Y| or to the set of marked point PY ;
notice that this is consistent with taking the liberty to consider punctures as marked
points or as ends. For instance, the Birman exact sequences now read

1→ π1(Y)→ Map(X)→ Map(Y)→ 1,

if Y is obtained from X by filling in a puncture, and

1→ π1(T1Y)→ Map(X)→ Map(Y)→ 1,

if it is obtained by filling in a boundary component.

4 Triviality theorems

In this section we remind the reader of two triviality theorems for homomorphisms
from mapping class groups to abelian groups and permutation groups; these results are
widely used throughout this paper. The first of these results is a direct consequence of
Powell’s theorem [44] on the vanishing of the integer homology of the mapping class
group of surfaces of genus at least 3:

Theorem 4.1 (Powell) If X is a surface of genus g ≥ 3 and A is an abelian group,
then every homomorphism Map(X)→ A is trivial.

We refer the reader to Korkmaz [28] for a discussion of Powell’s theorem and other
homological properties of mapping class groups.

As a first consequence of Theorem 4.1 we derive the following useful observation:

Lemma 4.2 Let X,Y and Y be surfaces of finite topological type, and let ι : Y → Y
be an embedding. Suppose that X has genus at least 3 and that φ : Map(X)→ Map(Y)
is a homomorphism such that the composition

φ = ι# ◦ φ : Map(X)→ Map(Y)

is trivial. Then φ is trivial as well.

Proof By Proposition 3.1 the embedding ι : Y → Y is isotopic to a suitable composi-
tion of filling in punctures, deleting boundary components and subsurface embeddings.
In particular, we may argue by induction and assume that ι is of one of these three
types. For the sake of concreteness suppose ι : Y → Y is the embedding associated to
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filling in a puncture; the other cases are actually a bit easier and are left to the reader.
We have the following diagram:

Map(X)

φ

��

φ

%%
1 // π1(Y) // Map(Y)

ι# // Map(Y) // 1

The assumption that φ is trivial amounts to supposing that the image of φ is contained
in π1(Y). Since every nontrivial subgroup of the surface group π1(Y) has nontrivial
homology, we deduce from Theorem 4.1 that φ is trivial, as it was to be shown.

Before stating another consequence of Theorem 4.1 we need a definition:

Definition A homomorphism φ : Map(X) → Map(Y) is said to be irreducible if its
image does not preserve any essential curve in Y ; otherwise we say it is reducible.

Remark Recall that we consider boundary parallel curves to be essential. In par-
ticular, every homomorphism Map(X) → Map(Y) is reducible if Y has non-empty
boundary.

Let φ : Map(X)→ Map(Y) be a reducible homomorphism, where X has genus at least
3, and let η ⊂ Y be a multicurve which is componentwise invariant under φ(Map(X));
in other words, φ(Map(X)) ⊂ Z(Tη).

Moreover, Theorem 4.1 implies that φ(Map(X)) ⊂ Z0(Tη), where Z0(Tη) is the sub-
group of Z(Tη) consisting of those elements that preserve the sides of each component
of η .

Now let Y ′γ = Y \ η be the surface obtained by deleting η from Y . Composing (2.2)
as often as necessary, we obtain an exact sequence as follows:

(4.1) 1→ Tη → Z0(Tη)→ Map(Y ′η)→ 1

The same argument of the proof of Lemma 4.2 shows that φ is trivial if the composition
of φ and the third homomorphism in (4.1) is trivial. Hence we have:

Lemma 4.3 Let X,Y be surfaces of finite topological type, with X of genus at least 3.
Suppose φ : Map(X)→ Map(Y) is a non-trivial reducible homomorphism preserving
the multicurve η ⊂ Y . Then φ(Map(X)) ⊂ Z0(Tη) and the composition of φ with the
homomorphism (4.1) is not trivial.
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The second triviality theorem, due to Paris [42], asserts that the mapping class group of
a surface of genus g ≥ 3 does not have subgroups of index less than or equal to 4g+4;
equivalently, any homomorphism from the mapping class group into a symmetric group
Sk is trivial if k ≤ 4g + 4:

Theorem 4.4 (Paris) If X has genus g ≥ 3 and k ≤ 4g+4, then there is no nontrivial
homomorphism Map(X) → Sk where the latter group is the group of permutations of
the set with k elements.

Before going any further we should mention that in [42], Theorem 4.4 is only stated
for closed surfaces; however, the proof works as it is also for surfaces with boundary
and or punctures.

As a first consequence of Theorem 4.1 and Theorem 4.4 we prove:

Proposition 4.5 If X has genus at least 3 and Y has genus at most 2, then every
homomorphism φ : Map(X)→ Map(Y) is trivial.

Proof Assume for concreteness that Y has genus 2; the cases of genus 0 and genus
1 are in fact easier and are left to the reader.

Notice that by Lemma 4.2, we may assume without lossing generality that Y has empty
boundary and no marked points. Recall that Map(Y) has a central element τ of order
2, namely the hyperelliptic involution. As we discussed above, we identify the finite
order mapping class τ with one of its finite order representatives, which we again
denote by τ . The surface underlying the orbifold Y/〈τ〉 is the 6-punctured sphere
S0,6 . By Theorem 2.8 we have the following exact sequence:

1→ 〈τ〉 → Map(Y)→ Map∗(S0,6)

where Map∗(S0,6) is the group of isotopy classes of all orientation preserving homeo-
morphisms of S0,6 . Therefore, any homomorphism φ : Map(X)→ Map(Y) induces a
homomorphism

φ′ : Map(X)→ Map∗(S0,6)

By Paris’ theorem, the homomorphism obtained by composing φ′ with the obvious
homomorphism Map∗(S0,6) → S6 , the group of permutations of the punctures, is
trivial. In other words, φ′ takes values in Map(S0,6). Since the mapping class group
of the standard sphere S2 is trivial, Lemma 4.2 implies that φ′ is trivial. Therefore, the
image of φ is contained in the abelian subgroup 〈τ〉 ⊂ Map(Y). Finally, Theorem 4.1
implies that φ is trivial, as we had to show.
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5 Getting rid of the torsion

We begin this section by asking the following question:

Question 1 Suppose that φ : Map(X) → Map(Y) is a homomorphism between
mapping class groups of surfaces of genus at least 3, with the property that the image
of every Dehn twist along a non-separating curve has finite order. Is the image of φ
finite?

In this section we will give a positive answer to Question 1 in the case where the genus
of Y is exponentially bounded by the genus of X . Namely, we will prove:

Proposition 5.1 Suppose that X and Y are surfaces of finite topological type with
genus g and g′ respectively. Suppose that g ≥ 4 and that either g′ < 2g−2 − 1 or
g′ = 3, 4.

Any homomorphism φ : Map(X) → Map(Y) which maps a Dehn twist along a non-
separating curve to a finite order element is trivial.

Under the assumption that Y is not closed, we obtain in fact a complete answer to the
question above:

Theorem 5.2 Suppose that X and Y are surfaces of finite topological type, that X has
genus at least 3, and that Y is not closed. Then any homomorphism φ : Map(X) →
Map(Y) which maps a Dehn twist along a non-separating curve to a finite order element
is trivial.

Since the mapping class group of a surface with non-empty boundary is torsion-free,
we deduce from Lemma 2.2 that it suffices to consider the case that ∂Y = ∅. From
now on, we assume that we are in this situation.

The proofs of Proposition 5.1 and Theorem 5.2 are based on Theorem 4.1, the connec-
tivity of the cut system complex, and the following algebraic observation:

Lemma 5.3 For n ∈ N, n ≥ 2, consider Zn endowed with the standard action of the
symmetric group Sn by permutations of the basis elements e1, . . . , en . If V is a finite
abelian group equipped with an Sn -action, then for any Sn -equivariant epimorphism
φ : Zn → V one of the following two is true:

(1) Either the restriction of φ to Zn−1 × {0} is surjective, or
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(2) V has order at least 2n and cannot be generated by fewer than n elements.

Moreover, if (1) does not hold and V 6= (Z/2Z)n then V has at least 2n+1 elements.

Proof Let d be the order of φ(e1) in V and observe that, by Sn -equivariance, all the
elements φ(ei) have order d also. It follows that (dZ)n ⊂ Ker(φ) and hence that φ
descends to an epimorphism

φ′ : (Z/dZ)n → V.

We first treat the case d = pa , where p is a prime and a ≥ 1; we argue by induction
on a. Let a = 1. The kernel of the epimorphism

φ′ : (Z/pZ)n → V

is an Sn -invariant subspace. We need the following well-known observation:

Fact. Suppose that p is prime. The only Sn -invariant subgroups W of (Z/pZ)n are
the following:

• The trivial subgroup {0},

• (Z/pZ)n itself,

• E = {(a, a, . . . , a) ∈ (Z/pZ)n|a = 0, . . . , p− 1}, and

• F = {(a1, . . . , an) ∈ (Z/pZ)n|a1 + · · ·+ an = 0}.

Now, either φ′ is injective and thus V contains pn ≥ 2n elements, or its kernel is one
of the spaces E or F provided by the claim. Since the union of either one of them with
(Z/pZ)n−1 × {0} spans (Z/pZ)n , it follows that the restriction of φ to Zn−1 × {0}
surjects onto V . This concludes the proof for a = 1.

Suppose now that we have proved the result for a − 1. We can then consider the
diagram:

0 // (Z/pa−1Z)n //

��

(Z/paZ)n //

φ′

��

(Z/pZ)n //

��

0

0 // φ′((Z/pa−1Z)n) // V // V/φ′((Z/pa−1Z)n) // 0

Observe that if one of the groups to the left and right of V on the bottom row has at least
2n elements, then so does V . So, if this is not the case we may assume by induction
that the restriction of the left and right vertical arrows to (Z/pa−1Z)n−1 × {0} and
(Z/pZ)n−1×{0} are epimorphisms; in particular the restriction of φ′ to (Z/paZ)n−1×
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{0} is also an epimorphism. Thus, either V has at least 2n elements or the restriction
of φ to Zn−1 × {0} is surjective, as desired.

We now explain how to restrict to the case that d is not a power of a prime. Consider
the prime decomposition d =

∏
j paj

j of d , where pi 6= pj and ai ∈ N. By the Chinese
remainder theorem we have

Z/dZ =
∏

j

(
Z/paj

j Z
)

Hence, there is an Sn -equivariant isomorphism

(Z/dZ)n =
∏

j

(
(Z/paj

j Z)n
)

Consider the projection πj : Zn → (Z/paj
j Z)n , noting that if the restriction to Zn−1×{0}

of φ′ ◦ πj surjects onto φ′((Z/paj
j Z)n) for all j, then φ(Zn−1 × {0}) = V . If that is not

the case, then φ((Z/paj
j Z)n) ⊂ V has order at least 2n , by the above.

Both the equality case and the claim on the minimal number of elements needed to
generate V are left to the reader.

