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MARTIN KERIN

The Riemannian geometry of an n-dimensional (complete, connected) Riemannian
manifold (Mn, g) can be thought of as a study of the deviation of (Mn, g) from being
Euclidean. One particular measure of this deviation is the curvature. There are several
different notions of curvature, but of interest here is the sectional curvature. For every
point p ∈ Mn and for every two-dimensional subspace σ of the tangent space TpMn at
p, the sectional curvature of σ is the Gauss curvature at p of the two-dimensional surface
locally determined by the integral curves of tangent vectors in σ.

The restriction of the Euclidean metric on Rn+1 to the unit sphere Sn gives a Riemann-
ian metric on Sn with constant positive sectional curvature, a so-called round metric. As
Sn is, up to scaling and diffeomorphism, the unique simply connected manifold admit-
ting a round metric, it is natural to look for examples of manifolds which satisfy a weaker
curvature condition, namely, examples which admit a Riemannian metric of positive or
non-negative (sectional) curvature.

For example, the Euclidean metric on Rn has constant zero curvature, while Rn also
admits a metric of (non-constant) positive curvature. In fact, by work of Gromoll and
Meyer [GM1] Rn is, up to diffeomorphism, the only non-compact manifold which can
carry a metric of positive curvature. Furthermore, the Soul Theorem of Cheeger and
Gromoll [CG] states that a complete, connected Riemannian manifold (Mn, g) with non-
negative curvature contains a compact, totally geodesic submanifold S such that Mn is
diffeomorphic to the normal bundle of S. Thus the search for compact examples with
positive or non-negative curvature is of particular importance. These notes are con-
cerned with discussing the main source of such examples, namely metrics on biquotients
arising from Riemannian submersions from compact Lie groups.
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1. RIEMANNIAN SUBMERSIONS

In Riemannian Geometry there has classicially been much interest in the geometry
of submanifolds, corresponding to the induced geometry on the image of immersions
ι : Mn → M̄n+k. A rich theory has been developed, comprising many of the most impor-
tant concepts in the study of Riemannian manifolds: the Gauss and Codazzi equations;
the second fundamental form; totally geodesic and minimal submanifolds.

If one considers instead submersions π : Mn+k → Bn, a corresponding and similarly
important theory can be developed, which turns out to have deep implications in many
areas of Riemannian Geometry. Most of the following material can be found in [Be] and
[GW].

Definition 1.1. A smooth map π : Mn+k → Bn is called a submersion if dπp : TpM
n+k →

Tπ(p)B
n is surjective, i.e. rank(dπp) = n, for all p ∈Mn+k.

If π : Mn+k → Bn is a submersion and b ∈ π(M) ⊆ B, then it follows from the Implicit
Function Theorem that the fibre of π over b, Fb := π−1(b), is a smooth k-dimensional
submanifold of Mn+k.

Lemma 1.2. Tp(Fb) = ker(dπp), for all p ∈ Fb, b ∈ B.

Proof. For each v ∈ Tp(Fb) there is a curve c : (−ε, ε) → Fb such that c(0) = p and
c′(0) = v. Hence π(c(t)) = π(p) = b for all t ∈ (−ε, ε) and so 0 = d

dtπ(c(t))|t=0 = dπp(v).
Thus Tp(Fb) ⊆ ker(dπp) and the claim follows for dimension reasons. �

The vertical subspace at p ∈ M is defined by Vp := ker(dπp) and the vertical distribution
by V := {Vq | q ∈ M}. Clearly the restriction of dπp to any complement of Vp is an
isomorphism onto TbB, where π(p) = b, although there is no canonical choice for this
complementary subspace. However, if M and B are equipped with Riemannian metrics
gM and gB respectively, the horizontal subspace at p ∈M can be defined asHp := (Vp)⊥ =

{w ∈ TpM | gM (w,Vp) = 0}, and the horizontal distribution as H := {Hq | q ∈ M}.
Therefore, for all p ∈ M with π(p) = b ∈ B, the tangent space TpM decomposes as
TpM = Vp ⊕ Hp, and dπp|Hp : Hp → TbB is an isomorphism. Given a vector field X

on M , its vertical and horizontal components will be denoted by XV ∈ V and XH ∈
H respectively. A vector field on M which is π-related to a vector field on B is called
projectable. A basic vector field on M is one that is both projectable and horizontal.

Lemma 1.3. The space of vertical vector fields onM is an ideal in the algebra of projectable fields
on M .

Proof. If the vector fields X and V on M are projectable and vertical, respectively, then
dπ([X,V ]) = [dπ(X), 0] = 0, as desired. �

Definition 1.4. A submersion π : Mn+k → Bn between two Riemannian manifolds
(Mn+k, gM ) and (Bn, gB) is called a Riemannian submersion if

gM (v, w) = gB(dπp(v), dπp(w)), for all p ∈M and v, w ∈ Hp.

In order to keep track of the metrics involved, Riemannian submersions will be de-
noted by π : (M, gM )→ (B, gB).

Convention. For the sake of simplicity and unless otherwise indicated, all manifolds will
be assumed connected and without boundary, all metrics complete and all (Riemannian)
submersions surjective.
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Lemma 1.5. Let π : (M, gM )→ (B, gB) be a Riemannian submersion. Then:

(a) If c : [0, 1] → M is a C1 curve in M , then L(c) > L(π ◦ c). Hence, dM (p, q) >
dB(π(p), π(q)), for all p, q ∈M .

(b) A smooth vector field X on B has a unique horizontal lift X̃ on M , i.e. X̃(p) ∈ Hp,
dπp(X̃(p)) = X(π(p)), for all p ∈M .

(c) A regular smooth curve c in B has a horizontal lift c̃ in M , i.e. π(c̃(t)) = c(t) and
c̃′(t) ∈ Hc̃(t), for all t. Moreover, c̃ is unique if c̃(0) ∈ Fc(0) is specified.

(d) The horizontal lift γ̃ of a geodesic γ in B is a (horizontal) geodesic in M . On the other
hand, if σ is a geodesic in M with σ′(0) ∈ Hσ(0), then σ′(t) ∈ Hσ(t) for all t and π ◦ σ
is a geodesic in B.

(e) All fibres Fb, b ∈ B, are diffeomorphic. Furthermore, dM (p, Fb) is constant for all p ∈
Fb′ , b, b′ ∈ B.

(f) π is a submetry, i.e. π
(
Br(p)

)
= Br(π(p)), for all r > 0 and all p ∈ M , where Br(x)

denotes the closure of the ball Br(x) of radius r around x.
(g) The submersion π : M → B is a locally trivial fibre bundle with fibre F ∼= Fb, b ∈ B.

Proof. Recall that dπc(t)|Hc(t) is an isometry.

(a) Since c′(t) = c′(t)V + c′(t)H, it follows that

L(π ◦ c) =

∫ 1

0

|dπc(t)(c′(t))|dt =

∫ 1

0

|c′(t)H|dt 6
∫ 1

0

|c′(t)|dt = L(c).

(b) For all p ∈M define the vector field X̃ by

X̃(p) := (dπp|Hp)−1(X(π(p))) ∈ Hp.

X̃ is smooth since locally X(π(p)) =
∑
ai(π(p)) ∂

∂xi
and, if ∂̃

∂xi
is defined as

(dπp|Hp)−1( ∂
∂xi

), then X̃(p) =
∑
ai(π(p)) ∂̃

∂xi
by linearity.

(c) Let c̃′(t) be the horizontal lift of c′(t) 6= 0 to M , and let c̃(t) be the corresponding
integral curves starting at points in Fc(0). By the uniqueness of integral curves,
c̃(t) is unique whenever its initial point c̃(0) ∈ Fc(0) is specified. Since M is com-
plete, c̃(t) can be continued along the entire domain of definition of c.

(d) Suppose there is some curve α : [a, b] → M such that L(α) < L(γ̃|[a,b]). Then, by
(a) and since γ̃′ is by definition horizontal, L(π ◦ α) 6 L(α) < L(γ̃) = L(γ). This
is a contradiction, since γ is locally minimising.

Suppose now that β is a geodesic in B such that β′(0) = dπσ(0)(σ
′(0)), and let

β̃ be its horizontal lift starting at σ(0). By the above argument, β̃ is a geodesic.
However, β̃(0) = σ(0) and β̃′(0) = σ′(0), hence β̃ = σ, σ′(t) is horizontal for all t,
and π ◦ σ = β is a geodesic in B.

(e) If c : [0, 1] → B is an arbitrary path in B with horizontal lift starting at p ∈ Fc(0)

denoted by c̃p, then define τc : Fc(0) → Fc(1) by p 7→ c̃p(1). By the uniqueness
of horizontal lifts and by considering lifts traversed in the opposite direction, it
follows that τc is a diffeomorphism.

For b.b′ ∈ B, let γ be a geodesic in M minimising the distance from Fb′ to Fb,
and let p = γ(0) ∈ Fb′ . By the first variation formula, γ is orthogonal to both
Fb′ and Fb. From (d), γ must be a horizontal geodesic, hence L(π ◦ γ) = L(γ) =

dM (p, Fb) = dM (Fb′ , Fb). Therefore every horizontal lift of the geodesic π ◦ γ
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minimises the distance from Fb′ to Fb, and

dM (p, Fb) = dM (q, Fb) = dM (Fb′ , Fb), for all p, q ∈ Fb′ .

(f) By (a), π
(
Br(p)

)
⊆ Br(π(p)), for all r > 0. On the other hand, if γ is a minimising

geodesic in B starting at π(p) with length at most r > 0, the horizontal lift γ̃ in M
starting at p has L(γ̃) = L(γ) 6 r. Thus Br(π(p)) ⊆ π

(
Br(p)

)
, for all r > 0.

(g) Let b ∈ B and choose ε > 0 such that expb : Bε(0) → Bε(b) is a diffeomorphism.
For a vector x ∈ Bε(0) ⊆ TbB, let x̃ : Fb → H denote the (smoothly varying and
unique) horizontal lifts of x along Fb, i.e. dπp(x̃(p)) = x for all p ∈ Fb. Consider
the smooth map

ϕ : Fb × Bε(0)→ π−1(Bε(b)) = Bε(Fb)

defined by ϕ(p, x) = expp(x̃(p)). If q ∈ Bε(Fb) then, by the choice of ε, there is a
unique minimal geodesic γ : [0, 1] → B from π(q) to b. The horizontal lift γ̃q of γ
with γ̃q(0) = q has p := γ̃q(1) ∈ Fb. Hence q = ϕ(p,−γ̃′q(1)), i.e. ϕ is surjective.
On the other hand, ϕ is injective by the uniqueness of γ̃q . Moreover, dϕ(p, x) has
maximal rank since expp is a local diffeomorphism. Therefore, the map

(idFb × expb) ◦ h−1 : π−1(Bε(b))→ Fb × Bε(0)→ Fb × Bε(b)

is a diffeomorphism. Since b ∈ B was arbitrary and all fibres are diffeomorphic,
π is a locally trivial fibre bundle.

