
Week 2: Introduction to Programming in C
CS211: Programming and Operating Systems

Niall Madden

Wednesday and Thursday, 17+18 Feb, 2021

CS211 — Week 2: Introduction to Programming in C 1/36

Reminders CS211

Lecturer: Dr Niall Madden, School Mathematics, Statistics and
Applied Mathematics (he/him).

Contact me: Email: Niall.Madden@NUIGalway.ie
Always include “CS211” in the subject line of your
message

CS211 — Week 2: Introduction to Programming in C 2/36

mailto:Niall.Madden@NUIGalway.ie

Reminders CS211 Course materials, lectures, etc

This module will run “remotely” in its entirety. As this is the first
(and, hopefully, last) time that will happen, we will adapt...
For now, the plan is

We won’t distinguish between “lectures” and “labs”; and will
call them all “classes”.

There will be two classes per week, (probably) increasing to
three from Week 3.

For the first two weeks, classes will be similar to traditional
lectures, but from Week 3, there will be more interactive
lab-type sessions.

All non-interactive parts will be recorded, and recordings
will be made available the day after classes.

Recordings will be broken into chunks of 10-15 minutes, each
corresponding to a “Part”, and published in “Videos” section.

Slides will be made available separately.

This will be reviewed regularly; expect numerous short
surveys!

CS211 — Week 2: Introduction to Programming in C 3/36

Reminders CS211 Course materials, lectures, etc

Exercise (1.3 from last week)
Here is a meme I made for last week. Make one based on last
weeks or this week’s notes, and send it to me.

CS211 — Week 2: Introduction to Programming in C 4/36

Reminders CS211 Course materials, lectures, etc

BTW, this is the best one so far (thanks, SB!).

Can you do as good?

CS211 — Week 2: Introduction to Programming in C 5/36

Reminders CS211 Class times

Mon Tue Wed Thu Fri
9 – 10

10 – 11
11 – 12
12 – 1
1 – 2 3

2 – 3
3 – 4 3

4 – 5

CS211 — Week 2: Introduction to Programming in C 6/36

This week’s classes
1 Part 1: Introduction

A little history
Books and Compilers
Course Content (C part)

2 Part 2: Basic Structure
A simple example
A comment about comments

3 Part 3: Variables
Variable names
Printing the value of a variable

4 Part 4: Keywords and Operators
Keywords
Operators
Logic Operators

5 Exercise

Abstruse Goose: under the hood

CS211 — Week 2: Introduction to Programming in C 7/36

http://abstrusegoose.com/secretarchives/under-the-hood

Part 1: Introduction A little history

[Start of Week 02, Part 1]

The first version of the UNIX operating system (from which
many/most other modern systems evolved, including MacOS and
GNU/Linux) was developed at Bell Labs in 1969 for a DEC PDP-7.
It was written in assembly language.

Assembly language is a low-level language that closely
resembles a computers native machine code instructions.

Although not quite as obscure as machine code, each processor
family had its own assembly language

CS211 — Week 2: Introduction to Programming in C 8/36

Part 1: Introduction A little history

It became apparent to the team at Bell Labs that, to develop the
operating system further, it would have to be rewritten in a high
level language.

Problem: there wasn’t one available.

Solution: They wrote one: in 1972/73 the first C compiler was
written.

It’s main goals were

to be suitable for developing operating systems,

be portable: compilers should be available for different
computers.

CS211 — Week 2: Introduction to Programming in C 9/36

Part 1: Introduction A little history

The C language has continued to be developed and refined, with
the most recent (stable) standard released in 2017: called C17, it
replaced C11 (actually just some fixes to C11, with no new
features).

Many other languages are derived from C, or borrow heavily from
its syntax, notably C++, Java, C#, PHP, Objective-C, Perl,
Javascript.

CS211 — Week 2: Introduction to Programming in C 10/36

Part 1: Introduction Books and Compilers

Get a good book on C. It doesn’t really matter which book! I like

These are all in the library, but only “Practical C” is available online.
(Some day soon I’ll get the best chapters from the others scanned
and added to the reading list...).

If you find some useful resource for learning C, please let me
know, so that I can share with the rest of the class.