We are now ready to prove:

Lemma 5.4 Given n ≥ 4, suppose that g > 0 is such that 2n−2−1 > g or g ∈ {3, 4}.

If Y is surface of genus g ≥ 3, V ⊂ Map(Y) is a finite abelian group endowed with
an action of Sn , and φ : Zn → V is an Sn -equivariant epimomorphism, then the
restriction of φ to Zn−1 × {0} is surjective.

Proof Suppose, for contradiction, that the restriction of φ to Zn−1 × {0} is not
surjective. Recall that by the resolution of the Nielsen realization problem [27] there is
a conformal structure on Y such that V can be represented by a group of automorphisms.

Suppose first that 2n−2 − 1 > g. Since we are assuming that the restriction of φ to
Zn−1×{0} is not surjective, Lemma 5.3 implies that V has at least 2n elements. Then:

2n = 4(2n−2 − 1) + 4 > 4g + 4,

which is impossible since Theorem 2.7 asserts that Map(Y) does not contain finite
abelian groups with more than 4g + 4 elements.

Suppose now that g = 4. If n ≥ 5 we obtain a contradiction using the same argument
as above. Thus assume that n = 4. Since 24+1 = 32 > 20 = 4 · 4 + 4, it follows from
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the equality statement in Lemma 5.3 that V is isomorphic to (Z/2Z)4 . Luckily for us,
Kuribayashi–Kuribayashi [30] have classified all groups of automorphisms of Riemann
surfaces of genus 3 and 4. From their list, more concretely Proposition 2.2 (c), we
obtain that (Z/2Z)4 cannot be realized as a subgroup of the group of automorphisms
of a surface of genus 4, and thus we obtain the desired contradiction.

Finally, suppose that g = 3. As before, this case boils down to ruling out the possibility
of having (Z/2Z)4 acting by automorphisms on a Riemann surface of genus 3. This
is established in Proposition 1.2 (c) of [30]. This concludes the case g = 3 and thus
the proof of the lemma.

Remark One could wonder if in Lemma 5.4 the condition n ≥ 4 is necessary. Indeed
it is, because the mapping class group of a surface of genus 3 contains a subgroup
isomorphic to (Z/2Z)3 , namely the group H(8, 8) on the list in [30].

We are finally ready to prove Proposition 5.1:

Proof of Proposition 5.1 Recall that a cut system in X is a maximal multicurve whose
complement in X is connected; observe that every cut system consists of g curves and
that every non-separating curve is contained in some cut system.

Given a cut system η consider the group Tη generated by the Dehn twists along the
components of η , and recall that Tη ' Zg . Any permutation of the components
of η can be realized by a homeomorphism of X . Consider the normalizer N (Tη)
and centralizer Z(Tη) of Tη in Map(X). As mentioned in Section 2.4, we have the
following exact sequence:

1→ Z(Tη)→ N (Tη)→ Sg → 1,

where Sg denotes the symmetric group of permutations of the components of η .
Observe that the action by conjugation of N (Tη) on Tη induces an action Sg =

N (Tη)/Z(Tη) y Tη which is conjugate to the standard action of Sg y Zg . Clearly,
this action descends to an action Sg y φ(Tη).

Seeking a contradiction, suppose that the image under φ of a Dehn twist δγ along a
non-separating curve has finite order. Since all the Dehn twists along the components
of η are conjugate to δγ we deduce that all their images have finite order; hence φ(Tη)
is generated by finite order elements. On the other hand, φ(Tη) is abelian because it is
the image of an abelian group. Being abelian and generated by finite order elements,
φ(Tη) is finite.
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It thus follows from Lemma 5.4 that the subgroup of Tη generated by Dehn twists
along g− 1 components of η surjects under φ onto φ(Tη). This implies that

φ(Tη) = φ(Tη′)

whenever η and η′ are cut systems which differ by exactly one component. Now, since
the cut system complex is connected [20], we deduce that φ(δα) ∈ φ(Tη) for every
non-separating curve α . Therefore the image of Map(X) is the abelian group φ(Tη),
as Map(X) is generated by Dehn twists along non-separating curves. By Theorem 4.1,
any homomorphism Map(X) → Map(Y) with abelian image is trivial, and thus we
obtain the desired contradiction.

Before moving on, we discuss briefly the proof of Theorem 5.2:

Proof of Theorem 5.2 Suppose that Y is not closed, in which case every finite sub-
group of Map(Y) is cyclic. In particular, the bound on the number of generators in
Lemma 5.3 implies that if V ⊂ Map(Y) is a finite abelian group endowed with an ac-
tion of Sn and φ : Zn → V is an Sn -equivariant epimomorphism then the restriction
of φ to Zn−1×{0} is surjective. Once this has been established, Theorem 5.2 follows
with the same proof, word for word, as Proposition 5.1.

Remark Let X and Y be surfaces, where Y has a single boundary component and
no cusps. Let G be a finite index subgroup of Map(X) and let φ : G → Map(Y) be a
homomorphism. A simple modification of a construction due to Breuillard–Mangahas
[34] yields a closed surface Y ′ containing Y and a homomorphism

φ′ : Map(X)→ Map(Y ′)

such that for all g ∈ G we have, up to isotopy, φ′(g)(Y) = Y and φ′(g)|Y = φ(g).

Suppose now that G could be chosen so that there is an epimorphism G→ Z. Assume
further that φ : G → Map(Y) factors through this epimorphism and that the image
of φ is purely pseudo-Anosov. Then, every element in the image of the extension
φ′ : Map(X)→ Map(Y) either has finite order or is a partial pseudo-Anosov. A result
of Bridson [11], stated as Theorem 6.1 below, implies that every Dehn twist in Map(X)
is mapped to a finite order element in Map(Y). Hence, the extension homomorphism
φ′ produces a negative answer to Question 1.

We have hence proved that a positive answer to Question 1 implies that every finite
index subgroup of Map(X) has finite abelianization.
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6 The map φ∗

In addition to the triviality results given in Theorems 4.1 and 4.4, the third key ingredient
in the proof of Theorem 1.1 is the following result due to Bridson [11]:

Theorem 6.1 (Bridson) Suppose that X,Y are surfaces of finite type and that X
has genus at least 3. Any homomorphism φ : Map(X) → Map(Y) maps roots of
multitwists to roots of multitwists.

A remark on the proof of Theorem 6.1 In [11], Theorem 6.1 is proved for surfaces
without boundary only. However, Bridson’s argument remains valid if we allow X to
have boundary. That the result can also be extended to the case that Y has non-empty
boundary needs a minimal argument, which we now give. Denote by Y ′ the surface
obtained from Y by deleting all boundary components and consider the homomorphism
π : Map(Y) → Map(Y ′) provided by Theorem 2.5. By Bridson’s theorem, the image
under π ◦ φ of a Dehn twist δγ is a root of a multitwist. Since the kernel of π is the
group of multitwists along the boundary of Y , it follows that φ(δγ) is also a root of a
multitwist, as claimed.

A significant part of the sequel is devoted to proving that under suitable assumptions
the image of a Dehn twist is in fact a Dehn twist. It is worth stressing that, without any
restrictions on genus, there exist homomorphisms between mapping class group that
map Dehn twists to non-trivial roots of multitiwists, as the next example shows:

Example 3 Suppose that X has a single boundary component and at least two punc-
tures. By [15], the mapping class group Map(X) is residually finite. Fix a finite group
G and an epimorphism π : Map(X) → G. Let Y be a connected surface on which
G acts and which contains |G| disjoint copies Xg (g ∈ G) of X with gXh = Xgh

for all g, h ∈ G; for example, such surface Y may be constructed by considering the
connected sum of |G| copies of X , where the connected sums are performed according
to the edges of a chosen Cayley graph of G.

Given x ∈ X , denote the corresponding element in Xg by xg . If f : X → X is a
homeomorphism fixing pointwise the boundary and punctures, we define

f̂ : Y → Y

with f̂ (xg) = (f (x))π([f ])g for xg ∈ Xg and f̂ (y) = π([f ])(y) for y /∈ ∪g∈GXg ; here [f ] is
the element in Map(X) represented by f .
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Notice that f̂ does not fix the marked points of Y ; in order to by-pass this difficulty,
consider Y the surface obtained from Y by forgetting all marked points, and consider
f̂ to be a self-homeomorphism of Y . The map f 7→ f̂ induces a homomorphism

φ : Map(X)→ Map(Y)

with some curious properties, namely:

• If γ ⊂ X is a simple closed curve which bounds a disk with at least two punctures
then the image φ(δγ) of the Dehn twist δγ along γ has finite order. Moreover,
δγ ∈ Ker(φ) if and only if δγ ∈ Ker(π).

• If γ ⊂ X is a non-separating simple closed curve then φ(δγ) has infinite order.
Moreover, φ(δγ) is a multitwist if δγ ∈ Ker(π); otherwise, φ(δγ) is a non-trivial
root of a multitwist. Observe that in the latter case, φ(δγ) induces a non-trivial
permutation of the components of the multicurve supporting any of its multitwist
powers.

This concludes the discussion of Example 3.

While a finite order element is by definition a root of a multitwist, Proposition 5.1
ensures that, under suitable bounds on the genus of the surfaces involved, any non-
trivial homomorphism Map(X)→ Map(Y) maps Dehn twists to infinite order elements.
From now on we assume that we are in the following situation:

(*) X and Y are orientable surfaces of finite topological type, of genus g
and g′ respectively, and such that one of the following holds:

• Either g ≥ 4 and g′ ≤ g, or
• g ≥ 6 and g′ ≤ 2g− 1.

Remark It is worth noticing that the reason for the genus bound g ≥ 6 in Theorem
1.1 is that 2g−2 − 1 < 2g− 1 if g < 6.

Assuming (*), it follows from Proposition 5.1 that any non-trivial homomorphism
φ : Map(X)→ Map(Y) maps Dehn twists δγ along non-separating curves γ to infinite
order elements in Map(Y). Furthermore, it follows from Theorem 6.1 that there is
N such that φ(δN

γ ) is a non-trivial multitwist. We denote by φ∗(γ) the multicurve in
Y supporting φ(δN

γ ); observe that φ∗(γ) is independent of N , for if two multitwists
have a common root then the supporting multicurves must be equal. Notice that two
multitwists commute if and only if their supports do not intersect; hence, φ∗ preserves
the property of having zero intersection number. Moreover, the uniqueness of φ∗(γ)
implies that for any f ∈ Map(X) we have φ∗(f (γ)) = φ(f )(φ∗(γ)). Summing up we
have:
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Corollary 6.2 Suppose that X and Y are as in (*) and let

φ : Map(X)→ Map(Y)

be a non-trivial homomorphism. For every non-separating curve γ ⊂ X , there is a
uniquely determined multicurve φ∗(γ) ⊂ Y with the property that φ(δγ) is a root of a
generic multitwist in Tφ∗(γ) . Moreover the following holds:

• i(φ∗(γ), φ∗(γ′)) = 0 for any two disjoint non-separating curves γ and γ′ , and

• φ∗(f (γ)) = φ(f )(φ∗(γ)) for all f ∈ Map(X). In particular, the multicurve φ∗(γ)
is invariant under φ(Z(δγ)).