�

Notation. Suppose π : (M, gM ) → (B, gB) is a Riemannian submersion. The follow-
ing notational conventions will be used throughout these notes, often without further
elaboration:

• If X is a smooth vector field on B, then X̃ denotes its unique horizontal lift to M .
• Vector fields on B will be denoted by X , Y , Z or W .
• Vertical vector fields on M will always be denoted by U or V .
• Respectively, ∇N , RN and secN denote the Levi-Civita connection, Riemannian

curvature tensor and sectional curvature of a Riemannian manifold (N, gN ) =

(N, 〈 , 〉N ), where

RNX,Y Z = ∇NX∇NY Z −∇NX∇NY Z −∇N[X,Y ]Z and

secN (X,Y ) =
〈RNX,Y Y,X〉N

|X|2|Y |2 − 〈X,Y 〉2N
.

Proposition 1.6. Let G be a compact Lie group acting freely and isometrically on a Riemannian
manifold (M, gM ). Then the quotient map π : M → M/G induces a Riemannian metric ǧ on
M/G such that π : (M, gM )→ (M/G, ǧ) is a Riemannian submersion.

Proof. Let p ∈M and x ∈ Tπ(p)(M/G). Since dπp|Hp is an isomorphism, there is a unique
vector x̃p ∈ Hp such that dπp(x̃p) = x. Define

|x| := |x̃p| =
√
gM (x̃p, x̃p).

This is a well-defined norm on the tangent vectors to M/G. Indeed, if q ∈ π−1(π(p)) =

G · p, then there is g ∈ G such that q = g · p and a unique vector x̃q ∈ Hq such that
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dπq(x̃q) = x. Since G preserves orbits and hence horizontal spaces, dgp : Hp → Hq .
Furthermore, π ◦ g = π. Therefore

dπq(x̃q) = x = dπp(x̃p) = d(π ◦ g)p(x̃p) = dπq(dgp(x̃p)).

As dπq|Hq is an isomorphism, it follows that x̃q = dgp(x̃p). Since G acts by isometries,
|x̃q| = |x̃p|.

The norm | · | can now be extended to a Riemannian metric ǧ on M/G by polarisation,
where smoothness of ǧ follows from the smoothness of the metric gM , the quotient map
π and the action of G. �

Example 1.7. The Lie group S1 = {z ∈ C | |z| = 1} acts freely and isometrically on the
standard round 3-dimensional sphere of radius 1, S3(1) = {(u, v) ∈ C2 | |u|2 + |v|2 = 1},
via the so-called Hopf action

z · (u, v) = (zu, zv), z ∈ S1, (u, v) ∈ S3.

The quotient of this action is a round 2-dimensional sphere of radius 1
2 , S2( 1

2 ). Indeed, if
(u, v) ∈ S3 with u 6= 0, then there is a unique point of the form (t, w) ∈ S3, t ∈ R, t > 0,
in the orbit of (u, v). The set of all such points forms an open hemi-sphere Σ in the unit
2-sphere in R3 = R×C, the boundary of which is the S1 orbit of (0, 1) (i.e. u = 0 above).

The quotient map π : S3 → S3/S1 identifies the points on the boundary of this hemi-
sphere to a point, and all other orbits to a point in the interior of the hemi-sphere Σ.
Therefore, S3/S1 is a 2-dimensional sphere. The length of a great circle in this quotient is
π, as this is the length of a geodesic between antipodal boundary points of Σ and passing
through the point (1, 0) ∈ Σ. Thus the quotient 2-sphere has radius 1

2 as desired.
It is also clear that if the S1 orbits are scaled so that they shrink (uniformly) to points,

then one gets convergence (in the sense of Gromov-Hausdorff) of a sequence of (Berger)
metrics on S3 to the round S2( 1

2 ), seen via the shrinking of the boundary of Σ to a point.

Theorem 1.8. Let π : (M, gM ) → (B, gB) be a Riemannian submersion and let X , Y , Z and
W denote smooth vector fields on B. Then:

(a) ∇M
X̃
Ỹ = ∇̃BXY + 1

2 [X̃, Ỹ ]V . In particular, dπ(∇M
X̃
Ỹ ) = ∇BXY .

(b) For all p ∈M , (∇M
X̃
Ỹ )V(p) = 1

2 [X̃, Ỹ ]V(p) depends only on X̃(p), Ỹ (p) ∈ Hp.
(c) The curvature tensor RB of (B, gB) is given by

〈RBX,Y Z,W 〉B =〈RM
X̃,Ỹ

Z̃, W̃ 〉M + 1
4 〈[Ỹ , Z̃]V , [X̃, W̃ ]V〉M

− 1
4 〈[X̃, Z̃]V , [Ỹ , W̃ ]V〉M − 1

2 〈[X̃, Ỹ ]V , [Z̃, W̃ ]V〉M .

(d) If X and Y are, in addition, orthonormal, then

secB(X,Y ) = secM (X̃, Ỹ ) +
3

4

∣∣∣[X̃, Ỹ ]V
∣∣∣2 . (1.1)

Proof. Let V ∈ V be a vertical vector field on M .

(a) Clearly 〈X̃, V 〉M = 〈Ỹ , V 〉M = 〈Z̃, V 〉M = 0 and X̃〈Ỹ , Z̃〉M = X〈Y, Z〉B . By
Lemma 1.3, dπ([X̃, V ]) = 0, whereas [X,Y ] = [dπ(X̃), dπ(Ỹ )] = dπ([X̃, Ỹ ]).
Hence 〈[X̃, V ], Ỹ 〉M = 0 and 〈[X̃, Ỹ ], Z̃〉M = 〈[X,Y ], Z〉B . Moreover, as 〈X̃, Ỹ 〉M
is constant along the fibres, V 〈X̃, Ỹ 〉M = 0. Therefore, by the Koszul formula,

〈∇M
X̃
Ỹ , Z̃〉M = 〈∇BXY, Z〉B and 〈∇M

X̃
Ỹ , V 〉M = 1

2 〈[X̃, Ỹ ], V 〉M ,

which yields ∇M
X̃
Ỹ = ∇̃BXY + 1

2 [X̃, Ỹ ]V as desired.
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(b) Since∇M is the Levi-Civita connection of (M, gM ),

〈[X̃, Ỹ ]V , V 〉M = 〈[X̃, Ỹ ], V 〉M

= 〈∇M
X̃
Ỹ −∇M

Ỹ
X̃, V 〉M

= 〈X̃,∇M
Ỹ
V 〉M − 〈Ỹ ,∇MX̃ V 〉M ,

from which the claim easily follows.
(c) By (a), X̃〈∇M

Ỹ
Z̃, W̃ 〉M = X〈∇BY Z,W 〉B and, since V and [V, X̃] are vertical,

〈∇MV X̃, Ỹ 〉M = 〈∇M
X̃
V, Ỹ 〉M = −〈V,∇M

X̃
Ỹ 〉M = −〈V, 1

2 [X̃, Ỹ ]V〉M .

Therefore

〈∇M
X̃
∇M
Ỹ
Z̃, W̃ 〉M = X̃〈∇M

Ỹ
Z̃, W̃ 〉M − 〈∇MỸ Z̃,∇

M
X̃
W̃ 〉M

= X〈∇BY Z,W 〉B − 〈∇MỸ Z̃,∇
M
X̃
W̃ 〉M

= 〈∇BX∇BY Z,W 〉B + 〈∇BY Z,∇BXW 〉B

− 〈∇̃BY Z + 1
2 [Ỹ , Z̃]V , ∇̃BXW + 1

2 [X̃, W̃ ]V〉M

= 〈∇BX∇BY Z,W 〉B − 1
4 〈[Ỹ , Z̃]V , [X̃, W̃ ]V〉M , (1.2)

while, on the other hand,

〈∇M
[X̃,Ỹ ]

Z̃, W̃ 〉M = 〈∇M
[X̃,Ỹ ]H

Z̃, W̃ 〉M + 〈∇M
[X̃,Ỹ ]V

Z̃, W̃ 〉M

= 〈∇B[X,Y ]Z,W 〉B − 1
2 〈[X̃, Ỹ ]V , [Z̃, W̃ ]V〉M . (1.3)

Combining equations (1.2) and (1.3) with the definition of RM yields the desired
result.

(d) This follows directly from (c) by setting Z = Y , W = X .

�

Remark 1.9. Theorem 1.8 shows, in particular, that Riemannian submersions are sec-
tional curvature non-decreasing. Hence, if (M, gM ) has non-negative sectional curva-
ture, so too does (B, gB), and one can further hope that the extra term 3

4 |[X̃, Ỹ ]V |2 in fact
ensures that (B, gB) is positively curved.

Notice further that a plane tangent to B is the image of a horizontal plane tangent to
M . Thus, in order to determine if (B, gB) has any zero-curvature planes, one need only
examine horizontal planes tangent to M .

Definition 1.10. Let π : (M, gM )→ (B, gB) be a Riemannian submersion.

(a) The A-tensor (or O’Neill tensor) is the tensor field A : H×H → V on M defined by

AX̃ Ỹ = (∇M
X̃
Ỹ )V = 1

2 [X̃, Ỹ ]V ,

where X̃ and Ỹ are horizontal vector fields.
(b) The T -tensor is the tensor field T : V × V → H on M given by

TUV = (∇MU V )H,

where U and V are vertical vector fields.

Remark 1.11. The A-tensor vanishes if and only if the horizontal distribution H is inte-
grable, in which case (M, gM ) is locally isometric to (B × Fb, gB ⊕ gFb). The T -tensor, on
the other hand, is the second fundamental form of the fibres and vanishes if and only if
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the fibres are totally geodesic, in which case all fibres are isometric. If both A ≡ 0 and
T ≡ 0, then (M, gM ) is locally isometric to (B × F, gB ⊕ gF ), i.e. the metric on the fibre is
independent of the base point.

2. BI-INVARIANT METRICS ON LIE GROUPS

It is well known (and a standard exercise to show) that a compact Lie group G can
be equipped with a bi-invariant metric, i.e. a metric 〈 , 〉0 for which the left- and right-
multiplication maps, Lg : G→ G; h 7→ gh and Rg : G→ G; h 7→ hg, are isometries for all
g ∈ G. More generally, a metric 〈 , 〉 on G is called left-invariant (resp. right-invariant) if
Lg (resp. Rg) is an isometry for all g ∈ G. Given any inner product on the Lie algebra g

of G, one can construct a left- (resp. right-) invariant metric on G via propagation of the
inner product by left- (resp. right-) multiplication.