CS211 — Week 2: Introduction to Programming in C 11/36

Part 1: Introduction Books and Compilers

You’ll also need some software to support your programming,
usually:

an IDE in which you write code;

a compiler to make your code executable.

You can install these on your own computer. If doing so, I suggest
Code::Block: http://www.codeblocks.org/, which is free and
comprehensive (though some of the lab work we will do is
OS-dependent).

Mainly, however, we will use some excellent online editors and
compilers. I suggest

https://www.onlinegdb.com/online_c_compiler

http://cpp.sh/

https://www.codechef.com/ide

www.tutorialspoint.com/compile_c_online.php

CS211 — Week 2: Introduction to Programming in C 12/36

http://www.codeblocks.org/
https://www.onlinegdb.com/online_c_compiler
http://cpp.sh/
https://www.codechef.com/ide
www.tutorialspoint.com/compile_c_online.php

Part 1: Introduction Course Content (C part)

In order to explore how operating systems work, you’ll need to a
good basic grasp of C. The basic components that we’ll study are

1 Fundamentals of C, including
program structure
data types and variable declarations,
input/output,
arithmetic,
loops,
Flow of control (if statements), conditionals,

2 Functions.

3 File management and data streams.

4 Arrays, pointers and strings.

5 Dynamic memory management.

6 Abstract data types: Structures and Unions.

CS211 — Week 2: Introduction to Programming in C 13/36

Part 1: Introduction Course Content (C part)

For the next two weeks we’ll cover the fundamentals:

(i) Basic programming structure (ii) Variables
(iii) Arithmetic (iv) Basic output
(v) for loops (vi) Basic input
(vii) if blocks (viii) functions.

[End of Week 02, Part 1]

CS211 — Week 2: Introduction to Programming in C 14/36

Part 2: Basic Structure

[Start of Week 02, Part 2]

Some important points about C:

It is a compiled language, not an interpretive one. This
means that we need a program, called the compiler to covert
our human-readable source code into something our
computer can interpret.

It is a very small language; and relies heavily on external
libraries that contain functions to achieve many important
tasks, including input and output.

But the compiler has to be told in advance how these
functions should be used. So before the compilation process,
the preprocessor is run to include the function descriptions
that the programmer thinks are necessary.

CS211 — Week 2: Introduction to Programming in C 15/36

Part 2: Basic Structure
The code is then compiled into machine instructions (object
code).

The object code is linked with library functions to produce
executable code.

CS211 — Week 2: Introduction to Programming in C 16/36

Part 2: Basic Structure A simple example

01Hello.c ←− link!

1 #include <stdio.h>

int main(void)

3 {

printf("Hello , World !\n");

5 return (0);

}

Line 1: The first line begins with a # symbol. This is a
“preprocessor directive”.

It directs the compiler to include a header file (a.k.a., “dot h file”)
called stdio.h.

stdio.h is the standard Input/Output header file. It contains
important information about the function printf().

The angle brackets < and > means that the preprocessor should
look in the “usual place” (varies between installations).

CS211 — Week 2: Introduction to Programming in C 17/36

http://www.maths.nuigalway.ie/~niall/CS211/Week02/01Hello.c

Part 2: Basic Structure A simple example

01Hello.c ←− link!

#include <stdio.h>

2 int main(void)

{

4 printf("Hello , World !\n");

return (0);

6 }

Line 2: In C, almost everything is either

1 a preprocessor directive.
2 a variable, or variable declaration.
3 a function

The example is no different. Essentially, it is just a definition of the
fundamental function main(). Here (and often), the function
main() does not take any arguments, but returns an integer.

C is case sensitive, so main is different from Main is different from
MAIN, etc.

CS211 — Week 2: Introduction to Programming in C 18/36

http://www.maths.nuigalway.ie/~niall/CS211/Week02/01Hello.c

Part 2: Basic Structure A simple example

01Hello.c ←− link!

#include <stdio.h>

2 int main(void)

{

4 printf("Hello , World !\n");

return (0);

6 }

Lines 3 and 6: The definition of the main() function is
encapsulated by “curly brackets”: { and }
In C these are used to delimit various types of programme blocks.