The remainder of this section is devoted to give a proof of the following result:

Proposition 6.3 Suppose that X and Y are as in (*); further, assume that Y is not closed
if it has genus 2g− 1. Let φ : Map(X)→ Map(Y) be an irreducible homomorphism.
Then, for every non-separating curve γ ⊂ X the multicurve φ∗(γ) is a non-separating
curve.

Recall that a homomorphism φ : Map(X) → Map(Y) is irreducible if its image does
not preserve any essential curve in Y , and that we consider boundary-parallel curves
to be essential.

Before launching the proof of Proposition 6.3 we will establish a few useful facts.

Lemma 6.4 Suppose X and Y satisfy (*) and that φ : Map(X) → Map(Y) is an
irreducible homomorphism. Let Y be obtained from Y by filling in some, possibly all,
punctures of Y , and let φ = ι# ◦ φ : Map(X)→ Map(Y) be the composition of φ with
the homomorphism ι# induced by the embedding ι : Y → Y . For every non-separating
curve γ ⊂ X we have:

• ι(φ∗(γ)) is a multicurve, and

• φ∗(γ) = ι(φ∗(γ)).

In particular, ι yields a bijection between the components of φ∗(γ) and φ∗(γ).

Proof First, arguing by induction, we may assume that Y is obtained from Y by filling
in a single cusp. We suppose from now on that this is the case; it follows from Lemma
4.2 that φ is not trivial. Notice also that since Y and Y have the same genus, φ∗(γ) is
well-defined by Corollary 6.2.
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By definition of φ∗ and φ∗ , we can choose N ∈ N such that φ(δN
γ ) and φ(δN

γ ) are
generic multitwists in Tφ∗(γ) and Tφ∗(γ) . In particular, it follows from Lemma 3.2
that in order to prove Lemma 6.4 it suffices to show that ι(φ∗(γ)) does not contain (1)
inessential components, or (2) parallel components.

Claim 1. ι(φ∗(γ)) does not contain inessential components.

Proof of Claim 1 Seeking a contradiction, suppose that a component η of φ∗(γ) is
inessential in Y . Since Y is obtained from Y by filling in a single cusp, it follows that
η bounds a disk in Y with exactly two punctures. Observe that this implies that for any
element F ∈ Map(Y) we have either F(η) = η or i(F(η), η) > 0. On the other hand,
if f ∈ Map(X) is such that i(f (γ), γ) = 0 then we have

i(φ(f )(η), η) ≤ i(φ(f )(φ∗(γ)), φ∗(γ)) = i(φ∗(f (γ)), φ∗(γ)) = 0.

We deduce that η = φ(f )(η) ⊂ φ∗(f (γ)) for any such f . Since any two non-separating
curves in X are related by an element of Map(X) we obtain:

(?) If γ′ is a non-separating curve in X with i(γ, γ′) = 0 then η =

φ(δγ′)(η) and η ⊂ φ∗(γ′).

Choose γ′ ⊂ X so that X \ (γ ∪ γ′) is connected. It follows from (?) that if γ′′ is
any other non-separating curve which is disjoint from at least one of γ or γ′ , then
φ(δγ′′)(η) = η . Since Map(X) is generated by Dehn twists along such curves, we
deduce that every element in φ(Map(X)) preserves η , contradicting the assumption
that φ is irreducible. This concludes the proof of Claim 1.

We use a similar argument to prove that ι(φ∗(γ)) does not contain parallel components.

Claim 2. ι(φ∗(γ)) does not contain parallel components.

Proof of Claim 2 Seeking again a contradiction suppose that there are η 6= η′ ⊂
φ∗(γ) whose images in Y are parallel. Hence, η ∪ η′ bounds an annulus which
contains a single cusp. As above, it follows that for any element f ∈ Map(Y) we
have either f (η ∪ η′) = η ∪ η′ or i(f (η), η) > 0. By the same argument as before, we
obtain that φ(Map(X)) preserves η ∪ η′ . Now, it follows from either Theorem 4.1 or
Theorem 4.4 that φ(Map(X)) cannot permute η and η′ . Hence φ(Map(X)) preserves
η , contradicting the assumption that φ is irreducible.

As we mentioned above, Lemma 6.4 follows from Claim 1, Claim 2 and Lemma
3.2.



30 Javier Aramayona and Juan Souto

Continuing with the preliminary considerations to prove Proposition 6.3, recall that the
final claim in Corollary 6.2 implies that φ(δγ) preserves the multicurve φ∗(γ). Our
next goal is to show that, as long as φ is irreducible, the element φ(δγ) preserves every
component of φ∗(γ).

Lemma 6.5 Suppose that X and Y are as in (*) and let φ : Map(X) → Map(Y) be
an irreducible homomorphism. If γ ⊂ X is a non-separating simple closed curve, then
φ(Z0(δγ)) preserves every component of φ∗(γ). Hence, φ(Z0(δγ)) ⊆ Z0(Tφ∗(γ)).

Recall that Z0(δγ) is the subgroup of Map(X) preserving not only γ but also the two
sides of γ and that it has at most index 2 in the centralizer Z(δγ) of the Dehn twist δγ .

Proof We first prove Lemma 6.5 in the case that Y is closed. As in Section 2,
we denote by Xγ the surface obtained by deleting the interior of a closed regular
neighborhood of γ from X . Recall that by (2.1) there is a surjective homomorphism

Map(Xγ)→ Z0(δγ)

Consider the composition of this homomorphism with φ and, abusing notation, denote
its image by φ(Map(Xγ)) = φ(Z0(δγ)).

By Corollary 6.2, the subgroup φ(Map(Xγ)) of Map(Y) acts on the set of components
of φ∗(γ) and hence on Y \ φ∗(γ). Since Y is assumed to be closed and of at most
genus 2g − 1 we deduce that Y \ φ∗(γ) has at most |χ(Y)| = 2g′ − 2 ≤ 4g − 4
components. Since the surface Xγ has genus g− 1 ≥ 3, we deduce from Theorem 4.4
that φ(Map(Xγ)) preserves each component of Y \ φ∗(γ).

Suppose now that Z is a component of Y \ φ∗(γ) and let η be the set of components
of φ∗(γ) contained in the closure of Z . Noticing that

4− 4g ≤ χ(Y) ≤ χ(Z) ≤ −|η|+ 2

we obtain that η consists of at most 4g− 2 components. Since φ(Map(Xγ)) preserves
Z , it acts on the set of components of η . Again by Theorem 4.4, it follows that
this action is trivial, meaning that every component of φ∗(γ) contained in the closure
of Z is preserved. Since Z was arbitrary, we deduce that φ(Map(Xγ)) preserves
every component of φ∗(γ) as claimed. Now, Theorem 4.1 implies that φ(Z0(δγ)) =

φ(Map(Xγ)) ⊂ Z0(Tφ∗(γ)). This concludes the proof of Lemma 6.5 in the case that Y
is closed.

We now turn our attention to the general case. Recall that the assumption that φ is
irreducible implies that ∂Y = ∅. Let Y be the surface obtained from Y by closing
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up all the cusps and denote by φ : Map(X) → Map(Y) the composition of φ with the
homomorphism ι# : Map(Y)→ Map(Y) induced by the embedding ι : Y → Y . By the
above, Lemma 6.5 holds true for φ. On the other hand, Lemma 6.4 shows that for any
γ ⊂ X non-separating there is a bijection between φ∗(γ) and φ∗(γ). Thus the lemma
follows.

Note that Lemma 6.5 yields the following sufficient condition for a homomorphism
between mapping class groups to be reducible:

Corollary 6.6 Suppose that X and Y are as in (*) and let φ : Map(X) → Map(Y)
be a non-trivial homomorphism. Let γ and γ′ be disjoint curves on X such that
X \ (γ∪γ′) is connected. If the multicurves φ∗(γ) and φ∗(γ′) share a component, then
φ is reducible.

Proof First, Map(X) is generated by Dehn twists along curves α which are disjoint
from γ or γ′ . For any such α we have δα ∈ Z0(δγ)∪Z0(δγ′). In particular, it follows
from Lemma 6.5 that φ(Map(X)) fixes every component of φ∗(γ) ∩ φ∗(γ′).

We are now ready to prove Proposition 6.3:

Proof of Proposition 6.3 Let γ be a non-separating curve on X . Extend γ to a
multicurve η ⊂ X with 3g − 3 components γ1, . . . , γ3g−3 , and such that the surface
X \ (γi ∪ γj) is connected for all i, j. Since δγi and δγj are conjugate in Map(X)
we deduce that φ∗(γi) and φ∗(γj) have the same number K of components for all
i, j. Since φ is irreducible, Corollary 6.6 implies that φ∗(γi) and φ∗(γj) do not share
any components for i 6= j. This shows that ∪iφ∗(γi) is the union of (3g − 3)K
distinct curves. Furthermore, since δγi and δγj commute, we deduce that ∪iφ∗(γi) is a
multicurve in Y .

Suppose first that Y has genus g′ ≤ 2g − 2. In light of Lemma 6.4, it suffices
to consider the case that Y is closed. Now, the multicurve ∪iφ∗(γi) has at most
3g′ − 3 ≤ 3(2g− 2)− 3 < 6g− 6 components. Hence:

K <
6g− 6
3g− 3

= 2,

and thus the multicurve φ∗(γ) consists of K = 1 components; in other words, it is a
curve. If φ∗(γ) were separating, then the multicurve ∪iφ∗(γi) would consist of 3g− 3
separating curves; however, a closed surface of genus g′ ≤ 2g − 2 contains at most
g′ ≤ 2g − 2 disjoint separating curves that are equivalent under the action of the
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mapping class group. This concludes the proof of the proposition in the case that Y
has genus at most 2g− 2.

It remains to consider the case that Y has genus g′ = 2g− 1 and at least one puncture.
Again by Lemma 6.4, we can assume that Y has a single puncture, which we consider as
a marked point. In this case, the multicurve ∪iφ∗(γi) consists of at most 3g′−2 = 6g−5
curves. Since we know that ∪iφ∗(γi) is the union of (3g − 3)K distinct curves, we
deduce that K ≤ 2. In the case that ∪iφ∗(γi) has fewer than 6g − 6 components, we
proceed as before. Therefore, it remains to rule out the possibility of having exactly
6g− 6 components.

Suppose, for contradiction, that ∪iφ∗(γi) has 6g− 6 components. Since Y has genus
2g − 1 and exactly one marked point, the complement of ∪iφ∗(γi) in Y is a disjoint
union of pairs of pants, where one of them, call it P, contains the marked point of Y .
Now, the boundary components of P are contained in the image under φ∗ of curves
a1, a2, a3 ∈ {γ1, . . . , γ3g−3}. Assume, for the sake of concreteness, that ai 6= aj

whenever i 6= j; the remaining case is dealt with using minor modifications of the
argument we give here.