It turns out that almost every known example of a manifold with a metric of non-
negative or positive sectional curvature is constructed via a Riemannian submersion
from a compact Lie group G equipped with a bi-invariant metric 〈 , 〉0. The goal of this
section is to show that (G, 〈 , 〉0) is non-negatively curved, from which it follows imme-
diately via (1.1) that the base of any Riemannian submersion π : (G, 〈 , 〉0) → (B, gB) is
also non-negatively curved.

Notation. From now on, unless explicitly stated otherwise:

• G will always denote a compact Lie group and g its Lie algebra.
• The map Lg : G → G denotes left-multiplication by g ∈ G, i.e. Lg(h) = gh.

Similarly, Rg : G→ G denotes right-multiplication by g ∈ G, i.e. Rg(h) = hg.
• If v ∈ g, then Xv denotes the corresponding left-invariant vector field, i.e. Xv(g) =

(dLg)e(v), where e denotes the identity element of G.
• The exponential map of G, exp : g → G, is defined by exp(v) = ϕv(1, e), where
ϕv : R×G→ G denotes the flow of the corresponding left-invariant vector field
Xv . In particular, exp((s+ t)v) = exp(sv) exp(tv), for all s, t ∈ R.
• The adjoint representation Ad : G→ Aut(g) is given by

Adg := (dLg)g−1 ◦ (dRg−1)e = (dRg−1)g ◦ (dLg)e,

namely, the derivative at e ∈ G of the conjugation map h 7→ ghg−1.
• A bi-invariant metric on G is denoted by 〈 , 〉0 or g0, and its corresponding Levi-

Civita connection, Riemannian curvature tensor and sectional curvature by ∇0,
R0 and sec0, respectively.
• If K is a closed subgroup of G, its Lie algebra is given by k and there is an AdK-

invariant decomposition g = k ⊕ p, where p is the orthogonal complement of k
with respect to 〈 , 〉0.

Lemma 2.1. Let G be a Lie group with Lie algebra g.

(a) If X and Y are left-invariant vector fields on G, then the Lie bracket [X,Y ] is also a
left-invariant vector field. Hence (dLg)h([X,Y ](h)) = [(dLg)hX, (dLg)hY ](gh)

(b) The flow ϕv of the left-invariant vector field Xv corresponding to v ∈ g is given by
ϕv(t, ·) = Rexp(tv).

(c) For all v, w ∈ g, d
dt Adexp(tv) w

∣∣
t=0

= [v, w].
(d) If 〈 , 〉0 is a bi-invariant metric on G, then

〈[u, v], w〉0 = −〈v, [u,w]〉0, for all u, v, w ∈ g. (2.1)
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Proof. (a) Let f : G→ R be an arbitrary smooth function. Notice that, for all g, h ∈ G,

((Y f) ◦ Lg)(h) = Y (gh)f

= ((dLg)hY (h))f

= Y (h)(f ◦ Lg)

= (Y (f ◦ Lg))(h).

Consequently, left-invariance of [X,Y ] follows from

[X,Y ](g)f = X(g)(Y f)− Y (g)(Xf)

= ((dLg)eX(e))(Y f)− ((dLg)eY (e))(Xf)

= X(e)((Y f) ◦ Lg)− Y (e)((Xf) ◦ Lg)

= X(e)(Y (f ◦ Lg))− Y (e)(Y (f ◦ Lg))

= [X,Y ](e)(f ◦ Lg)

= ((dLg)e[X,Y ](e))f.

(b) For all g ∈ G, the curve ϕv(t, g) := g · exp(tv) = Rexp(tv)g clearly has derivative
(dLg)ev = Xv(g), as desired.

(c) Recall that, if X and Y are two vector fields on a manifold M , then

[X,Y ](p) = (LXY )(p) = d
dt (dϕ(−t, ·))ϕ(t,p)(Y (ϕ(t, p)))

∣∣
t=0

,

where L is the Lie derivative and ϕ(t, p) is the flow of X through p ∈M . Thus,

d
dt Adexp(tv) w

∣∣
t=0

= d
dt (dRexp(−tv))exp(tv)(dLexp(tv))ew

∣∣
t=0

= d
dt (dRexp(−tv))exp(tv)(Xw(exp(tv))

∣∣
t=0

= [Xv, Xw](e)

= [v, w].

(d) Since 〈w,w〉0 = 〈Adg w,Adg w〉0, for all g ∈ G, w ∈ g, it follows that

0 = 1
2
d
dt 〈Adexp(tv) w,Adexp(tv) w〉0

∣∣
t=0

= 〈 ddt Adexp(tv) w
∣∣
t=0

, w〉0
= 〈[v, w], w〉0, by (c),

from which one easily deduces equation (2.1).
�

Theorem 2.2. Let G be a compact Lie group equipped with a bi-invariant metric 〈 , 〉0. If X , Y
and Z are left-invariant vector fields on G, then:

(a) ∇0
XY = 1

2 [X,Y ].
(b) R0

X,Y Z = − 1
4 [[X,Y ], Z].

(c) If X and Y are orthonormal, then sec0(X,Y ) = 1
4 |[X,Y ]|2.

Proof. From the Koszul formula, together with Lemma 2.1 and the bi-invariance of the
metric, one easily derives ∇0

XX = 0, for all left-invariant vector fields X on G. Part (a)
then follows immediately from the symmetry of the connection∇0.

Given (a) and (d) of Lemma 2.1, parts (b) and (c) follow directly from the definitions.
�
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Remark 2.3. In particular, Theorem 2.2 shows that a compact Lie group equipped with
a bi-invariant metric is always non-negatively curved. On the other hand, one can easily
show (see [Wa]) that the only Lie groups admitting a bi-invariant (or, more generally, left-
invariant) metric with positive sectional curvature are SO(3) and S3 = Sp(1) = SU(2).

3. CHEEGER DEFORMATIONS

Suppose that a Riemannian manifold (M, gM ) is non-negatively curved and a compact
Lie groupK acts on (M, gM ) by isometries, i.e. K ⊆ Isom(M, gM ). Then one can perform
a so-called Cheeger deformation (see [Ch]) on the metric gM to obtain a new K-invariant
metric ǧM which also has non-negative curvature, but potentially has less zero-curvature
planes. Indeed, consider the product manifold (M×K, gM⊕g0), where g0 is a bi-invariant
metric on K. The Lie group K acts on (M ×K, gM ⊕ g0) by isometries via

g ? (p, k′) = (k · p, kk′),

where k ∈ K, (p, k′) ∈M ×K, and · denotes the action of K on M . Moreover, the action
? on the product is free, since k ? (p, k′) = (p, k′) if and only if k = e. Hence the quotient
M ×K K := (M ×K)/K is a manifold. In fact, M ×K K is diffeomorphic to M , where
the diffeomorphism is induced by the mapM×K →M ; (p, k) 7→ k−1 ·p. By Proposition
1.6, there is an induced metric ǧM on M such that the quotient map

π : (M ×K, gM ⊕ g0)→ (M ×K K, ǧM ) = (M, ǧM )

is a Riemannian submersion.
In particular, if (M, gM ) is non-negatively curved, then so too is (M, ǧM ). Finally,

notice that K acts on (M, ǧM ) by isometries, i.e. via the action induced by the isometric
action of K on the right-hand side of (K, g0).

Suppose now that (M, gM ) = (G, g0) is a compact Lie group equipped with a bi-
invariant metric, and let K be a closed subgroup of G. By the procedure above one can
easily equip G with a family of left-invariant metrics which are only right K-invariant.
Indeed, the required Cheeger deformation is given by equippingK with the bi-invariant
metric tg0|K , where t > 0, and yields a family gλ, λ ∈ (0, 1), of left-invariant, right-K-
invariant metrics on G.

More explicitly, if the action · of K on G is given by k · g = gk−1, k ∈ K, g ∈ G, then
the action ? of K on G ×K is given by k ? (g, k′) = (gk−1, kk′), k ∈ K, (g, k′) ∈ G ×K,
and the diffeomorphism G×K K → G is induced by the map G×K → G; (g, k)→ gk.

In this situation, it is easy to compute the vertical and horizontal subspaces, and to
determine the metric gλ explicitly: Let k denote the Lie algebra of K and p ⊆ g its orthog-
onal complement with respect to g0. Hence the decomposition g = k⊕p is Adk-invariant,
for all k ∈ K. For v ∈ g and w ∈ k, consider the curve

α(t) := π(g exp(tv), k exp(tw)) = g exp(tv)k exp(tw)

in G with α(0) = gk. Clearly

dπ(g, k)((dLg)ev, (dLk)ew) = α′(0)

= (dLg)k(dRk)ev + (dLgk)ew

= (dLgk)e(Adk−1 v + w).
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Since the decomposition g = k⊕ p is Adk−1 -invariant,

((dLg)ev, (dLk)ew) ∈ ker(dπ(g, k)) ⊆ T(g,k)(G×K)

⇐⇒ vp = 0 and w = −Adk−1 vk,

where vp and vk denote the p and k components of v ∈ g respectively. Therefore (for
dimension reasons) the vertical subspace at (g, k) is given by

V(g,k) = {((dLg)ev,−(dLk)e Adk−1 v) | v ∈ k}.

It is a simple exercise to verify that the horizontal subspace at (g, k) with respect to the
metric g0 ⊕ tg0 is of the form

H(g,k) = {((dLg)ex, 1
t (dLk)e Adk−1 xk) | x ∈ g}, (3.1)

from which it follows that the isomorphism dπ(g,k)|H(g,k)
is given by

dπ(g,k)((dLg)ex,
1
t (dLk)e Adk−1 xk) = (dLgk)e Adk−1(x+ 1

txk)

= (dLgk)e Adk−1(xp + t+1
t xk). (3.2)

Consider now the left-invariant vector field Xw on G defined via Xw(g) := (dLg)ew.
From (3.2),the horizontal lift X̃w at a point (gk−1, k) ∈ π−1(g) of Xw can be written as

X̃w(gk−1, k) = (dπ(g,k))
−1(Xw(g))

= ((dLgk−1)e Adk(wp + t
t+1wk),

1
t+1 (dLk)ewk). (3.3)

Finally, setting λ := t
t+1 ∈ (0, 1) and using the bi-invariance of g0, it follows that the

metric gλ induced on G by the Riemannian submersion π is determined by

gλ(Xw(g), Xv(g)) = (g0 ⊕ tg0)(X̃w(gk−1, k), X̃v(gk
−1, k))

= g0(wp + t
t+1wk, vp + t

t+1vk) + tg0( 1
t+1wk,

1
t+1vk)

= g0(wp, vp) + λg0(wk, vk).

In particular, this yields an explicit verification of the left-invariance of the metric gλ.
Moreover, since the product metric g0 ⊕ tg0 on G×K has non-negative sectional curva-
ture, so too does (G, gλ). In many situations, gλ has fewer zero-curvature planes than the
bi-invariant metric g0.

