## Module Content

The module covers
• Axiom systems (3 lectures),
• Hyperbolic geometry (4-5 lectures),
• Projective geometry (5-6 lectures),
• Spherical geometry (5 lectures),
• Euclidean geometry (5 lectures),
• and explains how these topics can be applied to
• Distance problems,
• Coordinate systems,
• Teaching mathematics at second level.

## Module Coordinates

• Lecturer: Dr Ronan Egan
• Lectures: Thursday 12-1pm - AM150 & Friday 12-1pm - AC203.
• Tutorials: Mon 11-12pm - AC215 & Wed 3-4pm - CA003.
• Recomended text: Geometry by Roger Fenn. Springer Undergraduate Mathematics Series. Some relevent online material will be posted occasionally.
• Problem sheet: available here.
• Module Website: Information and module documents will be posted to this site, which is linked from the Blackboard MA334 Geometry pages. Blackboard will also be used for announcements and for posting grades.

## Module Assessment

• End of semester examination: 50%.
• Continuous assessment: 30%.
• Communications skils: 20%.

## Supplementary Material and News

• A model paper is avaialble here.
• Here is a the website for background in hyperbolic geometry and its influence in Escher paintings. http://pi.math.cornell.edu/~mec/Winter2009/Mihai/index.html
• Find the online version of Euclid's Elements here. https://mathcs.clarku.edu/~djoyce/elements/bookI/bookI.html
• An article on 100 proofs of the Theorem of Pythogoras. http://www.cut-the-knot.org/pythagoras/
• Ricardo Nirenberg's lecture on The Axiomatic Method. https://www.albany.edu/~rn774/fall96/euclid.html
• ## Lecture Notes

 Lecture Notes (click on number) Lecture Summaries 1 Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24