Suppose first that the multicurve α = a1 ∪ a2 ∪ a3 does not disconnect X and let
α′ 6= α be another multicurve with three components satisfying:

(1) X \ α′ is connected,

(2) i(α, α′) = 0, and

(3) X \ (γ ∪ γ′) is connected for all γ, γ′ ∈ α ∪ α′ .

Note that X \ α and X \ α′ are homeomorphic, and thus there is f ∈ Map(X) with
f (α) = α′ . Now, P′ = φ(f )(P) is a pair of pants which contains the marked point of
Y . Taking into account that ∂P ⊂ φ∗(α) and ∂P′ ⊂ φ∗(α′) we deduce from (2) that
i(∂P, ∂P′) = ∅ and hence that P = P′ . Since α′ 6= α we may assume, up to renaming,
that a1 6⊂ α′ . Since φ(f )(∂P) = ∂P′ and ∂P ∩ φ∗(a1) 6= ∅, we deduce that there is i
such that φ∗(ai) ∩ φ∗(f (a1)) contains a boundary curve of P. In light of (3), it follows
from Corollary 6.6 that φ is reducible; this contradiction shows that X \ α cannot be
connected.

If X \ α is not connected, then it has two components, as X \ (a1 ∪ a2) is connected.
Suppose first that neither of the two components Z1,Z2 of X\α is a (possibly punctured)
pair of pants; in particular, Z1 and Z2 both have positive genus. Let P1 ⊂ Z1 be an
unpunctured pair of pants with boundary ∂P1 = a1∪a2∪a′3 and let P2 ⊂ Z2 be second
unpunctured a pair of pants with Z2\P2 connected and with boundary ∂P2 = a3∪a′1∪a′2
where a′1 and a′2 are not boundary parallel in Z2 ; compare with Figure 3. Notice that
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Figure 3

Z′1 = (Z1 ∪ P2) \ P1 is homeomorphic to Z1 . Similarly, Z′2 = (Z2 ∪ P1) \ P2 is
homeomorphic to Z2 . Finally notice also that Z′i contains the same punctures as Zi

for i = 1, 2. It follows that there is f ∈ Map(X) with f (Z1) = Z′1 and f (Z2) = Z′2 . In
particular, f (α) = α′ where α′ = a′1 ∪ a′2 ∪ a′3 . We highlight a few facts:

(1) There is f ∈ Map(X) with f (α) = α′ ,

(2) i(α, α′) = 0, and

(3) X \ (γ ∪ γ′) is connected for all γ, γ′ ∈ {a1, a2, a′1, a
′
2}.

As above, we deduce that φ(f )(∂P1) = ∂P2 and that for all i = 1, 2, 3 there is j such
that φ∗(ai)∩ φ∗(f (aj)) contains a boundary curve of P. In light of (3), it follows again
from Corollary 6.6 that φ is reducible. We have reduced to the case that one of the
components of X \ α , say Z1 , is a (possibly punctured) pair of pants.

We now explain how to reduce to the case that Z1 is a pair of pants without punctures.
Let a′3 ⊂ Z1 be a curve which, together with a3 , bounds an annulus A ⊂ Z1 such that
Z1\A does not contain any marked points. Note that the multicurve γ1∪· · ·∪γ3g−3 does
not intersect a′3 . It follows that i(φ∗(a′3),∪φ∗(γi)) = 0. Now, a pants decomposition
of Y consists of 3(2g−1)−3 + 1 = 6g−5 curves. Since φ∗(a′3) has two components
and ∪φ∗(γi) has 6g − 6 components, we deduce that there exists i such that φ∗(a′3)
and φ∗(γi) share a component. If i 6= 3, property (3) and Corollary 6.6 imply that φ
is reducible, since a′3 ∪ γi does not separate X . It thus follows that φ∗(a′3) and φ∗(a3)
share a component, and so ∂P ⊂ φ∗(a1 ∪ a2 ∪ a′3).

Summing up, it remains to rule out the possibility that Z1 is a pair of pants without
punctures. Choose α′ ⊂ X , with α′ 6= α , satisfying:

(1) α′ bounds a pair of pants in X ,

(2) i(α, α′) = 0, and

(3) X \ (γ ∪ γ′) is connected for all γ, γ′ ∈ α ∪ α′ .
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Now there is f ∈ Map(X) with f (α) = α′ and we can repeat word by word the
argument given in the case that X \ α was connected.

After having ruled out all possibilities, we deduce that ∪iφ∗(γi) cannot have 6g − 6
components. This concludes the proof of Proposition 6.3.

7 When the genus decreases

In this section we show that every homomorphism Map(X)→ Map(Y) is trivial if the
genus of X is larger than that of Y . As a consequence we obtain that, under suitable
genus bounds, the centralizer of the image of a non-trivial homomorphism between
mapping class groups is torsion-free.

Proposition 7.1 Suppose that X and Y are orientable surfaces of finite topological
type. If the genus of X is at least 3 and larger than that of Y , then every homomorphism
φ : Map(X)→ Map(Y) is trivial.

Castel [12] has obtained an independent proof of the above result. For closed surfaces,
Proposition 7.1 is due to Harvey–Korkmaz [19].

Proof We will proceed by induction on the genus of X . First, Proposition 4.5 estab-
lishes the base case of the induction. Observe that, by Lemma 4.2, we may assume
that Y is has empty boundary and no cusps.

Suppose now that X has genus g ≥ 4 and that we have proved Proposition 7.1 for
surfaces of genus g− 1. Our first step is to prove the following:

Claim. Under the hypotheses above, every homomorphism Map(X) → Map(Y) is
reducible.

Proof of the claim Seeking a contradiction, suppose that there is an irreducible ho-
momorphism φ : Map(X)→ Map(Y), where Y has smaller genus than X . Let γ ⊂ X
be a non-separating curve. Observing that X and Y satisfy (*), we deduce that φ∗(γ) is
a non-separating curve by Proposition 6.3 and that φ(Z0(δγ)) ⊂ Z0(δφ∗(γ)) by Lemma
6.5. By (2.2), Z0(δφ∗(γ)) surjects onto Map(Y ′φ∗(γ)) where Y ′φ∗(γ) = Y \ φ∗(γ). On the
other hand, we have by (2.1) that Z0(δγ) is an image of the group Map(Xγ), where Xγ
is obtained from X by deleting the interior of a closed regular neighborhood of γ .
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Since φ∗(γ) is non-separating, the genus of Y ′φ∗(γ) and Xγ is one less than that of Y and
X , respectively. The induction assumption implies that the induced homomorphism

Map(Xγ)→ Map(Y ′φ∗(γ))

is trivial. Lemma 4.3 proves that the homomorphism

Map(Xγ)→ Z0(δφ∗(γ)) ⊂ Map(Y)

is also trivial, and so Z0(δγ) ⊂ Ker(φ). Since Z0(δγ) contains a Dehn twist along a
non-separating curve, we deduce that φ is trivial from Lemma 2.2. This contradiction
concludes the proof of the claim.

Continuing with the proof of the induction step in Proposition 7.1, suppose there
exists a non-trivial homomorphism φ : Map(X)→ Map(Y). By the above claim, φ is
reducible. Let η ⊂ Y be a maximal multicurve in Y which is componentwise preserved
by φ(Map(X)), and notice that φ(Map(X)) ⊂ Z0(Tη) by Lemma 4.3. Consider

φ′ : Map(X)→ Map(Y ′η),

the composition of φ with the homomorphism (4.1). The maximality of the multicurve
η implies that φ′ is irreducible. Since the genus of Y ′η is at most equal to that of Y ,
we deduce from the claim above that φ′ is trivial. Lemma 4.3 implies hence that φ is
trivial as well. This establishes Proposition 7.1

As we mentioned before, a consequence of Proposition 7.1 is that, under suitable
assumptions, the centralizer of the image of a homomorphism between mapping class
groups is torsion-free. Namely, we have:

Lemma 7.2 Let X and Y be surfaces of finite topological type, where X has genus
g ≥ 3 and Y has genus g′ ≤ 2g. Suppose that Y has at least one (resp. three) marked
points if g′ = 2g − 1 (resp. g′ = 2g). If φ : Map(X) → Map(Y) is a non-trivial
homomorphism, then the centralizer of φ(Map(X)) in Map(Y) is torsion-free.

The proof of Lemma 7.2 relies on Proposition 7.1 and the following consequence of
the Riemann–Hurwitz formula:

Lemma 7.3 Let Y be a surface of genus g′ ≥ 0 and let τ : Y → Y be a nontrivial
diffeomorphism of prime order, representing an element in Map(Y). Then τ has
F ≤ 2g′ + 2 fixed-points and the underlying surface of the orbifold Y/〈τ〉 has genus
at most g = 2g′+2−F

4 .
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Proof Consider the orbifold Y/〈τ〉 and let F be the number of its singular points,
which is also equal to the number of fixed points of τ since τ has prime order p.
Denote by |Y/〈τ〉| the underlying surface of the orbifold Y/〈τ〉. The Riemann–
Hurwitz formula shows that

(7.1) 2− 2g′ = χ(Y) = p · χ(|Y/〈τ〉|)− (p− 1) · F

After some manipulations, (7.1) shows that

F =
2g′ − 2 + p · (2− 2g)

p− 1

where g is the genus of |Y/〈τ〉|. Clearly, the quantity on the right is maximal if g = 0
and p = 2. This implies that F ≤ 2g′ + 2, as claimed.

Rearranging (7.1), we obtain

g =
2g′ + (2− F)(p− 1)

2p

Again this is maximal if p is as small as possible, i.e. p = 2. Hence g ≤ 2g′+2−F
4 .

We are now ready to prove Lemma 7.2.

Proof of Lemma 7.2 First, if Y has non-empty boundary there is nothing to prove,
for in this case Map(Y) is torsion-free. Therefore, assume that ∂Y = ∅. Suppose, for
contradiction, that there exists [τ ] ∈ Map(Y) non-trivial, of finite order, and such that
φ(Map(X)) ⊂ Z([τ ]).

Let τ : Y → Y be a finite order diffeomorphism representing [τ ]. Passing to a suitable
power, we may assume that the order of τ is prime. Consider the orbifold Y/〈τ〉 as
a surface with the singular points marked, and recall that by Theorem 2.8 we have the
following exact sequence:

1 // 〈[τ ]〉 // Z([τ ])
β // Map∗(Y/〈τ〉)

On the other hand, we have by definition

1→ Map(Y/〈τ〉)→ Map∗(Y/〈τ〉)→ SF → 1

where F is the number of punctures of Y/〈τ〉. Again, F is equal to the number of
fixed points of τ since τ has prime order.