Lemma 3.1 ([Es1]). With the notation as above, if K ⊆ G is a symmetric pair, i.e. [p, p] ⊆ k,
then v, w ∈ g (hence Xv(g), Xw(g) ∈ TgG) span a zero-curvature plane with respect to gλ if and
only if

[v, w] = [vk, wk] = [vp, wp] = 0.

Proof. By the invariance of the metrics, it suffices to restrict attention to horizontal planes
at (e, e) ∈ G×K.

By (1.1), the horizontal lift of a gλ-zero-curvature plane will have zero curvature with
respect to the bi-invariant metric g0 ⊕ tg0, i.e. for v, w ∈ g, secgλ(v, w) = 0 implies
sec0(X̃v(e, e), X̃w(e, e)) = 0. This second identity is true if and only if

0 =
[(
vp + t

t+1vk,
1
t+1vk

)
,
(
wp + t

t+1wk,
1
t+1wk

)]
=
([
vp + t

t+1vk, wp + t
t+1wk

]
,
[

1
t+1vk,

1
t+1wk

])
=

(
[vp, wp] +

(
t
t+1

)2

[vk, wk] + t
t+1 ([ vk, wp] + [vp, wkt]) ,

(
t
t+1

)2

[vk, wk]

)
.
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This is equivalent to [vk, wk] = 0 and [vp, wp] + t
t+1 ([ vk, wp] + [vp, wk]) = 0. Since K ⊆ G

is a symmetric pair and since bi-invariance of g0 implies [p, k] ⊆ p, the second identity
yields [vp, wp] = 0 and [ vk, wp] + [vp, wk] = 0, from which the assertion follows.

Conversely, if sec0(X̃v(e, e), X̃w(e, e)) = 0, then one can compute directly, or else apply
a recent result of Tapp [Ta], to show that the corresponding plane spanned by v, w ∈ g

must also have zero curvature. �

Remark 3.2. Note that the result of Tapp [Ta] mentioned above states that, given any
compact Lie group G equipped with a bi-invariant metric g0 and a Riemannian sub-
mersion π : (G, g0) → (B, gB), the A-tensor will never improve a horizontal g0-zero-
curvature plane on G to a positively-curved plane on (B, gB).

4. BIQUOTIENTS

In his Habilitation [Es1], Eschenburg initiated the systematic study of biquotients,
following the interesting example observed by Gromoll and Meyer in [GM2]. Most of
the material in this section is taken from [Es1].

Let G be a compact Lie group, U ⊂ G×G a closed subgroup, and let U act on G via

(u1, u2) · g = u1gu
−1
2 , g ∈ G, (u1, u2) ∈ U. (4.1)

The action (4.1) is free, hence the quotient G//U is a manifold called a biquotient, if and
only if, whenever (u1, u2) · g = g for some g ∈ G, then (u1, u2) = (e, e). This is equivalent
to the condition that, for all non-trivial (u1, u2) ∈ U , u1 is never conjugate to u2 in G.
If, on the other hand, the action is not free, the quotient G//U will still be a manifold so
long as U acts effectively freely, i.e. any element (u1, u2) ∈ U which fixes some g ∈ G fixes
all of G, that is, (u1, u2) lies in the ineffective kernel. For an action of the form (4.1), the
ineffective kernel is given by U ∩∆ZG, where ∆ZG denotes the diagonal embedding of
the centre ZG of G in G × G. This follows since, if (u1, u2) ∈ U fixes some g ∈ G, then
(u1, u2) fixes all g ∈ G, in particular e ∈ G. Hence u1 = u2 ∈ ZG.

As a special case, a homogeneous space G/H is a biquotient G//U with U = {e} ×H ⊆
G × G. The action (4.1) of U = {e} × H on G is clearly always free. Furthermore, if a
closed subgroupK ⊆ G acts (effectively) freely on the left of a homogeneous spaceG/H ,
then the quotientK\G/H is a biquotient with U = K×H . As it turns out, all biquotients
can be written in this form. Indeed, as first noticed by Eschenburg [Es2], before being
used geometrically by Wilking [Wi], the map G × G → G; (g1, g2) 7→ g−1

1 g2 induces a
diffeomorphism

∆G\(G×G)/U → G//U,

where ∆G denotes the diagonal embedding of G in G×G and ∆G×U acts on G×G via

((g, g), (u1, u2)) · (g1, g2) = (gg1u
−1
1 , gg2u

−1
2 ).

By Theorems 1.8 and 2.2, it is clear that if G is equipped with a bi-invariant metric, then
any biquotient G//U inherits a metric with non-negative sectional curvature. More gen-
erally, if K ⊆ G is a closed subgroup, U ⊆ G × K ⊆ G × G and G is equipped with
a left-invariant, right-K-invariant metric 〈 , 〉 (for example, via a Cheeger deformation),
then U acts by isometries on G and therefore the submersion G→ G//U induces a metric
on G//U from the metric on G, such that the quotient map is a Riemannian submersion.
This is encoded in the notation (G, 〈 , 〉)//U .
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For g ∈ G, consider the groups

UgL := {(gu1g
−1, u2) | (u1, u2) ∈ U},

UgR := {(u1, gu2g
−1) | (u1, u2) ∈ U}, and

Û := {(u2, u1) | (u1, u2) ∈ U}. (4.2)

It’s a trivial exercise to check that UgL, U
g
R and Û act (effectively) freely via (4.1) on G

whenever U does.

Lemma 4.1. Using the notation above, if G is equipped with a left-invariant, right-K-invariant
metric 〈 , 〉, then (G, 〈 , 〉)//U is isometric to (G, 〈 , 〉)//UgL, diffeomorphic to G//UgR (isometric if
g ∈ K), and diffeomorphic to G//Û (isometric if and only if 〈 , 〉 is bi-invariant).

Proof. In the case of UgL this follows from the fact that left-translation Lg : G → G is
an isometry which satisfies gu1g

−1(Lgg
′)u−1

2 = Lg(u1g
′u−1

2 ). Therefore Lg induces an
isometry of the orbit spaces G//U and G//UgL. Similarly, Rg−1 induces a diffeomorphism
between G//U and G//UgR, which is an isometry if g ∈ K.

Finally, the actions of U and Û are equivariant under the diffeomorphism τ : G → G,
τ(g) := g−1. That is, u1τ(g)u−1

2 = τ(u2gu
−1
1 ). Notice that this is an isometry if and only

if 〈 , 〉 is bi-invariant, since for v ∈ g the identities

dτg((dLg)ev) = −(dRg−1)ev = −(dLg−1)e Adg v,

together with left-invariance of 〈 , 〉, imply that τ is an isometry if and only if |v| =

|dτg((dLg)ev)| = |Adg v|, for all g ∈ G and v ∈ g. Therefore, G//U and G//Û are, in
general, diffeomorphic but not isometric. �

Example 4.2. The first example of a biquotient was given by Gromoll and Meyer in
[GM2], where they observed that Milnor’s 7-dimensional exotic sphere Σ7

2,−1 could be
written as a biquotient Sp(2)//Sp(1), where Sp(1) acts on Sp(2) via

q ·A =

(
q

q

)
A

(
q̄

1

)
, q ∈ Sp(1), A ∈ Sp(2).

Consequently, Σ7
2,−1 admits a metric with non-negative sectional curvature, the first such

example among the exotic spheres. Totaro [To] and Kapovitch and Ziller [KZ] have sub-
sequently shown that Σ7

2,−1 is the only exotic sphere of any dimension that can be written
as a biquotient. Nevertheless, Grove and Ziller [GZ] have constructed metrics with non-
negative curvature on several other Milnor spheres via a different method.

It is now natural to ask which groups U ⊆ G × G can act (effectively) freely on G via
the action (4.1). The first thing to be aware of is that, for a given group U , one need only
check for freeness on elements of the maximal torus of U . Indeed, if S is a maximal torus
of U then, without loss of generality, it may be assumed that S ⊆ T × T , where T is a
maximal torus of G (see the proof of Lemma 4.3 below). As every element (u1, u2) ∈ U
is conjugate via some (h1, h2) ∈ U to an element (s1, s2) ∈ S, one has u1gu

−1
2 = g, for

some g ∈ G, if and only if h1s1h
−1
1 = u1 = gu2g

−1 = gh2s2h
−1
2 g−1, i.e. if and only if

s1 = (h−1
1 gh2)s2(h−1

1 gh2)−1. In other words, if and only if there is some element w of the
Weyl group WG := NG(T )/T of T ⊆ G such that s1 = ws2w

−1 as elements of T .
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Lemma 4.3. Let G be a compact Lie group and let S ⊆ G×G be a torus acting effectively freely
on G via the action (4.1). If T is a maximal torus of G, then

dim(S/(S ∩∆ZG)) 6 dim(T ).

Consequently, if a closed subgroup U ⊆ G×G acts effectively freely on G via (4.1), then

rank(U/(U ∩∆ZG) 6 rank(G).

Proof. As S ⊆ G × G is a torus, it must be contained in some T ′ × T ⊆ G × G, where
T ′ and T are maximal tori of G. Since all maximal tori of G are conjugate, there is some
g ∈ G such that T ′ = g−1Tg. By the discussion surrounding the groups given in (4.2),
SgL := {(gs1g

−1, s2) | (s1, s2) ∈ S} ⊆ T × T also acts effectively freely on G. Therefore,
without loss of generality, assume S ⊆ T × T for some maximal torus T of G.

Notice that S ∩∆T := {(s, s) ∈ S | s ∈ T} = S ∩∆ZG. Indeed, if (s, s) ∈ S ∩∆T , then
sts−1 = t for all t ∈ T ∈ G. However, since the action is effectively free, this implies that
(s, s) ∈ ∆ZG. On the other hand, if (s, s) ∈ S ∩∆ZG, then sgs−1 = g for all g ∈ G, and in
particular for g ∈ T . Hence s ∈ T , since T is a maximal torus. Thus S ∩∆ZG ⊆ ∆T .

Finally, the desired inequality follows since

S/(S ∩∆ZG) = S/(S ∩∆T ) ⊆ (T × T )/∆T ∼= T.

�

In the search for examples of biquotients with positive sectional curvature, the possi-
ble choices of U are even more restrictive.

Theorem 4.4. Let G be a compact Lie group equipped with a left-invariant, right-K-invariant
metric 〈 , 〉 and let U ⊆ G×K ⊆ G×G be a closed subgroup acting on (G, 〈 , 〉) effectively freely
and isometrically via the action (4.1). Suppose further that U ∩ (K × K) contains a maximal
torus of U . Then:

(a) There is a compact Lie group H equipped with a left-invariant metric 〈〈 , 〉〉 and a totally
geodesic isometric immersion f : (H, 〈〈 , 〉〉)→ (G, 〈 , 〉)//U such that

rank(H) = rank(G)− rank(U/(U ∩∆ZG).