CS211 — Week 2: Introduction to Programming in C 19/36

http://www.maths.nuigalway.ie/~niall/CS211/Lecture03/01Hello.c

Part 2: Basic Structure A simple example

01Hello.c ←− link!

#include <stdio.h>

2 int main(void)

{

4 printf("Hello , World !\n");

return (0);

6 }

Line 4: The function printf() is used to send output to stdout.
Everything between quotes is displayed. The \n is a “new line”.
These are not printed by default, so Line 4 above is equivalent to

printf("World!"); printf("\n");

More about printf later....

Note that each (logical) line within a function is terminated by a
semicolon.

CS211 — Week 2: Introduction to Programming in C 20/36

http://www.maths.nuigalway.ie/~niall/CS211/Week02/01Hello.c

Part 2: Basic Structure A simple example

01Hello.c ←− link!

1 #include <stdio.h>

int main(void)

3 {

printf("Hello , World !\n");

5 return (0);

}

Line 5: The return keyword specifies what value should be
returned to the function that called it.

Here main is called by the Operating System, so in this instance it
specifies what the program returns to the OS on exit.

The value 0 (zero) means “everything is OK”.

CS211 — Week 2: Introduction to Programming in C 21/36

http://www.maths.nuigalway.ie/CS211/Week02/01Hello.c

Part 2: Basic Structure A comment about comments

Any good program should have some documentation to explain to
others

why, when and by who it was written,

how it works.

In C, there are two types of comments:

1 block comments; Starts with /* and ends with */.
Everything in between, including new lines, are ignored.

2 single line comments; Everything after // is ignored.

It is important to add comments to you code: your future self with
thank you. But, where possible, make the code self-commenting,
by using sensible names for identifiers.

[End of Week 02, Part 2]

CS211 — Week 2: Introduction to Programming in C 22/36

Part 3: Variables

[Start of Week 02, Part 3]

Variables are used to temporarily store values (numerical, text,
etc,) and refer to them by name, rather than value.

All variables must be defined before they can be used . That
means, we need to tell the compiler before we use them.

Every variable should have a type; this tells use what sort of value
will be stored in it.

The variables/data types we can define include

Integers (positive or negative whole numbers), e.g.,

i n t i ; i =−1;
i n t j =122;
i n t k = j + i ;

Note that one can initialize (i.e., assign a value to the variable
for the first time) at the time of definition.

CS211 — Week 2: Introduction to Programming in C 23/36

Part 3: Variables

Floats – these are not whole numbers. They usually have a
decimal places. E.g,

float pi=3.1415;

Characters – single alphabetic or numeric symbols, are
defined using the char keyword:
char c; or char s=’7’;

Note that again we can choose to initialize the character at
time of definition. Also, the character should be enclosed by
single quotes.

We can declare arrays or vectors as follows:
int Fib[10];

This declares a integer array called Fib. To access the first
element, we refer to Fib[0], to access the second: Fib[1],
and to refer to the last entry: Fib[9].

Note that in C, all vectors are indexed from 0.

CS211 — Week 2: Introduction to Programming in C 24/36

Part 3: Variables Variable names

In C, a variable (or function) name can be made up of up to 52
characters long and include

Alphabetic characters: A, B, . . . , Z, a, b, . . . , z

Numeric characters: 0, 1, . . . , 9

The underscore symbol:

However,

it must start with a letter or underscore.

it cannot be a keyword (e.g., for, if, return).

CS211 — Week 2: Introduction to Programming in C 25/36

Part 3: Variables Printing the value of a variable

To display the value stored in a variable, we use printf

02Variables.c

int k= -101;

12 float f=1.23456;

char c=’a’;

14 printf("Values of f, k, c are: %f, %d, %c\n",

f, k ,c);

Explanation:

CS211 — Week 2: Introduction to Programming in C 26/36

Part 3: Variables Printing the value of a variable

In this example, we use an array

Example (Using printf)
#include <stdio.h>

int main(void)

{

int Fib[3];

Fib[0]=1; Fib[1]=1;

Fib[2]=Fib[0]+Fib[1];

printf("Fib[2] = %d\n", Fib[2]);

return(0);

}

Explanation:

CS211 — Week 2: Introduction to Programming in C 27/36

Part 3: Variables More about printf()

To print a line of text: printf("Hello world");

To print some text followed by a new line:
printf("Hello world\n");

Here \n is an example of an “escape character”. Others
include \t for a horizontal tab and \a for an “alert”, i.e., a
beep.