Lemma 7.3 gives that F ≤ 2g′ + 2 ≤ 4g + 2; hence, it follows from Theorem 4.4 that
the composition

Map(X)
φ // Z([τ ])

β // Map∗(Y/〈τ〉) // SF
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is trivial; in other words, (β ◦ φ)(Map(X)) ⊂ Map(Y/〈τ〉).

Our assumptions on the genus and the marked points of Y imply, by the genus bound
in Lemma 7.3, that Y/〈τ〉 has genus less than g. Hence, the homomorphism β ◦ φ :
Map(X) → Map(Y/〈τ〉) is trivial by Proposition 7.1. This implies that the image of
φ is contained in the abelian group 〈[τ ]〉. Theorem 4.1 shows hence that φ is trivial,
contradicting our assumption. This concludes the proof of Lemma 7.2

The following example shows that Lemma 7.2 is no longer true if Y is allowed to have
genus 2g and fewer than 3 punctures.

Example 4 Let X be a surface with no punctures and such that ∂X = S1 . Let Z be a
surface of the same genus as X , with ∂Z = ∅ but with two punctures. Regard X as a
subsurface of Z and consider the two-fold branched cover Y → Z corresponding to an
arc in Z \X joining the two punctures of Z . Every homomorphism X → X fixing poin-
wise the boundary extends to a homeomorphism of Z fixing the punctures and which
lifts to a unique homeomorphism Y → Y which preserves the two components of the
preimage of X under the covering Y → Z . The image of the induced homomorphism
Map(X) → Map(Y) is centralized by the involution τ associated to the two-to-one
cover Y → Z . Moreover, if X has genus g then Y has genus 2g and 2 punctures.

8 Dehn twists to Dehn twists

We are now ready to prove that under suitable genus bounds, homomorphisms between
mapping class groups map Dehn twists to Dehn twists. Namely:

Proposition 8.1 Suppose that X and Y are surfaces of finite topological type, of genus
g ≥ 6 and g′ ≤ 2g− 1 respectively; if Y has genus 2g− 1, suppose also that it is not
closed. Every nontrivial homomorphism

φ : Map(X)→ Map(Y)

maps (right) Dehn twists along non-separating curves to (possibly left) Dehn twists
along non-separating curves.

Remark The proof of Proposition 8.1 will apply, word for word, to homomorphisms
between mapping class groups of surfaces of the same genus g ∈ {4, 5}.

We will first prove Proposition 8.1 under the assumption that φ is irreducible and then
we will deduce the general case from there.
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Proof of Proposition 8.1 for irreducible φ Suppose that φ is irreducible and recall
that this implies that ∂Y = ∅. Let γ ⊂ X be a non-separating curve. Thus φ∗(γ) is
also a non-separating curve, by Proposition 6.3. We first show that φ(δγ) is a power of
δφ∗(γ) .

Let Xγ be the complement in X of the interior of a closed regular neighborhood of γ
and Y ′φ∗(γ) = Y \ φ∗(γ) the connected surface obtained from Y by removing φ∗(γ).
We have that:

(?) Xγ and Y ′φ∗(γ) have genus g − 1 ≥ 3 and g′ − 1 ≤ 2g − 2 respectively.
Moreover, Y ′φ∗(γ) has two more punctures than Y ; in particular, Y ′φ∗(γ) has at
least 3 punctures if it has genus 2g− 2.

By (2.1) and (2.2) we have epimorphisms

Map(Xγ)→ Z0(δγ) and Z0(δφ∗(γ))→ Map(Y ′φ∗(γ)).

In addition, we know that φ(Z0(δγ)) ⊂ Z0(δφ∗(γ)) by Lemma 6.5. Composing all these
homomorphisms we get a homomorphism

φ′ : Map(Xγ)→ Map(Y ′φ∗(γ)).

It follows from Lemma 2.2 that the restriction of φ to Z0(δγ) is not trivial because the
latter contains a Dehn twist along a non-separating curve; Lemma 4.3 implies that φ′

is not trivial either.

Since δγ centralizes Z0(δγ), it follows that φ′(δγ) ∈ Map(Y ′φ∗(γ)) centralizes the image
of φ′ . Now, the definition of φ∗(γ) implies that some power of φ(δγ) is a power of
the Dehn twist δφ∗(γ) . Hence, the first claim of Lemma 2.6 yields that φ′(δγ) has finite
order, and thus φ′(δγ) ∈ Map(Y ′φ∗(γ)) is a finite order element centralizing φ(Map(Xγ)).
By (?), Lemma 7.2 applies and shows that φ′(δγ) is in fact trivial. The final claim of
Lemma 2.6 now shows that φ(δγ) is a power of δφ∗(γ) ; in other words, there exists
N ∈ Z \ {0} such that φ(δγ) = δN

φ∗(γ) .

Note that N does not depend on the particular non-separating curve γ since any
two Dehn twists along non-separating curves are conjugate. It remains to prove that
N = ±1.

Given simple closed curves γ1, γ2 ⊂ X with i(γ1, γ2) = 1, choose curves γ3, . . . , γn ⊂
X with i(γ1, γi) = 0 for all i ≥ 3 and such that the Dehn twists δγ1 , . . . , δγn generate
Map(X) (compare with Figure 1). Note that i(φ∗(γ1), φ∗(γi)) = 0 for i ≥ 3 and that the
elements δN

φ∗(γ1), . . . , δ
N
φ∗(γn) generate φ(Map(X)). Observe that i(φ∗(γ1), φ∗(γ2)) 6=

0, for otherwise the curve φ∗(γ1) would be φ(Map(X))-invariant, contradicting the
assumption that φ is irreducible. Since i(γ1, γ2) = 1, the Dehn twists δγ1 and δγ2
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braid. Thus, the N -th powers δN
φ∗(γ1) = φ(δγ1) and δN

φ∗(γ2) = φ(δγ2) of the Dehn twists
along φ∗(γ1) and φ∗(γ2) also braid. Since i(φ∗(γ1), φ∗(γ2)) ≥ 1, Lemma 2.3 shows
that i(φ∗(γ1), φ∗(γ2)) = 1 and N = ±1, as desired.

Before moving on, we remark that in the final argument of the proof of the irreducible
case of Theorem 8.1 we have proved the first claim of the following lemma:

Lemma 8.2 Suppose that X , Y are as in the statement of Proposition 8.1, and let
φ : Map(X)→ Map(Y) be an irreducible homomorphism. Then the following holds:

• i(φ∗(γ), φ∗(γ′)) = 1 for all curves γ, γ′ ⊂ X with i(γ, γ′) = 1.

• If a, b, c, d, x, y and z form a lantern with the property that no two curves chosen
among a, b, c, d and x separate X , then φ∗(a), φ∗(b), φ∗(c), φ∗(d), φ∗(x), φ∗(y)
and φ∗(z) form a lantern in Y .

Proof We prove the second claim. By the irreducible case of Proposition 8.1 we know
that if γ is any component of the lantern in question, then φ∗(γ) is a single curve and
φ(δγ) = δφ∗(γ) . In particular, the Dehn twists along φ∗(a), φ∗(b), φ∗(c), φ∗(d), φ∗(x),
φ∗(y) and φ∗(z) satisfy the lantern relation. Since a, b, c, d, x are pairwise disjoint,
Corollary 6.2 yields that the curves φ∗(a), φ∗(b), φ∗(c), φ∗(d), φ∗(x) are also pairwise
disjoint. Moreover, the irreducibility of φ, the assumption that that no two curves
chosen among a, b, c, d and x separate X , and Corollary 6.6 imply that the curves
φ∗(a), φ∗(b), φ∗(c), φ∗(d) and φ∗(x) are pairwise distinct. Thus, the claim follows
from Theorem 2.4.

We are now ready to treat the reducible case of Proposition 8.1.

Proof of Proposition 8.1 for reducible φ Let φ : Map(X) → Map(Y) be a non-
trivial reducible homomorphism, and let η be the maximal multicurve in Y which is
componentwise preserved by φ(Map(X)). Recall the exact sequence (4.1):

1→ Tη → Z0(Tη)→ Map(Y ′η)→ 0

Lemma 4.3 shows that φ(Map(X)) ⊂ Z0(Tη) and that the composition

φ′ : Map(X)→ Map(Y ′η)

of φ and the homomorphism Z0(Tη) → Map(Y ′η) is not trivial. Observe that φ′ is
irreducible because η was chosen to be maximal.
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The surface Y ′η may well be disconnected; if this is the case, Map(Y ′η) is by definition
the direct product of the mapping class groups of the connected components of Y ′η .
Noticing that the sum of the genera of the components of Y ′η is bounded above by
the genus of Y , it follows from the bound g′ ≤ 2g − 1 and from Proposition 7.1 that
Y ′η contains a single component Y ′′η on which φ(Map(X)) acts nontrivially. Hence,
we can apply the irreducible case of Proposition 8.1 and deduce that φ′ : Map(X) →
Map(Y ′′η ) maps Dehn twists to possibly left Dehn twists. Conjugating φ by an outer
automorphism of Map(X) we may assume without loss of generality that φ′ maps
Dehn twists to Dehn twists.

Suppose now that a, b, c, d, x, y and z form a lantern in X as in Lemma 8.2; such a
lantern exists because X has genus at least 3. By Lemma 8.2 we obtain that the images
of these curves under φ′∗ also form a lantern. In other words, if S ⊂ X is the four-holed
sphere with boundary a∪ b∪ c∪ d then there is an embedding ι : S→ Y ′′η ⊂ Y ′η such
that for any γ ∈ {a, . . . , z} we have

φ′(δγ) = δι(γ)

Identifying Y ′′η with a connected component of Y ′η = Y \ η we obtain an embedding
ι̂ : S→ Y . We claim that for any γ in the lantern a, b, c, d, x, y, z we have φ(δγ) = δι̂(γ) .

A priori we only have that, for any such γ , both φ(δγ) and δι̂(γ) project to the same
element δι(γ) under the homomorphism Z0(Tη) → Map(Y ′η). In other words, there
is τγ ∈ Tη with φ(δγ) = δι̂(γ)τγ . Observe that since any two curves γ, γ′ in the
lantern a, b, c, d, x, y, z are non-separating, the Dehn twists δγ and δγ′ are conjugate in
Map(X). Therefore, their images under φ are also conjugate in φ(Map(X)) ⊂ Z0(Tη).
Since Tη is central in Z0(Tη), it follows that in fact τγ = τγ′ for any two curves γ
and γ′ in the lantern. Denote by τ the element of Tη so obtained.