(b) If (G, 〈 , 〉)//U has positive sectional curvature, then

rank(G)− rank(U/(U ∩∆ZG)) =

{
0 for dim(G//U) even,

1 for dim(G//U) odd.

Proof. (a) Let S be a maximal torus of U contained in U ∩ (K ×K). As in the proof
of Lemma 4.3, it may be assumed without loss of generality that S ⊆ T ′ × T ′,
where T ′ is a maximal torus of K. Extend T ′ to a maximal torus T of G, such that
S ⊆ T ′ × T ′ ⊆ T × T .

Let C := CG(T ′) be the centraliser of T ′ in G. Note that rank(C) = rank(G),
since C contains the maximal torus T . Moreover, C is a totally geodesic Lie sub-
group of G, since it is fixed by all isometries of (G, 〈 , 〉) given by conjugation by
an element of T ′ ⊆ K.

By hypothesis, S ⊆ T ′ × T ′, hence the biquotient C//S is, in fact, a homoge-
neous space C/S′, where S′ := {s1s

−1
2 | (s1, s2) ∈ S} ⊆ T ′ ⊆ C. However, S′ is,

by definition, in the centre of C. Therefore H := G//S = C/S′ is a compact Lie
group. Moreover, the kernel of the homomorphism ϕ : S → S′; (s1, s2) 7→ s1s

−1
2
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consists of elements of the form (s, s) ∈ S. However, since S acts on G effectively
freely, such elements must lie in ∆ZG. Therefore S′ ∼= S/(S∩∆ZG), from which it
follows that dim(S′) = dim(S/(S∩∆ZG)) = rank(U/(U∩∆ZG)). ThusH = C/S′

has rank(H) = rank(G)− rank(U/(U ∩∆ZG)).
It remains to show that there is a totally geodesic, isometric immersion of H

into (G, 〈 , 〉)//U . Let u := u1 ⊕ u2 ⊆ g ⊕ g and s := s1 ⊕ s2 ⊆ u denote the Lie
algebras of U and S ⊆ U respectively. By general Lie theory, u = s ⊕

⊕
λE(λ),

where the linear maps λ : s → R run through all roots of U , and E(λ) denotes
the (2-dimensional) root space corresponding to the root λ. Moreover, for every
x ∈ E(λ) ⊆ u, there is a y ∈ E(λ) such that [v, x] = −λ(v)y and [v, y] = λ(v)x, for
all v ∈ s. Call this condition (∗).

The inclusion C ↪→ G induces a map f : H = C//S → G//U . This will be a
totally geodesic, isometric immersion, if f maps the S-horizontal distribution in
C into the U -horizontal distribution in G. As the metric 〈 , 〉 on G is left-invariant
and H = C/S′ is homogeneous, this will be the case if, for all c ∈ C, 〈v, w〉 = 0

for all v ∈ m and w ∈ (dLc−1)cVc ⊆ g, where

(dLc−1)cVc = {Adc−1 w1 − w2 | (w1, w2) ∈ u}

is the U -vertical subspace at c ∈ C ⊆ G translated back to e ∈ G, and m ⊆ g is the
〈 , 〉-orthogonal complement of the Lie algebra s′ of S′ in the Lie algebra c of C,
i.e. c = s′ ⊕m ⊆ g. To achieve this, consider the decomposition u = s⊕

⊕
λE(λ).

First, note that any vector v = (v1, v2) ∈ s maps to v1 − v2 ∈ s′ under the
surjection dϕ(e,e). Hence, by definition, m is orthogonal to v1 − v2 = Adc−1 v1 −
v2 ∈ (dLc−1)cVc, for all (v1, v2) ∈ s and for all c ∈ C, where v1 = Adc−1 v1 because
S ⊆ T ′ × T ′ and Adc−1 acts trivially on the Lie algebra of T ′.

On the other hand, given a root λ of U , choose v = (v1, v2) ∈ s such that λ(v) =

1. For x = (x1, x2) ∈ E(λ) ⊆ u, choose y = (y1, y2) ∈ E(λ) such that condition
(∗) is satisfied. Then x2 = [v2, y2]. On the other hand, since C commutes with
T ′ and S ⊆ T ′ × T ′, it follows that [v2, z] = 0 for all z ∈ c. Hence, using the
skew-symmetry induced by the T ′ ⊆ K-invariance of the metric,

〈x2, z〉 = 〈[v2, y2], z〉 = −〈y2, [v2, z]〉 = 0, for all z ∈ c.

Similarly, as Adc acts trivially on the Lie algebra of T ′,

〈z,Adc x1〉 = 〈z,Adc[v1, y1]〉 = 〈z, [v1,Adc y1]〉 = 〈[z, v1],Adc y1〉 = 0,

for all z ∈ c. Therefore, for all c ∈ C, c is orthogonal to all vectors Adc−1 w1−w2 ∈
(dLc−1)cVc ⊆ g, where (w1, w2) ∈

⊕
λE(λ). In particular, m ⊆ c is orthogonal to

such vectors. In combination with the previous paragraph, this argument yields
the assertion.

(b) Given f , a totally geodesic, isometric immersion as in (a), it is clear that either
dim(H) = dim(f(H)) 6 1 or (H, 〈〈 , 〉〉) is positively curved. Hence, as demon-
strated by Wallach in [Wa], H must be one of {e}, S1, SO(3) or S3, i.e. H must
have rank at most 1. Since dim(G//U) = dim(G) − dim(U/(U ∩ ∆ZG) and, fur-
thermore, every compact Lie group L satisfies dim(L) = rank(L) + 2dL, where dL
is the number of root spaces of L, the claim follows from (a).

�
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5. HOMOGENEOUS EXAMPLES WITH POSITIVE SECTIONAL CURVATURE

Although there are certainly non-simply connected examples of manifolds with posi-
tive sectional curvature, in this section only simply connected manifolds will be consid-
ered. This case is already the most interesting, since there are no known obstructions to
prevent a non-negatively curved, simply connected manifold from admitting a metric
with positive curvature.

The basic example of a positively curved manifold is the sphere Sn ⊆ Rn+1 equipped
with the standard round metric grd inherited from the Euclidean metric on Rn+1. In the
special cases of S2n+1 ⊆ Cn+1 = R2(n+1) and S4n+3 ⊆ Hn+1 = R4(n+1), there are free,
isometric actions of S1 ⊆ C and S3 ⊆ H respectively given by

x · (y1, . . . , yn+1) = (xy1, . . . , xyn+1),

where (x, (y1, . . . , yn+1)) ∈ S1×S2n+1 or S3×S4n+3 accordingly. These are the so called
Hopf actions and the quotients are CPn and HPn respectively. By Proposition 1.6 and
Theorem 1.8, CPn and HPn therefore admit metrics with positive sectional curvature.

Notice that the spheres Sn ⊆ Rn+1, S2n+1 ⊆ Cn+1 and S4n+3 ⊆ Hn+1 can be identified
with the first columns of elements of the compact, simple Lie groups SO(n+1), SU(n+1)

and Sp(n + 1) respectively. This identification is, in fact, encoded in the description of
these spheres as homogeneous spaces as follows:

Sn = SO(n+ 1)/ SO(n), S2n+1 = SU(n+ 1)/ SU(n) and S4n+3 = Sp(n+ 1)/ Sp(n).

Moreover, a bi-invariant metric on SO(n+ 1), SU(n+ 1) and Sp(n+ 1) induces positive
curvature on the corresponding sphere. However, it should be noted that the induced
metrics on S2n+1 and S4n+3 are not the round metrics. In each case, the round metric can
be achieved by performing a suitable Cheeger deformation of the bi-invariant metric.
Nevertheless, one can use the description of the spheres as normal homogeneous spaces
(i.e. homogeneous spaces (G, 〈 , 〉0)/H , where 〈 , 〉0 is a bi-invariant metric) to construct
Riemannian submersions onto CPn and HPn, where the induced metrics are the same
as those discussed above coming from the round spheres.

Suppose K is a closed subgroup of a compact Lie group G. Consider the K-principal
bundle K → G → G/K. For any closed subgroup H ⊆ K ⊆ G, there is an associated
bundle

K/H → G×K (K/H)→ G/K, (5.1)

where the G ×K (K/H) = (G × (K/H))/K, where the action of K on the product G ×
(K/H) is given by k · (g, k′H) = (gk−1, kk′H). It is clear that this action of K commutes
with the action of H on the right of K, hence

G×K (K/H) = (G×K K)/H ∼= G/H.

Therefore, the associated bundle (5.1) corresponding to a triple H ⊆ K ⊆ G can be
rewritten as

K/H → G/H → G/K

and is called a homogeneous fibration. In particular, equippingGwith a bi-invariant metric
turns the projection (G, 〈 , 〉0)/H → (G, 〈 , 〉0)/K into a Riemannian submersion.

Returning to the description of the spheres S2n+1 and S4n+3 as normal homogeneous
spaces, note that there is in each case an intermediate subgroup, namely

SU(n) ⊆ U(n) ⊆ SU(n+ 1) and Sp(n) ⊆ Sp(n)× Sp(1) ⊆ Sp(n+ 1).
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In this way one achieves the Riemannian submersions alluded to above:

U(n)/ SU(n)→ (SU(n+ 1), 〈 , 〉0)/ SU(n)→ (SU(n+ 1), 〈 , 〉0)/U(n),

where S1 = U(n)/ SU(n) and CPn = SU(n+ 1)/U(n), and

(Sp(n)× Sp(1))/ Sp(n)→ (Sp(n+ 1), 〈 , 〉0)/ Sp(n)→ (Sp(n+ 1), 〈 , 〉0)/(Sp(n)× Sp(1)),

where S3 = (Sp(n)× Sp(1))/ Sp(n) and HPn = Sp(n+ 1)/(Sp(n)× Sp(1)).
Notice that the spaces

(Sn, grd) = (SO(n+ 1), 〈 , 〉0)/ SO(n),

(CPn, g) = (SU(n+ 1), 〈 , 〉0)/U(n), and

(HPn, g) = (Sp(n+ 1), 〈 , 〉0)/(Sp(n)× Sp(1))

are compact rank 1 symmetric spaces (called CROSSes), where (G, 〈 , 〉0)/K is symmetric
of rank 1 if every vector in the orthogonal complement p of the Lie algebra k of K in g

commutes only with multiples of itself (i.e. [x, y] = 0, x, y ∈ p, implies y = λx, some
λ ∈ R). By Theorem 1.8, such spaces admit positive curvature. There is only one other
CROSS, namely the Cayley projective plane

(CaP2, g) = (F4, 〈 , 〉0)/ Spin(9),

although the details in this case are beyond the scope of these notes.
In fact, almost all homogeneous examples admitting positive curvature can be con-

structed using homogeneous fibrations. Notice first, by comparing with the construction
in Section 3, that in a homogeneous fibration (5.1) a metric gλ, λ ∈ (0, 1), on G achieved
via a Cheeger deformation of a bi-invariant metric 〈 , 〉0 in the direction of the subgroup
K will still induce a Riemannian submersion (G, gλ)/H → (G, gλ)/K, and that the metric
on the base will be isometric to the metric induced by the bi-invariant metric on G (since
vectors orthogonal to K are unaffected by the Cheeger deformation). Furthermore, the
metric on the fibre K/H is simply a scaling by λ ∈ (0, 1) of the metric induced by 〈 , 〉0.