%d is a conversion character . It means “treat the next
variable as an integer”. Other important ones include: %c (a
character), %f (a float), %s (a sting – i.e., and array of
characters).

[End of Week 02, Part 3]

CS211 — Week 2: Introduction to Programming in C 28/36

Part 4: Keywords and Operators Keywords

[End of Week 02, Part 4]

In has a set of reserved keywords; they cannot be used as
variable or function names:

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Some “new” ones, which may be supported by old compilers,
include

restrict Bool Complex Imaginary

CS211 — Week 2: Introduction to Programming in C 29/36

Part 4: Keywords and Operators Operators

Operators come in four flavours: Arithmetic, assignment
relational and logical .

Arithmetic Operators available in C include:

C Symbol Definition Example
+ addition c = a + b;

- subtraction c = a - b;

* multiplication c = a * b;

/ division c = a / b;

% remainder c = a % b;

Unlike Python, there isn’t a built-in function for powers or truncating
division.

CS211 — Week 2: Introduction to Programming in C 30/36

Part 4: Keywords and Operators Operators

The Assignment and Arithmetic-Assignment Operators are:

Symbol Definition Example
= assignment a=b;

++ increment a++;

-- decrement a--;

+= increment and assignment a+=2;

-= increment and assignment a-=2;

= increment and assignment a=2;

/= increment and assignment a/=2;

%= increment and assignment a%=2;

The following is legal, but not encouraged: i=j=k=0 and is the
same as i = (j = (k = 0)).

CS211 — Week 2: Introduction to Programming in C 31/36

Part 4: Keywords and Operators Operators

The operator ++ can be used in both prefix and post-fix form: in
prefix form, the increment takes place before the value is used.

03Operators.c

int main(void)

8 {

int i=1;

10 printf("i++ = %d; ", i++);

printf("++i = %d\n", ++i);

12 i=1;

printf("++i = %d; ", ++i);

14 printf("i++ = %d\n", i++);

return (0);

16 }

CS211 — Week 2: Introduction to Programming in C 32/36

Part 4: Keywords and Operators Logic Operators

A Relational Operator tests if some relation holds between two
quantities or variables, and evaluates as true or false.

C Symbol Maths Symb Definition

<

<=

>

>=

==

! =

These all evaluate as 0 for false or 1 for true.

CS211 — Week 2: Introduction to Programming in C 33/36

Part 4: Keywords and Operators Logic Operators

04Logic.c

1 // 04Logic.c; For CS211, Feb 2021. NM
#include <stdio.h>

int main(void)

5 {

int i=1, j=2;

7 printf("i=%d and j=%d\n", i, j);

printf("i>j \t\t evaluates as %d\n", i>j);

9 printf("++i >= j \t evaluates as %d\n", ++i>=j);

11 return (0);

}

CS211 — Week 2: Introduction to Programming in C 34/36

Part 4: Keywords and Operators Logic Operators

Relational operators can be combined into more complex
operators, as follows.

C Symbol Maths Symb Definition

!

&&

||

See also Exercise on Slide 36

[End of Week 02]

CS211 — Week 2: Introduction to Programming in C 35/36

Exercise

Exercise (2.1)
Suppose x = 2, y = 3 and z = −5. Write a C programme that
check if the following statements are true or false.

1 (x > y)∨ (x < y).

2
(
x = (y − 1)

)
∧
(
(y 6 x)∨ (y 6 z)

)
.

3 ¬(y > x − z)∨ (y > x + 1).

CS211 — Week 2: Introduction to Programming in C 36/36

	Reminders CS211
	Course materials, lectures, etc
	Class times

	This week's classes
	Part 1: Introduction
	A little history
	Books and Compilers
	Course Content (C part)

	Part 2: Basic Structure
	A simple example
	A comment about comments

	Part 3: Variables
	Variable names
	Printing the value of a variable
	More about printf()

	Part 4: Keywords and Operators
	Keywords
	Operators
	Logic Operators

	Exercise