On the other hand, both δa, . . . , δz and δι̂(a), . . . , δι̂(z) satisfy the lantern relation and,
moreover, τ commutes with everything. Hence

1 = φ(δa)φ(δb)φ(δc)φ(δd)φ(δz)−1φ(δy)−1φ(δx)−1 =

= δι̂(a)τδι̂(b)τδι̂(c)τδι̂(d)ττ
−1δ−1

ι̂(z)τ
−1δ−1

ι̂(y)τ
−1δ−1

ι̂(x) =

= δι̂(a)δι̂(b)δι̂(c)δι̂(d)δ
−1
ι̂(z)δ

−1
ι̂(y)δ

−1
ι̂(x)τ = τ

and thus
φ(δa) = δι̂(a)τ = δι̂(a)

In other words, the image under φ of the Dehn twist along some, and hence every,
non-separating curve is a Dehn twist.
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9 Reducing to the irreducible

In this section we explain how to reduce the proof of Theorem 1.1 to the case of irre-
ducible homomorphisms between mapping class groups of surfaces without boundary.

9.1 Weak embeddings

Observe there are no embeddings X → Y if X has no boundary but Y does. We are
going to relax the definition of embedding to allow for this possibility. For this purpose,
it is convenient to regard X and Y as possibly non-compact surfaces without marked
points; recall that we declared ourselves to be free to switch between cusps, marked
points and ends.

Definition Let X and Y be possibly non-compact surfaces of finite topological type
without marked points. A weak embedding ι : X → Y is a topological embedding of
X into Y .

Given two surfaces X and Y without marked points there are two, essentially unique,
compact surfaces X̂ and Ŷ with sets PX̂ and PŶ of marked points and with X = X̂ \PX̂
and Y = Ŷ \ PŶ . We will say that a weak embedding ι : X → Y is induced by an
embedding ι̂ : (X̂,PX̂) → (Ŷ,PŶ ) if there is a homeomorphism f : Y → Y which is
isotopic to the identity relative to PŶ , and ι̂|X = f ◦ ι.

Observe that a weak embedding ι : X → Y is induced by an embedding if and only if
the image ι(γ) of every curve γ ⊂ X which bounds a disk in X̂ containing at most one
marked point bounds a disk in Ŷ which again contains at most one marked point. Since
ι(γ) bounds a disk without punctures if γ does, we can reformulate this equivalence
in terms of mapping classes:

Lemma 9.1 A weak embedding ι : X → Y is induced by an embedding if and only if
δι(γ) is trivial in Map(Y) for every, a fortiori non-essential, curve γ ⊂ X which bounds
a disk with a puncture.

Notice that in general a weak embedding X → Y does not induce a homomorphism
Map(X) → Map(Y). On the other hand, the following proposition asserts that if a
homomorphism Map(X)→ Map(Y) is, as far as it goes, induced by a weak embedding,
then it is induced by an actual embedding.
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Proposition 9.2 Let X and Y be surfaces of finite type and genus at least 3. Suppose
that φ : Map(X)→ Map(Y) is a homomorphism such that there is a weak embedding
ι : X → Y with the property that for every non-separating curve γ ⊂ X we have
φ(δγ) = δι(γ) . Then φ is induced by an embedding X → Y .

We thank the referee for suggesting a simplification of the original proof.

Proof Let Z be a closed regular neighborhood of the union of the curves on X
shown in Figure 1, and recall that the Dehn twists about such curves generate Map(X).
The inclusions of Z into X , and of ι(Z) into Y , together with the homeomorphism
ι|Z : Z → ι(Z) induce homomorphisms between the corresponding mapping class
groups, so that the following diagram commutes:

Map(Z)

��

// Map(X)

φ

��
Map(ι(Z)) // Map(Y)

By construction, the left vertical arrow is an isomorphism and so the claim now follows
from Lemma 9.1

9.2 Down to the irreducible case

Armed with Proposition 9.2, we now prove that it suffices to establish Theorem 1.1 for
irreducible homomorphisms. Namely, we have:

Lemma 9.3 Suppose that Theorem 1.1 holds for irreducible homomorphisms. Then
it also holds for reducible ones.

Proof Let X and Y be surfaces as in the statement of Theorem 1.1 and suppose that
φ : Map(X)→ Map(Y) is a non-trivial reducible homomorphism. Let η be a maximal
multicurve in Y whose every component is invariant under φ(Map(X)); by Lemma 4.3,
φ(Map(X)) ⊂ Z0(Tη). Consider, as in the proof of Proposition 8.1, the composition

φ′ : Map(X)→ Map(Y ′η)

of φ and the third homomorphism in (4.1). Theorem 4.1 and Lemma 4.2 show that
φ′ is non-trivial; moreover, it is irreducible by the maximality of η . Now, Proposition
8.1 implies that for any γ non-separating both φ(δγ) = δφ∗(γ) and φ′(δγ) = δφ′∗(γ) are



43

Dehn twists. As in the proof of the reducible case of Proposition 8.1 we can consider
Y ′η = Y \ η as a subsurface of Y . Clearly, φ∗(γ) = φ′∗(γ) after this identification.

Assume that Theorem 1.1 holds for irreducible homomorphisms. Since φ′ is irre-
ducible, we obtain an embedding

ι : X → Y ′η

inducing φ′ . Consider the embedding ι : X → Y ′η as a weak embedding ι̂ : X → Y .
By the above, φ(δγ) = δι̂(γ) , for every γ ⊂ X non-separating. Finally, Proposition 9.2
implies that φ is induced by an embedding.

9.3 No factors

Let φ : Map(X) → Map(Y) be a homomorphism as in the statement of Theorem 1.1.
We will say that φ factors if there is a surface X , an embedding ι : X → X , and a
homomorphism φ : Map(X)→ Map(Y) such that the following diagram commutes:

(9.1) Map(X)

ι#
��

φ

%%
Map(X)

φ

// Map(Y)

Since the composition of two embeddings is an embedding, we deduce that φ is induced
by an embedding if φ is. Since a homomorphism Map(X)→ Map(Y) may factor only
finitely many times, we obtain:

Lemma 9.4 If Theorem 1.1 holds for homomorphisms φ : Map(X)→ Map(Y) which
do not factor, then it holds in full generality.

Our next step is to prove that any irreducible homomorphism φ : Map(X) → Map(Y)
factors if X has boundary. We need to establish the following result first:

Lemma 9.5 Suppose that X and Y are as in the statement of Theorem 1.1 and let
φ : Map(X) → Map(Y) be an irreducible homomorphism. Then the centralizer of
φ(Map(X)) in Map(Y) is trivial.

Proof Suppose, for contradiction, that there is a non-trivial element f in Z(φ(Map(X)));
we will show that φ is reducible. Noticing that the genus bounds in Theorem 1.1 are
more generous than those in Lemma 7.2, we deduce from the latter that f has infinite
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order. Let γ ⊂ X be a non-separating curve and recall that φ(δγ) is a Dehn twist by
Proposition 8.1. Since f commutes with φ(δγ) it follows that f is reducible; let η be
the canonical reducing multicurve associated to f , see [9]. Since φ(Map(X)) com-
mutes with f we deduce that φ(Map(X)) preserves η . We will prove that φ(Map(X))
preserves some component of η , hence obtaining a contradiction to the assumption
that φ is irreducible. The arguments are very similar to the arguments in the proof of
Lemma 6.4 and Lemma 6.5.

First, the same arguments as the ones used to prove Lemma 6.4 imply that some
component of η is preserved if some component of Y \ η is a disk or an annulus.
Suppose that this is not the case. Then Y \η has at most 2g′−2 ≤ 4g−4 components.
Hence Theorem 4.4 implies that φ(Map(X)) preserves every component of Y\η . Using
again that no component of Y \ η is a disk or an annulus we deduce that every such
component C has at most 2g′ + 2 ≤ 4g − 2 boundary components. Hence Theorem
4.4 implies that φ(Map(X)) preserves every component of ∂C ⊂ η . We have proved
that some component of η is preserved by φ(Map(X)) and hence that φ is reducible,
as desired.

We can now prove:

Corollary 9.6 Suppose that X and Y are as in Theorem 1.1 and that ∂X 6= ∅. Then
every irreducible homomorphism φ : Map(X)→ Map(Y) factors.

Proof Let X′ = X \ ∂X be the surface obtained from X by deleting the boundary and
consider the associated embedding ι : X → X′ . By Theorem 2.5, the homomorphism
ι# : Map(X)→ Map(X′) fits in the exact sequence

1→ T∂X → Map(X)→ Map(X′)→ 1

where T∂X is the center of Map(X). It follows from Lemma 9.5 that if φ is irreducible,
then T∂X ⊂ Ker(φ). We have proved that φ descends to φ′ : Map(X′)→ Map(Y) and
hence that φ factors as we needed to show.

Combining Lemma 9.3, Lemma 9.4 and Corollary 9.6 we deduce:

Proposition 9.7 Suppose that Theorem 1.1 holds if

• X and Y have no boundary, and

• φ : Map(X)→ Map(Y) is irreducible and does not factor.

Then, Theorem 1.1 holds in full generality.
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10 Proof of Theorem 1.1

In this section we prove the main result of this paper, whose statement we now recall:

Theorem 1.1 Suppose that X and Y are surfaces of finite topological type, of genus
g ≥ 6 and g′ ≤ 2g− 1 respectively; if Y has genus 2g− 1, suppose also that it is not
closed. Then every nontrivial homomorphism

φ : Map(X)→ Map(Y)

is induced by an embedding X → Y .

Remark As mentioned in the introduction, the same conclusion as in Theorem 1.1
applies for homomorphisms φ : Map(X) → Map(Y) if both X and Y have the same
genus g ∈ {4, 5}. This will be shown in the course of the proof.

By Proposition 9.7 we may assume that X and Y have no boundary, that φ is irreducible
and that it does not factor. Moreover, by Proposition 8.1, the image of a Dehn twist δγ
along a non-separating curve is either the right or the left Dehn twist along the non-
separating curve φ∗(γ). Notice that, up to composing φ with an outer automorphism of
Map(Y) induced by an orientation reversing homeomorphism of Y , we may actually
assume that φ(δγ) is actually a right Dehn twist for some, and hence every, non-
separating curve γ ⊂ X . In light of this, we can assume that we are in the following
situation:

Standing assumption: X and Y have no boundary; φ is irreducible and
does not factor; φ(δγ) = δφ∗(γ) for all γ ⊂ X non-separating.

Under these assumptions, we will prove that φ is induced by an orientation preserving
homeomorphism. We will make extensive use of the concrete set of generators of
Map(X) given in Figure 1, which we include here as Figure 4 for convenience. The
reader should have Figure 4 constantly in mind throughout the rest of this section.

The sequence a1, b1, a2, b2, . . . , ag, bg in Figure 4 forms a chain; we will refer to it as
the aibi -chain. We will refer to the multicurve r1 ∪ · · · ∪ rk as the ri -fan, and to the
curve with label c simply as the curve c. Since all these curves are non-separating, it
follows from Proposition 6.3 that φ∗(γ) is a non-separating curve for any curve γ in
the collection ai, bi, ri, c.

Before moving on, we remark that since the Dehn twists along the curves φ∗(ai), φ∗(bi),
φ∗(ri), φ∗(c) generate φ(Map(X)), and since we are assuming that φ is irreducible, we
immediately obtain:
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a1 b1 a2 b2 a3 b3 bg rk

r1 r2c

Figure 4: Dehn twists along the curves ai, bi, c and ri generate Map(X).