The metric on G/H can be written down explicitly. Indeed, if h ⊆ k ⊆ g denote the Lie
algebras of H ⊆ K ⊆ G, then one has orthogonal decompositions

g = k⊕ p and k = h⊕m

with respect to the bi-invariant metric 〈 , 〉0. In particular, p is isomorphic to the tangent
space T[K](G/K), m to T[H](K/H), and m ⊕ p to T[H](G/H). Then the metric gλ on G

induces a metric on G/H which is given by

〈x, y〉λ := 〈xp, yp〉0 + λ〈xm, ym〉0, for x, y ∈ m⊕ p. (5.2)

Theorem 5.1 ([Wa]). Given a homogeneous fibration K/H → G/H → G/K associated to a
triple H ⊆ K ⊆ G of compact Lie groups and with the same notation as above, assume that:

(a) The base (G, 〈 , 〉0)/K is a compact rank 1 symmetric space.
(b) The fibre (K, 〈 , 〉0)/H is positively curved.
(c) If x ∈ p and y ∈ m are both non-zero, then [x, y] 6= 0.

Then (G, gλ)/H = (G/H, 〈 , 〉λ), λ ∈ (0, 1), has positive sectional curvature.

Proof. As (G, gλ) → (G/H, 〈 , 〉λ) is a Riemannian submersion, if the plane spanned by
x, y ∈ m ⊕ p ∼= T[H](G/H) has zero curvature with respect to 〈 , 〉λ, then it also has zero
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curvature with respect to gλ on G. By the Eschenburg Lemma 3.1 and since m ∈ k, this is
true if and only if

0 = [x, y] = [xp, yp] = [xm, ym].

By (a), xp and yp must be linearly dependent, so without loss of generality xp = 0. On
the other hand, by (b), xm and ym must be linearly dependent, hence without loss of
generality ym = 0. Therefore x ∈ m and y ∈ p with [x, y] = 0, contradicting (c), so there
cannot be any zero-curvature planes. �

Positively curved homogeneous spaces were classified in the 70’s by Wallach [Wa]
and Bérard-Bergery [BB]. Besides the CROSSes mentioned before, examples occur only
in dimensions 6, 7, 12, 13 and 24. Ignoring metrics for the moment, the entire list consists
of the following manifolds (cf. [Zi2]):

(a) The (Wallach) flag manifolds:

W 6 = SU(3)/T 2

W 12 = Sp(3)/ Sp(1)3

W 24 = F4 / Spin(8)

(b) The Berger spaces:

B7 = SO(5)/SO(3)max

B13 = SU(5)/(Sp(2) · S1)

(c) The Aloff-Wallach spaces [AW]:

W 7
k,l = SU(3)/S1

k,l, for gcd(k, l) = 1, kl(k + l) 6= 0.

For the Berger space B7, the maximal subgroup SO(3)max ⊆ SO(5) is given by the
unique five-dimensional representation determined by the action of SO(3) (via conjuga-
tion) on

R5 = {A ∈M3×3(R) | At = A, tr(A) = 0}.

It turns out that B7 is isotropy irreducible, hence there is a unique homogeneous metric
up to scaling. In particular, (B7, g) = (SO(5), 〈 , 〉0)/ SO(3)max is positively curved, as
can be seen from a direct computation which will not appear here.

In all other cases Theorem 5.1 can be applied to establish positive curvature:

(a) From the inclusions T 2 ⊆ U(2) ⊆ SU(3), Sp(1)3 ⊆ Sp(2) × Sp(1) ⊆ Sp(3) and
Spin(8) ⊆ Spin(9) ⊆ F4 one obtains the homogeneous fibrations

S2 →W 6 → CP2

S4 →W 12 → HP2

S8 →W 24 → CaP2.

As all three cases are similar, positive curvature will be demonstrated only for
W 6. It is clear that both (U(2), 〈 , 〉0)/T 2 = (S2, ĝ) and (SU(3), 〈 , 〉0)/U(2) =

(CP2, ǧ) are CROSSes, hence the assumptions (a) and (b) hold in Theorem 5.1. In
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this case, given T 2 ⊆ U(2) ⊆ SU(3), one has

h = {diag(is, it,−i(s+ t)) | s, t ∈ R},

m =
{

diag(V, 0) | V =
(

0 v
−v̄ 0

)
, v ∈ C

}
,

p =
{( 0 0 w1

0 0 w2
−w̄1 −w̄2 0

)
| w = (w1, w2)t ∈ C2

}
.

It is now a trivial exercise to check that [x, y] = 0 for x ∈ p, y ∈ m, if and only if
either x = 0 or y = 0. Consequently, (W 6, 〈 , 〉λ) = (SU(3), gλ)/T 2 has positive
curvature by Theorem 5.1.

(b) For the Berger space B13, the subgroup Sp(2) · S1 ⊆ SU(5) consists of matrices of
the form diag(z̄4, zA), where z ∈ S1 ⊆ C, A ∈ Sp(2), and Sp(2) ⊆ SU(4) via the
standard embedding. Therefore,

Sp(2) · S1 = (Sp(2)× S1)/{±(Id, 1)} ⊆ U(4) ⊆ SU(5).

Then B13 occurs as the total space of a fibration

RP5 → B13 → CP4,

where the fibre is U(4)/(Sp(2) · S1) = SU(4)/(Sp(2) · Z2) = SO(6)/O(5) = RP5.
A bi-invariant metric on SU(5) induces a bi-invariant metric on SO(6), which in
turn induces a metric with constant positive curvature on the fibre RP5. As the
base (SU(5), 〈 , 〉0)/U(4) = (CP4, ǧ) is a CROSS, it follows from Theorem 5.1 that
(B13, 〈 , 〉λ) = (SU(5), gλ)/(Sp(2) · S1) is positively curved.

(c) For the Aloff-Wallach spaces, S1
k,l ⊆ SU(3) consists of diagonal matrices of the

form diag(zk, zl, z̄k+l), where z ∈ S1 ⊆ C, and gcd(k, l) = 1 ensures that there is
no ineffective kernel. The inclusions S1

k,l ⊆ U(2) ⊆ SU(3) lead to a homogeneous
fibration

S3/Zk+l →W 7
k,l → CP2,

where U(2)/S1
k,l = S3/Zk+l is a lens space whenever k + l 6= 0. Assuming then

k + l 6= 0, the computation to show that (W 7
k,l, 〈 , 〉λ) has positive curvature (if, in

addition, kl 6= 0) is similar to that above for the Wallach space W 6. More details
may be found in [Zi2], as well as an argument showing that W 7

k,l does not admit
any homogeneous metric with positive curvature whenever kl(k + l) = 0.

On the other hand, the Aloff-Wallach spaces are the subfamily of the Eschen-
burg spaces (discussed in the next section) consisting of homogeneous spaces
and, as such, positive sectional curvature follows from the arguments for the Es-
chenburg spaces below.

6. BIQUOTIENTS WITH POSITIVE SECTIONAL CURVATURE

Except for a single seven-dimensional manifold, homeomorphic but not diffeomor-
phic to the unit tangent bundle T 1S4 of the standard four-dimensional sphere S4, dis-
covered independently by Dearricott [De] and Grove, Verdiani and Ziller [GVZ] and
which will not be discussed here, all other known simply connected manifolds admit-
ting a metric with positive curvature are biquotients. They fall into two infinite families
of dimensions 7 and 13, the Eschenburg and Bazaikin spaces respectively, and an isolated
example in dimension 6, the inhomogeneous flag manifold:
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(a) Eschenburg spaces: For p, q ∈ Z3,

E7
p,q = (SU(3), gλ)//S1

p,q.

(b) Bazaikin spaces: For q1, . . . , q5 ∈ Z,

B13
q1,...,q5 = (SU(5), gλ)//(Sp(2) · S1

q1,...,q5).

(c) Inhomogeneous flag manifold:

E6 = (SU(3), gλ)//T 2.

Given p = (p1, p2, p3), q = (q1, q2, q3) ∈ Z3, with
∑
pi =

∑
qi, the Eschenburg biquo-

tients (see [AW], [Es1]) are defined as E7
p,q := (SU(3), gλ)//S1

p,q , where S1
p,q acts isometri-

cally on (G, gλ) = (SU(3), gλ) via

z ? A = diag(zp1 , zp2 , zp3) ·A · diag(z̄q1 , z̄q2 , z̄q3), A ∈ SU(3), z ∈ S1,

and the left-invariant, right U(2)-invariant metric gλ on G = SU(3) is defined by a
Cheeger deformation in the direction of K = U(2) ⊆ SU(3) of the bi-invariant metric
〈v, w〉0 = −Re(tr(vw)), v, w ∈ g, where the inclusion is via

A ∈ U(2) 7→ diag(A, det(A)) ∈ SU(3).

The action is free if and only if

gcd(p1 − qσ(1), p2 − qσ(2)) = 1 for all permutations σ ∈ S3, (6.1)

in which case E7
p,q is called an Eschenburg space.

It is important to remark that the above defined circle subgroup S1
p,q is not, in general,

a subgroup of SU(3)× SU(3). Indeed, S1
p,q ⊂ S(U(3)× U(3)) := {(A,B) ∈ U(3)× U(3) |

detA = detB}. This is not a problem, however, since the bi-invariant metric on SU(3)

can be thought of as the restriction of the analogously defined bi-invariant metric on
U(3). Hence, an element of (A,B) ∈ S(U(3)× U(3)) maps (SU(3), 〈 , 〉0) isometrically to
itself via X ∈ SU(3) 7→ AXB−1. In particular, conjugation by an element of the centre of
U(3) is an isometry (namely, the identity map) of (SU(3), 〈 , 〉0), and remains an isometry
with respect to the new metric gλ. Therefore the Eschenburg biquotient E7

p′,q′ defined by
the action of the circle S1

p′,q′ , where p′ = (p1+c, p2+c, p3+c) and q′ = (q1+c, q2+c, q3+c),
with c ∈ Z, is isometric to E7

p,q . Furthermore, introducing an ineffective kernel to the
circle action will not alter the isometry class of the biquotient. Thus E7

p̃,q̃ defined by
p̃ = (kp1, kp2, kp3) and q̃ = (kq1, kq2, kq3) is isometric to E7

p,q . In particular, it follows
that a circle action by S1

p,q ⊂ S(U(3) × U(3)) can then be rewritten as the action of a
circle subgroup of SU(3) × SU(3) via the change of parameters (p1, p2, p3, q1, q2, q3) 7→
(3p1 − κ, 3p2 − κ, 3p3 − κ, 3q1 − κ, 3q2 − κ, 3q3 − κ), where κ :=

∑
pi =

∑
qi, without

changing the isometry class.
From Section 4 it is clear that, for the S1

p,q-action, permuting the pi (via the action of
the Weyl group of SU(3)) and permuting q1, q2 are isometries, while permuting all of the
pi and swapping p, q are diffeomorphisms. Indeed, given the fixed choice of embedding
U(2) ↪→ SU(3), cyclic permutations of the qi (and, similarly, swapping p and q and con-
sidering cyclic permutations of the pi) induce, in general, non-isometric metrics on the
quotient E7

p,q .