Lemma 10.1 The image under φ∗ of the aibi -chain, the ri -fan and the c-curve fill
Y .

Suppose that γ, γ′ are two distinct elements of the collection ai, bi, ri, c. We now
summarize several of the already established facts about the relative positions of the
curves φ∗(γ), φ∗(γ′):

(1) If i(γ, γ′) = 0 then i(φ∗(γ), φ∗(γ′)) = 0 by Corollary 6.2.

(2) If γ, γ′ are distinct and disjoint, and X\(γ∪γ′) is connected, then φ∗(γ) 6= φ∗(γ′)
by Corollary 6.6.

(3) If i(γ, γ′) = 1 then i(φ∗(γ), φ∗(γ′)) = 1 by Lemma 8.2.

Note that these properties do not ensure that φ∗(ri) 6= φ∗(rj) if i 6= j. We denote by
R ⊂ Y the maximal multicurve with the property that each one of its components is
homotopic to one of the curves φ∗(ri). Note that R = ∅ if and only if X has at most
a puncture and that in any case R has at most as many components as curves has the
ri -fan. The next lemma follows easily from (1), (2) and (3) above:

Lemma 10.2 With the notation of Figure 4 the following holds:

• The image under φ∗ of the aibi -chain is a chain of the same length in Y .

• Every component of the multicurve R intersects φ∗(bg) exactly once, and is
disjoint from the images of the other curves in the aibi -chain.

• The curve φ∗(c) is disjoint from every curve in R, intersects φ∗(b2) exactly
once, and is disjoint from the images of the other curves in the aibi -chain.
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At first glance, Lemma 10.2 yields the desired embedding without any further work,
but this is far from true. We sketch, for the convenience of the reader, what is left of
the proof of Theorem 1.1. First, we will clarify the relative positions of the images of
the aibi -chain and the curve c under φ∗ . This will allow us to prove Theorem 1.1 if
X has at most one puncture. For the general case we will start by proving that X and
Y have the same genus, and that Y has at most as many punctures as X . At this point,
the main problem left will be to understand the relative positions of the curves in the
multicurve R. A few results describing the φ∗ -images of pairs of curves bounding
annuli in X will allow us to prove that φ∗ is a bijection, preserving a certain order,
from the ri -fan to R. Having established this, Theorem 1.1 will quickly follow.

As we just announced, we first clarify the position of φ∗(c):

Lemma 10.3 Let Z be a regular neighborhood of the aibi -chain with c ⊂ Z . Then
there is an orientation-preserving embedding F : Z → Y such that φ∗(γ) = F(γ) for
γ = ai, bi, c and i = 1, . . . , g.

Proof The image under φ∗ of the aibi -chain is a chain of the same length, by Lemma
10.2. Let Z′ be a regular neighborhood of the φ∗ -image of the aibi -chain. Since
regular neighborhoods of any two chains of the same length are homeomorphic in an
orientation-preserving manner, there is an orientation-preserving embedding

F : Z → Z′

with F(ai) = φ∗(ai) and F(bi) = φ∗(bi) for all i. It remains to prove that F can be
chosen so that F(c) = φ∗(c).

Let Z0 ⊂ Z be the subsurface of X filled by a1, b1, a2, b2 and observe that, up to
isotopy, c ⊂ Z0 . The boundary of Z0 is connected and, by the chain relation (see
Section 2) we can write the Dehn twist along ∂Z0 as:

δ∂Z0 = (δa1δb2δa2δb2)10

Hence we have

φ(δ∂Z0) = (φ(δa1)φ(δb2)φ(δa2)φ(δb2))10

= (δφ∗(a1)δφ∗(b2)δφ∗(a2)δφ∗(b2))10

= (δF(a1)δF(b2)δF(a2)δF(b2))10

= δF(∂Z0)

where the last equality follows again from the chain relation.
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Since c is disjoint from ∂Z0 we have that δc and δ∂Z0 commute, and hence the same
is true for δφ∗(c) = φ(δc) and δF(∂Z0) = φ(δ∂Z0). Since δF(∂Z0) is a non-trivial mapping
class, it follows that φ∗(c) does not intersect F(∂Z0). On the other hand, φ∗(c)
intersects φ∗(b2) ⊂ F(Z0), and hence φ∗(c) ⊂ F(Z0) ⊂ F(Z).

Observe now that F(Z) \ (∪φ∗(ai) ∪ φ∗(bi)) ' Z \ (∪ai ∪ bi) is homeomorphic to
an annulus A. It follows from Lemma 10.2 that the intersection of φ∗(c) with A is
an embedded arc whose endpoints are in the subsegments of ∂A corresponding to
φ∗(b2). Up to isotopy, there are two choices for such an arc. However, there is an
involution τ : F(Z) → F(Z) with τ (φ∗(ai)) = φ∗(ai) and τ (φ∗(bi)) = φ∗(bi) and
which interchanges these two arcs. It follows that, up to possibly replacing F by τ ◦F ,
we have F(c) = φ∗(c), as we needed to prove.

At this point we are ready to prove the first cases of Theorem 1.1.

Proof of Theorem 1.1 (X is closed or has one puncture) Let Z and F : Z → Y be
as in Lemma 10.3. If X has one puncture, then there is a weak embedding X → Z ⊂ X
which is homotopic to the identity X → X . Denote by f : X → Y the weak embedding
obtained by composing the weak embedding X → Z with the embedding F : Z → Y .
By construction we have φ(δγ) = δf (γ) for all γ in ai, bi, c. Since the elements δai , δbi

and δc generate Map(X), it follows that φ(δγ) = δf (γ) for all γ ⊂ X . Proposition 9.2
implies that φ is induced by an embedding, as we needed to prove.

We now treat the case that X is closed. Since we are assuming that φ is irreducible, and
since a collection of curves in F(Z) fills Y , we obtain that Y \F(Z) is a disk containing
at most one puncture. If Y \ F(Z) is a disk without punctures, then we can extend the
map F : Z → Y to a continuous injective map X → Y . Since any continuous injective
map between closed connected surfaces is a homeomorphism, F is an embedding and
we are done in this case.

It remains to rule out the possibility that X is closed and Y has one puncture. Suppose
that this is the case and let Y be the surface obtained from Y by filling in the puncture.
We can now apply the above argument to the induced homomorphism

φ : Map(X)→ Map(Y),

obtaining that φ is induced by an embedding X → Y . Since any embedding from a
closed surface is a homeomorphism we deduce that φ is an isomorphism. Composing
φ ◦ φ−1

: Map(Y) → Map(Y) with the filling-in homomorphism Map(Y) → Map(Y)
we obtain the identity. Hence, φ ◦ φ−1

is a splitting of the Birman exact sequence

1→ π1(Y)→ Map(Y)→ Map(Y)→ 1,
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which is impossible [26]. It follows that Y cannot have a puncture, as we needed to
prove.

From now we will assume:

Standing assumption: X has at least 2 punctures.

Next, we prove that Y has the same genus as X .

Lemma 10.4 Both surfaces X and Y have the same genus g.

Proof With the same notation as in Lemma 10.3 we need to prove that S = Y \ F(Z)
is a surface of genus 0. By Lemma 10.1 the arcs ρi = φ∗(ri) ∩ S fill S . Denote by S
the surface obtained by attaching a disk to S along F(∂Z) ⊂ ∂S , noting that the arcs
ρi can be extended to a collection of disjoint curves ρi on S . Moreover, every curve
in S either agrees with, or else intersects one of the curves ρi more than once. This is
impossible if S has genus at least 1; this proves Lemma 10.4.

Note that if η ⊂ X is separating, all we know about φ(δη) is that it is a root of a
multitwist by Theorem 6.1; in particular, φ(δη) may be trivial or have finite order. If
this is not the case, we denote by φ∗(η) the multicurve supporting any multitwist power
of φ(δη). If η bounds a disk with punctures then, up to replacing the aibi -chain by
another such chain, we may assume that i(η, ai) = i(η, bi) = 0 for all i. In particular,
φ∗(η) does not intersect any of the curves φ∗(ai) and φ∗(bi). It follows that every
component of φ∗(η) is separating. We record our conclusions:

Lemma 10.5 Suppose that η ⊂ X bounds a disk with punctures and that φ(δη) has
infinite order. Then every component of the multicurve φ∗(η) separates Y .

Our next goal is to bound the number of cusps of Y :

Lemma 10.6 Every connected component of Y \
(⋃

i φ∗(ai) ∪R
)

contains at most a
single puncture. In particular Y has at most as many punctures as X .

Recall that R ⊂ Y is the maximal multicurve with the property that each one of its
components is homotopic to one of the curves φ∗(ri).
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Proof Observe that Lemma 10.1 and Lemma 10.3 imply that the union of R and
the image under φ∗ of the aibi -chain fill Y . In particular, every component of the
complement in Y of the union of R and all the curves φ∗(ai) and φ∗(bi) contains at
most one puncture of Y . By Lemma 10.2, the multicurve ∪φ∗(bi) does not separate
any of the components of the complement of (∪φ∗(ai)) ∪R in Y ; we have proved the
first claim.

It follows again from Lemma 10.2 that the multicurve ∪φ∗(ai) ∪ R separates Y into
at most k components where k ≥ 2 is the number of punctures of X . Thus, Y has at
most as many punctures as X .

So far, we do not know much about the relative positions of the curves in R; this will
change once we have established the next three lemmas.

Lemma 10.7 Suppose that a, b ⊂ X are non-separating curves that bound an annulus
A. Then φ∗(a) and φ∗(b) bound an annulus A′ in Y ; moreover, if A contains exactly
one puncture and φ∗(a) 6= φ∗(b), then A′ also contains exactly one puncture.

Proof Note that A is disjoint from a chain of length 2g− 1. Since φ∗ maps chains to
chains (Lemma 10.2), preserves disjointness (Corollary 6.2) and since Y has the same
genus as X (Lemma 10.4), we deduce that φ∗(∂A) consists of non-separating curves
which are contained in an annulus in Y . The first claim follows.

Suppose that φ∗(a) 6= φ∗(b); up to translating by a mapping class, we may assume
that a = a1 and that b is a curve disjoint from (∪ai) ∪ (∪ri) and with i(b, b1) = 1 and
i(b, bi) = 0 for i = 2, . . . , g (compare with the dashed curve in Figure 5).

a1 b1 a2 b2 a3 b3 bg rk

r1 r2cb

Figure 5
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Since φ∗ preserves disjointness and intersection number one (Lemma 8.2), it follows
that the annulus A′ bounded by φ∗(a) = φ∗(a1) and φ∗(b) is contained in one of
the two connected components of Y \

(⋃
i φ∗(ai) ∪

⋃
i φ∗(ri)

)
adjacent to φ∗(a1). By

Lemma 10.6, each one of these components contains at most a puncture, and thus the
claim follows.

Lemma 10.8 Let γ, γ′ ⊂ X be non-separating curves bounding an annulus with one
puncture. Then φ∗(γ) 6= φ∗(γ′).

Proof We will prove that if φ∗(γ) = φ∗(γ′), then φ factors in the sense of (9.1),
contradicting our standing assumptions.

Suppose φ∗(γ) = φ∗(γ′), noting that Proposition 8.1 implies that φ(δγ) = φ(δγ′). Let
p be the puncture in the annulus bounded by γ and γ′ . Consider the surface X obtained
from X by filling in the puncture p and the Birman exact sequence (3.1):

1→ π1(X, p)→ Map(X)→ Map(X)→ 1

associated to the embedding X → X . Let α ∈ π1(X, p) be the unique essential simply
loop contained in the annulus bounded by γ ∪ γ′ . The image of α under the left arrow
of the Birman exact sequence is δγδ−1

γ′ . Hence, α belongs to the kernel of φ. Since
π1(X, p) has a set of generators consisting of translates of α by Map(X) we deduce that
π1(X, p) ⊂ Ker(φ). This shows that φ : Map(X) → Map(Y) factors through Map(X)
and concludes the proof of Lemma 10.8.

Lemma 10.9 Let a, b ⊂ X be non-separating curves which bound an annulus with
exactly two punctures. Then φ∗(a) and φ∗(b) bound an annulus A′ ⊂ Y with exactly
two punctures. Moreover, if x ⊂ A is any non-separating curve in X which separates
the two punctures of A, then φ∗(x) ⊂ A′ and separates the two punctures of A′ .

Proof Let x ⊂ A be a curve as in the statement. Suppose first that φ∗(a) 6= φ∗(b).
Consider the annuli A′ , A′1 and A′2 in Y with boundaries

∂A′ = φ∗(a) ∪ φ∗(b), ∂A′1 = φ∗(a) ∪ φ∗(x), ∂A′2 = φ∗(x) ∪ φ∗(b).

By Lemmas 10.7 and 10.8, the annuli A′1 and A′2 contain exactly one puncture. Finally,
since φ∗(x) does not intersect φ∗(a)∪φ∗(b), it follows that A′ = A′1∪A′2 and the claim
follows.

It remains to rule out the possibility that φ∗(a) = φ∗(b). Seeking a contradiction,
suppose that this is the case. Consider curves c, d, y, z as in Figure 6.
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a b

d

c

z

x y

Figure 6: The black dots represent cusps

The curves a, b, c, d, x, y, z form a lantern, where c, d are not essential. In particular,
the lantern relation reduces to δaδb = δxδyδz . Applying φ we obtain

(10.1) δ2
φ∗(a) = δφ∗(x)δφ∗(y)φ(δz)

Observe also that each of a ∪ x and a ∪ y bound an annulus in X containing exactly
one cusp. We deduce from Lemma 10.7 and Lemma 10.8 that there are annuli A′1,A

′
2

in Y , each containing one cusp, with

∂A′1 = φ∗(a) ∪ φ∗(x), ∂A′2 = φ∗(a) ∪ φ∗(y)

Noting that i(φ∗(x), φ∗(y)) is even, it remains to rule out the following three possibilities:

Case 1: i(φ∗(x), φ∗(y)) > 2. By [16, Theorem 3.10], the restriction of δφ∗(x)δφ∗(y) to
the subsurface of Y filled by φ∗(x) ∪ φ∗(y) is pseudo-Anosov. On the other hand,

δφ∗(x)δφ∗(y) = δ2
φ∗(a)φ(δz)−1

is a root of a multitwist because, by Theorem 6.1, φ(δz)−1 is a root of a multitwist that
commutes with δφ∗(a) = φ(δa); this yields a contradiction.

Case 2: i(φ∗(x), φ∗(y)) = 2. We are in the situation of Figure 7, meaning that we can
extend the collection φ∗(a), φ∗(x), φ∗(y) to a lantern φ∗(a), b̂, ĉ, d̂ , φ∗(x), φ∗(y) and
ẑ, with ĉ, d̂ non-essential and b̂ non-separating. From the lantern relation we obtain:

(10.2) δ−1
φ∗(y)δ

−1
φ∗(x)δφ∗(a) = δẑδ

−1
b̂
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Figure 7: The solid lines are φ∗(a), φ∗(x) and φ∗(y) and the black dots are cusps.

From (10.1) and (10.2) we get that φ(δz) = δẑδ
−1
b̂
δφ∗(a) . In particular, φ(δz) is a

multitwist whose support contains non-separating components, contradicting Lemma
10.5 because z bounds a disk in X .

Case 3: i(φ∗(x), φ∗(y)) = 0. Rewriting (10.1) we obtain

δ−1
φ∗(x)δ

−1
φ∗(y)δ

2
φ∗(a) = φ(δz)

As x and y are disjoint from a, φ(δz) is a multitwist supported on a multicurve contained
in φ∗(a) ∪ φ∗(x) ∪ φ∗(y). Since these three curves are non-separating, Lemma 10.5
implies that φ(δz) = Id, and hence φ∗(a) = φ∗(x) = φ∗(y). Since a and x bound an
annulus which exactly one puncture, we obtain a contradiction to Lemma 10.8.

Having ruled out these three cases, we deduce that φ∗(a) 6= φ∗(b); this concludes the
proof of Lemma 10.9

We are now ready to finish the proof of Theorem 1.1.

Proof of Theorem 1.1 Continuing with the same notation and standing assumptions,
we now introduce orderings on the ri -fan and the multicurve R ⊂ Y . In order to do
so, observe that the union of the multicurve ∪ai and any of the curves in the ri -fan
separates X . Similarly, by Lemma 10.2 the union of the multicurve ∪φ∗(ai) and any of
the components of R is a multicurve consisting of g + 1 non-separating curves. Since
Y has genus g, by Lemma 10.4, we deduce that the union of the multicurve ∪φ∗(ai)
and any of the components of R separates Y . We now define our orderings:

• Given two curves ri, rj in the ri -fan we say that ri ≤ rj if ri and c are in the
same connected component of X \ (a1 ∪ · · · ∪ ag ∪ rj). Notice that the labeling
in Figure 4 is such that ri ≤ rj for i ≤ j.
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• Similarly, given two curves r, r′ ∈ R we say that r ≤ r′ if r and φ∗(c) are in
the same connected component of X \ (φ∗(a1) ∪ · · · ∪ φ∗(ag) ∪ r′).

The minimal element of the ri -fan, the curve r1 in Figure 4, is called the initial curve
of the ri -fan; we define the initial curve of the multicurve R in an analogous way. We
claim that the image of r1 under φ∗ is the initial curve of R:

Claim. φ∗(r1) is the initial curve of R.

Proof of the claim Suppose, for contradiction, that φ∗(r1) is not the initial curve in
R. Consider, besides the curves in Figure 4, a curve c′ as in Figure 8. In words, c and
c′ bound an annulus with exactly two punctures and

(10.3) i(c′, ri) = 0 ∀i ≥ 2 and i(c′, ai) = 0 ∀i

Notice that by Lemma 10.9, φ∗(c) and φ∗(c′) bound an annulus A which contains
exactly two punctures.

a1 b1 a2 b2 a3 b3 bg rk

r1 r2c c′

Figure 8: The dotted curve c′ , and c , together bound an annulus with two punctures.

Since φ(r1) is not the initial curve, then i(φ∗(c′),∪φ∗(rj)) = 0 for all j, as i(c′, rj) = 0
for all j > 1. Also, by disjointness i(φ∗(c′), φ∗(ai)) = 0 for all i. Since the boundary
∂A = φ∗(c)∪ φ∗(c′) of the annulus A is disjoint from ∪φ∗(ai)∪ φ∗(ri), it is contained
in one of the connected components of X \ (∪φ∗(ai) ∪ φ∗(ri)). However, each one of
these components contains at most one puncture, by Lemma 10.6. This contradicts
Lemma 10.9, and thus we have established the claim.

We are now ready to prove that φ∗ induces an order-preserving bijection between the
ri -fan and the multicurve R. Denote the curves in R by r′i , labeled in such a way that
r′i ≤ r′j if i ≤ j. By the previous claim, φ∗(r1) = r′1 . Next, consider the curve r2 ,



55

noting that r1 and r2 bound an annulus with exactly one puncture. Hence, Lemma 10.8
yields that φ∗(r1) = r′1 and φ∗(r2) also bound an annulus with exactly one puncture.
In particular, φ∗(r2) cannot be separated from r′1 by any component of R. This proves
that φ∗(r2) = r′2 . We now consider the curve r3 . The argument just used for r2 implies
that either φ∗(r3) = r′3 or φ∗(r3) = r′1 . The latter is impossible, as the curves r1 and r3

bound an annulus with exactly two punctures and hence so do φ∗(r1) = r′1 and φ∗(r3),
by Lemma 10.9. Thus φ∗(r3) = r′3 . Repeating this argument as often as necessary
we obtain that the map φ∗ induces an injective, order-preserving map from the ri -fan
to R. Since by definition R has at most as many components as the ri -fan, we have
proved that this map is in fact an order-preserving bijection.

Let Z ⊂ X be a regular neighborhood of the aibi -chain, and recall c ⊂ Z . By Lemma
10.3 there is an orientation-preserving embedding F : Z → Y such that φ∗(γ) = F(γ)
for γ = ai, bi, c (i = 1, . . . , g). We choose Z so that it intersects every curve in the
ri -fan in a segment. Lemma 10.2 implies that F can be isotoped so that

F(Z ∩ (∪ri)) = F(Z) ∩R

The orderings of the ri -fan and of R induce orderings of Z ∩ (∪ri) and F(Z) ∩ R.
Since the map φ∗ preserves both orderings we deduce that F preserves the induced
orderings of Z ∩ (∪ri) and F(Z) ∩R.

∂Z ∂Z

Z ∩ r1

Z ∩ r2

Figure 9: Attaching the first (left) and second (right) annuli along ∂Z .

Let k be the number of curves in the ri -fan, and thus in R. We successively attach k
annuli along the boundary ∂Z of Z , as indicated in Figure 9. In this way we get a surface
Z1 naturally homeomorphic to X . We perform the analogous operation on ∂F(Z), thus
obtaining a surface Z2 which is naturally homeomorphic to Y . Since the map φ∗
is preserves the orderings of the ri -fan and of R, we get that the homeomorphism
F : Z → F(Z) extends to a homeomorphism

F : X → Y
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such that
F(γ) = φ∗(γ)

for every curve γ in the collection ai, bi, c, ri . It follows that the homomorphisms
φ and F# both map the Dehn twist along γ to the Dehn twist along φ∗(γ) and, in
particular, to the same element in Map(Y). Since the Dehn twists along the curves
ai, bi, c, ri generate Map(X), we deduce φ = F# . This finishes the proof of Theorem
1.1.
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