Lemma 6.1 ([Es1]). Let

y1 := diag(−2i, i, i), y3 := diag(i, i,−2i) ∈ g = su(3).



20 M. KERIN

Then a plane σ ⊂ g = su(3) has zero curvature with respect to gλ if and only if either y3 ∈ σ, or
Adk y1 ∈ σ for some k ∈ K.

Proof. Notice first that there is a decompostion k = z ⊕ su(2) of the Lie algebra of K =

U(2), where z = {ty3 | t ∈ R} denotes the Lie algebra of the centre of K ⊆ G and su(2)

the Lie algebra of SU(2) ⊆ U(2).
By Lemma 3.1, if x, y ∈ g span σ then, since K ⊆ G is a symmetric pair of rank 1, the

p-components of x and y must be linearly dependent. Hence, without loss of generality,
x ∈ k. On the other hand, as the k-components of x and y must also commute and
k = z ⊕ su(2), it follows that the su(2)-components of x and y commute, which is only
possible if they are linearly dependent. Therefore, again without loss of generality, either
x ∈ z and y ∈ p⊕ su(2), or else x ∈ k and y ∈ z⊕ p.

Since [x, y] = 0 by Lemma 3.1, in the first case it follows that x ∈ z and y ∈ su(2),
whereas in the second case one easily sees that (up to scaling) x must have two eigen-
values i, hence must be conjugate via an element of K to y1, i.e. x = Adk y1 for some
k ∈ K.

Conversely, for dimension reasons there exist vectors such that in either case the iden-
tities in Lemma 3.1 are satisfied. �

Theorem 6.2 ([Es1]). There exists an ordering on the qi such that E7
p,q := (SU(3), gλ)//S1

p,q

has positive curvature if and only if

qi 6∈ [p, p] for i = 1, 2, 3, (6.2)

where p := min{p1, p2, p3}, p := max{p1, p2, p3}.

Proof. Suppose qi 6∈ [p, p] for i = 1, 2, 3 and let P = idiag(p1, p2, p3), Q = i diag(q1, q2, q3).
The vertical subspace at A = (aij) ∈ SU(3), left-translated to Id ∈ SU(3), is

(dLA∗)AVA = {t vA | t ∈ R, vA := AdA∗ P −Q} ,

where A∗ = Āt. Notice that y3 ∈ k. Thus 0 = gλ(vA, y3) if and only if 0 = 〈vA, y3〉0. Now,
since 〈v, w〉0 = −Re tr(vw),

0 = gλ(vA, y3) ⇐⇒
3∑
j=1

|aj3|2pj = q3. (6.3)

Similarly, for Adk y1, some k ∈ K,

0 = gλ(vA,Adk y1) ⇐⇒
3∑
j=1

|(Ak)j1|2pj = |k11|2q1 + |k21|2q2. (6.4)

Since qi 6∈ [p, p], i = 1, 2, 3, and
∑
pj =

∑
qj , two of the qi must lie on one side of [p, p],

and one on the other. Reorder and relabel the qi so that q1, q2 lie on the same side of the
interval [p, p]. Since A and k are both unitary there are no solutions to either (6.3) or (6.4).
Hence E7

p,q has positive curvature.
For the converse suppose that E7

p,q has positive curvature. If qi ∈ [p, p] for some
i = 1, 2, 3 then by continuity there exists a solution to either (6.3) or (6.4), and hence either
y3 or Adk y1 is horizontal. By Lemma 6.1, since the orbits of S1

p,q are one-dimensional,
one can always find another horizontal vector x which, together with either y3 or Adk y1,
will span a zero-curvature plane. The main result of [Ta] then implies that this hori-
zontal zero-curvature plane must project to a zero-curvature plane in E7

p,q , which is a
contradiction. �
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Corollary 6.3. The inhomogeneous flag manifold E6 = (SU(3), gλ)//T 2 is positively curved,
where T 2 acts freely and isometrically on (SU(3), gλ) via

(z, w) ·A = diag(z, w, zw)A diag(1, 1, z̄2w̄2), for (z, w) ∈ T 2, A ∈ SU(3).

Proof. Consider the circle subgroup of T 2 with slope (k, l), where k, l ∈ Z, gcd(k, l) = 1

and kl > 0. The resulting circle action on SU(3) is given by

z ·A = diag(zk, zl, zk+l)Adiag(1, 1, z̄2(k+l)).

The corresponding biquotient is an Eschenburg space E7
p,q with p = (k, l, k + l) and q =

(0, 0, 2(k+ l)). By Theorem 6.2 E7
p,q is positively curved. Moreover, E7

p,q is a principal S1-
bundle overE6, where the principal S1 action is the free, isometric action by a generating
circle of T 2 complementary to the circle with slope (k, l). Therefore there is a Riemannian
submersion E7

p,q → E6, hence E6 is positively curved. �

In his Habilitation [Es1], Eschenburg has shown that every other free biquotient T 2

action on SU(3) is conjugate to either that yielding the flag manifold W 6 or that yielding
the inhomogeneous flag above. As discovered in [Es2], these two manifolds are topo-
logically distinct. Indeed, they have the same cohomology groups, but they are distin-
guished by their cohomology ring structures.

The topology of the positively curved Eschenburg spaces has been widely studied.
Eschenburg himself showed in [Es2] that there are infinitely many homotopy types, by
exploiting the order of the torsion cohomology group H4(E7

p,q;Z) = Zs(p,q). If, on the
other hand, one fixes the cohomology ring, then Chinburg, Escher and Ziller have shown
that there are only finitely many diffeomorphism types of positively curved Eschenburg
spaces. They exploited the work of Kruggel [Kr1, Kr2, Kr3], who had previously deter-
mined the topological invariants which classify a large class of the Eschenburg spaces up
to homotopy, homeomorphism and diffeomorphism. Shankar [Sh] has shown that most
Eschenburg spaces are strongly inhomogeneous, i.e. they are not even homotopy equiv-
alent to a homogeneous space. He also showed that there are positively curved Eschen-
burg spaces which are homotopy equivalent but not homeomorphic to Aloff-Wallach
spaces. Among the Aloff-Wallach spaces (see [KS]) and, more generally, the Eschenburg
spaces (see [CEZ]), there are pairs of positively curved spaces which are homeomorphic
but not diffeomorphic to each other. Furthermore, there are also pairs which are diffeo-
morphic but not isometric.

It remains only to deal with the Bazaikin spaces (see [Ba], [DE]). Given the bi-invariant
metric 〈v, w〉0 = −Re(tr(vw)), v, w ∈ g, on G = SU(5), perform a Cheeger deformation
in the direction of the subgroup K = U(4) ⊆ G = SU(5), where K is the image of the
inclusion map U(4) ↪→ SU(5); A 7→ diag(A,detA). The resulting metric gλ on G is left
invariant and right K-invariant.

Consider now

Uq1,...,q5 := Sp(2) · S1
q1,...,q5 = (Sp(2)× S1

q1,...,q5)/Z2, Z2 = {±(1, I)},

where q1, . . . , q5 ∈ Z and Sp(2) is considered as a subgroup of SU(4) via the standard
inclusion Sp(2) ↪→ SU(4) given by

A = S + Tj ∈ Sp(2) 7→ Â =

(
S T

−T̄ S̄

)
∈ SU(4), S, T ∈M2(C). (6.5)



22 M. KERIN

Therefore Uq1,...,q5 = Sp(2) · S1
q1,...,q5 acts effectively and isometrically on (G, gλ) via

[A, z] ? B = diag(zq1 , . . . , zq5) ·B · diag(Â−1, z̄q),

with q :=
∑
qi, z ∈ S1, B ∈ G, and A ∈ Sp(2) ⊆ SU(4).

It is not difficult to show that the action of Sp(2)·S1
q1,...,q5 is free if and only all q1, . . . , q5

are odd and

gcd(qσ(1) + qσ(2), qσ(3) + qσ(4)) = 2 for all permutations σ ∈ S5. (6.6)

The quotient B13
q1,...,q5 := (G, gλ)//Uq1,...,q5 is hence a manifold called a Bazaikin space.

From the discussion in Section 4 it follows that permuting the qi is an isometry ofB13
q1,...,q5 .

Notice further that, if q1 = · · · = q5 = 1, then the resulting Bazaikin space B13
1,1,1,1,1 is

none other than the Berger space B13.
Let Q = i diag(q1, . . . , q5). The vertical subspace at A ∈ G, left-translated back to

Id ∈ G, with respect to the Uq1,...,q5 action may be written as

(dLA∗)AVA = {tAdA∗ Q− diag(V, itq) | t ∈ R, V ∈ sp(2) ⊆ su(4)},

where A∗ = Āt. One must determine when a zero-curvature plane with respect to gλ is
horizontal at A ∈ G. A vector x = xp + 1

λxk is orthogonal to (dLA∗)AVA with respect to
gλ if and only if

〈x,AdA∗ Q− diag(0, 0, 0, 0, iq)〉0 = 0 and 〈x, diag(V, 0)〉0 = 0, (6.7)

for all V ∈ sp(2) ⊆ su(4).

Lemma 6.4. A σ ⊆ g is a horizontal zero-curvature plane with respect to gλ if and only if either

w1 := diag(i, i, i, i,−4i) or w2 := Adk diag(2i,−3i, 2i,−3i, 2i),

for some k ∈ Sp(2) ⊆ K, is in σ and is horizontal.

Proof. Suppose that σ has zero-curvature with respect to gλ and is spanned by x, y ∈ g.
As K ∈ G is a compact rank 1 symmetric pair, [xp, yp] = 0 by Lemma 3.1, and hence it
may be assumed without loss of generality that yp = 0, i.e x = xp + xk, y = yk.

If xp = 0 too, then x, y ∈ k. Notice that k = z⊕ sp(2)⊕ m, where the decomposition is
orthogonal with respect to 〈 , 〉0, z is the centre of k and is generated by diag(i, i, i, i,−4i),
and m = sp(2)⊥ ⊂ su(4). By ssumption, x and y are horizontal, hence orthogonal to sp(2)

with respect to 〈 , 〉0. Therefore x, y ∈ z ⊕ m, and [x, y] = 0 if and only if [xm, ym] = 0.
However, since Sp(2) = Spin(5) ⊆ SU(4) = Spin(6) is a rank one symmetric pair, xm and
ym must be linearly dependent. Thus, without loss of generality it may be assumed that
x = xm, y = yz. In particular, z ⊆ σ, i.e. w1 = diag(i, i, i, i,−4i) ∈ σ.

Note that w1 being horizontal is not only a necessary condition for σ ⊂ k to be a
horizontal zero-curvature plane, but is also sufficient for the existence of such a plane as,
by counting dimensions, one may always find a vector x ∈ m such that σ = {x,w1} is a
horizontal zero-curvature plane.

On the other hand, suppose now that xp 6= 0. The conditions for zero-curvature in
Lemma 3.1 become 0 = [xp, yk] = [xk, yk]. Suppose that

xp =

(
0 ξ

−ξ̄t 0

)
, y = yk = diag(Z,− tr(Z)),

where ξ ∈ C4 and Z ∈ u(4) = z ⊕ su(4). Then 0 = [xp, yk] if and only if Zξ = − tr(Z)ξ.
Let Z = it Id +Z ′ ∈ z ⊕ su(4), t ∈ R. The requirement that y be horizontal implies that
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Z ′ ⊥ sp(2) ⊂ su(4). Recall once again that SU(4) = Spin(6) and Sp(2) = Spin(5), hence
SU(4)/Sp(2) = S5 and, since Sp(2) = Spin(5) acts transitively on distance spheres in
m = sp(2)⊥ ⊂ su(4), one may write

Z ′ = k diag(is,−is, is,−is)k−1, for some k ∈ Sp(2).

This in turn implies that Z may be written as

Z = k diag(i(t+ s), i(t− s), i(t+ s), i(t− s))k−1, k ∈ Sp(2).

However, it was established above that trZ = −4it is an eigenvalue of Z. Therefore
either −4t = t + s or −4t = t − s, i.e. s = −5t or s = 5t, and y must be conjugate by an
element of Sp(2) to either diag(−4it, 6it,−4it, 6it,−4it) or diag(6it,−4it, 6it,−4it,−4it).
It follows that, up to scaling,

y = k diag(2i,−3i, 2i,−3i, 2i)k−1 ∈ σ, k ∈ Sp(2) ⊆ K ⊆ G.

Conversely, if such a vector y is horizontal it is not difficult to find a complementary
vector x such that they span a plane σ which is horizontal and has zero curvature with
respect to gλ. Indeed, setting xk = 0 means x is automatically orthogonal to sp(2), and it
remains to choose x = xp such that x satisfies the first condition of (6.7), namely that x is
orthogonal to a one-dimensional subspace. A choice of appropriate x = xp is equivalent
to choosing an eigenvector for Z above. The set of such eigenvectors has dimension
bigger than one. Hence x = xp may be chosen such that it has the desired properties. �

Lemma 6.5. The vectors

w1 = diag(i, i, i, i,−4i) and w2 = Adk diag(2i,−3i, 2i,−3i, 2i),

for k ∈ Sp(2), are horizontal with respect to gλ at A = (aij) ∈ G if and only if

q =

5∑
`=1

|a`5|2q`, and (6.8)

0 =

5∑
`=1

(|(Ak)`2|2 + |(Ak)`4|2)q` (6.9)

respectively.

Proof. First recall that both w1 and w2 lie in k = u(4). Therefore w1 and w2 are horizontal
with respect to gλ if and only if they are horizontal with respect to 〈 , 〉0. Moreover, by
the discussion in the proof of Lemma 6.4, w1 and w2 are both orthogonal to sp(2) with
respect to 〈 , 〉0. Hence one need only obtain expressions for w1 and w2 being orthogonal
with respect to 〈 , 〉0 to vA := AdA∗ Q− diag(0, 0, 0, 0, iq), where Q = diag(iq1, . . . , iq5).

Recall that 〈x, y〉0 = −Re tr(xy). Then w1 is horizontal if and only if

−4q = 〈diag(0, 0, 0, 0, iq), w1〉0
= 〈AdA∗ Q,w1〉0

=

5∑
`=1

(|a`1|2 + |a`2|2 + |a`3|2 + |a`4|2 − 4|a`5|2)q`.

Now using the fact that A is unitary together with q =
∑5
`=1 q` yields

−4q = q − 5

5∑
`=1

|a`5|2q`,
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from which (6.8) follows immediately.
Consider now w2 = Adk ŵ, where ŵ = diag(2i,−3i, 2i,−3i, 2i). Then w2 is horizontal

if and only if

2q = 〈diag(0, 0, 0, 0, iq), ŵ〉0
= 〈Adk∗ diag(0, 0, 0, 0, iq), ŵ〉0 for k ∈ Sp(2) ⊆ SU(4)

= 〈diag(0, 0, 0, 0, iq), w2〉0
= 〈AdA∗ Q,w2〉0
=
〈
Ad(Ak)∗ Q, ŵ

〉
0

=

5∑
`=1

(
2|(Ak)`1|2 − 3|(Ak)`2|2 + 2|(Ak)`3|2 − 3|(Ak)`4|2 + 2|(Ak)`5|2

)
q`

=

5∑
`=1

(
2− 5

(
|(Ak)`2|2 + |(Ak)`4|2

))
q`, since A is unitary.

Equation 6.9 now follows immediately from q =
∑5
`=1 q`. �

Theorem 6.6. The Bazaikin spaceB13
q1,...,q5 = (SU(5), gλ)//Sp(2) ·S1

q1,...,q5 is positively curved
if and only if

qσ(1) + qσ(2) > 0 (or < 0) for all permutations σ ∈ S5. (6.10)

Proof. Suppose qσ(1) + qσ(2) > 0 for all permutations σ ∈ S5. In particular notice that this
implies that q > 0. By Lemmas 6.4 and 6.5, one need only examine equations (6.8) and
(6.9) to obtain the desired result. Consider first equation (6.8) in the alternative form

5∑
`=1

(1− |a`5|2)q` = 0.

Since A ∈ SU(5) is unitary, either 1 − |a`5|2 6= 0 for all ` = 1, . . . , 5, or 1 − |a`05|2 = 0 for
exactly one `0 ∈ {1, . . . , 5}. In the first case, for some `0 ∈ {1, . . . , 5},

5∑
`=1

(1− |a`5|2)q` > (1− |a`05|2)

5∑
`=1

q` = (1− |a`05|2)q > 0,

and so there are no solutions to equation (6.8). In the second case equation (6.8) reduces,
without loss of generality, to q1 = q. Thus, in order to have solutions, one requires
q2 + q3 + q4 + q5 = 0, which is impossible by hypothesis. Hence there can be no solutions
to equation (6.8).

Consider now equation (6.9). Since A is unitary there must be at least two indices
` ∈ {1, . . . , 5} such that |(Ak)`2|2 + |(Ak)`4|2 6= 0. Without loss of generality, assume that
` = 1 gives the minimal |(Ak)`2|2 + |(Ak)`4|2 6= 0. Then, defining q̂ to be the sum of those
qj for which |(Ak)j2|2 + |(Ak)j4|2 6= 0,

5∑
`=1

(
|(Ak)`2|2 + |(Ak)`4|2

)
q` >

(
|(Ak)12|2 + |(Ak)14|2

)
q̂ > 0

since q̂ is the sum of at least two q` and must therefore be positive by hypothesis. Hence
equation (6.9) has no solutions.

Conversely, say now thatB13
q1,...,q5 admits positive curvature. Suppose, without loss of

generality, that q1 + q2 6 0 and q2 + q3 > 0. If q1 + q2 = 0 then choosing A ∈ SU(5) such
that |a15|2 = |a25|2 = 1

2 yields a solution of equation (6.8) and, by Lemmas 6.4 and 6.5,
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there exists a horizontal zero-curvature plane at this A, hence by [Ta] at the image point
in B13

q1,...,q5 , which is a contradiction. On the other hand, if q1 + q2 < 0 and q2 + q3 > 0

then, since both A ∈ SU(5) and k ∈ Sp(2) ⊆ K are unitary, a pair of matrices A0 and k0

may be chosen such that |(A0k0)12|2 = 1 and |(A0k0)24|2 = 1, and similarly A1 and k1

such that |(A1k1)22|2 = 1 and |(A1k1)34|2 = 1. Therefore, by connectedness,

q1 + q2 6
5∑
`=1

(|(Atkt)`2|2 + |(Atkt)`4|2)q` 6 q2 + q3

along some path Atkt in SU(5), t ∈ [0, 1], from A0k0 to A1k1. By continuity, one obtains a
solution to equation (6.9) and hence a zero-curvature plane by Lemmas 6.4 and 6.5. �

As for the Eschenburg spaces, Bazaikin spaces can be distinguished by the torsion in
their cohomology. Indeed, the fact that H6(B13

q1,...,q5 ;Z) = H8(B13
q1,...,q5 ;Z) = Zs(q1,...,q5)

allows one to conclude that there are infinitely many homotopy types of Bazaikin spaces
admitting positive curvature ([Ba], [FZ]). Moreover, Florit and Ziller [FZ] have shown
that if the cohomology ring is fixed, there are only finitely many diffeomorphism types
with positive curvature. However, in contrast to the case of the Eschenburg spaces,
they have shown that there is strong evidence to suggest that positively curved Bazaikin
spaces are pairwise homeomorphically distinct. They have also shown that among the
positively curved Bazaikin spaces, only the Berger spaceB13 can be homotopically equiv-
alent to a homogeneous space. It should be noted, however, that there is no classification
of Bazaikin spaces corresponding to that achieved by Kruggel for the Eschenburg spaces.

Finally, Taimanov [Tai] showed, that every Bazaikin space contains an Eschenburg
space as a totally geodesic submanifold. Eschenburg and Dearricott [DE] subsequently
showed that there are, in fact, generically ten totally geodesically embedded Eschenburg
spaces in each Bazaikin space. The Bazaikin space has positive curvature if and only if
each of these totally geodesic Eschenburg spaces does.

Conversely, it was shown in [Ke] that, given any Eschenburg space, there are infinitely
many topologically distinct Bazaikin spaces into which it can be totally geodesically em-
bedded. It remains, however, unknown whether every positively curved Eschenburg
space can be totally geodesically embedded into a positively curved Bazaikin space. In
fact, for the usual construction of these totally geodesic embeddings, there exist infinitely
many counter-examples.
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