
Loops, Input and Output
CS211: Programming and Operating Systems

Niall Madden

Wednesday and Thursday, 24+25 Feb, 2021

CS211 — Loops, Input and Output 1/57

Annotated slides

New class times

Mon Tue Wed Thu Fri
9 – 10
10 – 11
11 – 12
12 – 1
1 – 2 ✓
2 – 3
3 – 4 LAB? ✓
4 – 5 LAB?

1 The recorded classes on Wednesdays and Thursdays are
unchanged (sorry!).

2 New lab times: Monday 15:00-17:00. You aim to attend for an
hour. Drop in an out as needed.

3 Little, if any, of the “lab” times will be recorded.
4 All this may all change again towards the end of the semester.
5 Might switch to Zoom for some classes. Any objections?

CS211 — Loops, Input and Output 2/57

New class times
1 Part 1: Keywords and Operators

Keywords
Operators
Logic Operators

2 Part 2: Selection statements
if statements

3 Part 3: Loops
for()

for-loop arguments
while

Exiting a loop
Why not to use goto

4 Part 4: Output with printf()

plain text
Escape Characters
Conversion characters
Other output functions

5 Part 5: Input with scanf()

Input Checking
6 Exercises

CS211 — Loops, Input and Output 3/57

Part 1: Keywords and Operators

CS211 – Week 3
Loops, Input and Output

Start of ...

PART 1: Keywords and
Operators

CS211 — Loops, Input and Output 4/57

Part 1: Keywords and Operators Keywords

C has a set of reserved keywords; they cannot be used as variable or
function names:

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Some “new” ones, which are supported by some (but not all) “old”
compilers, include

restrict Bool Complex Imaginary

CS211 — Loops, Input and Output 5/57

Part 1: Keywords and Operators Operators

Operators come in four flavours: Arithmetic, assignment relational
and logical .
Arithmetic Operators available in C include:

C Symbol Definition Example
+ addition c = a + b;

- subtraction c = a - b;

* multiplication c = a * b;

/ division c = a / b;

% remainder c = a % b;

Unlike Python, there isn’t a built-in function for powers or truncating
division.

CS211 — Loops, Input and Output 6/57

Part 1: Keywords and Operators Operators

The Assignment and Arithmetic-Assignment Operators are:

Symbol Definition Example
= assignment a=b;

++ increment a++;

-- decrement a--;

+= addition assignment a+=2;

-= subtraction assignment a-=2;

= multiplication assignment a=2;

/= division assignment a/=2;

%= modulo assignment a%=2;

The following is legal, but not encouraged: i=j=k=0 and is the
same as i = (j = (k = 0)).

CS211 — Loops, Input and Output 7/57

Part 1: Keywords and Operators Operators

The operator ++ can be used in both prefix and post-fix form: in prefix
form, the increment takes place before the value is used.

01Operators.c

int main(void)

8 {

int i=1;

10 printf("i++ = %d; ", i++);

printf("++i = %d\n", ++i);

12 i=1;

printf("++i = %d; ", ++i);

14 printf("i++ = %d\n", i++);

return (0);

16 }

CS211 — Loops, Input and Output 8/57

Part 1: Keywords and Operators Logic Operators

A Relational Operator tests if some relation holds between two
quantities or variables, and evaluates as true or false.

C Symbol Maths Symb Definition

<

<=

>

>=

==

! =
These all evaluate as 0 for false or 1 for true.

CS211 — Loops, Input and Output 9/57

Part 1: Keywords and Operators Logic Operators

02Logic.c

1 // 02Logic.c; For CS211, Feb 2021. NM
#include <stdio.h>

int main(void)

5 {

int i=1, j=2;

7 printf("i=%d and j=%d\n", i, j);

printf("i>j \t\t evaluates as %d\n", i>j);

9 printf("++i >= j \t evaluates as %d\n", ++i>=j);

11 return (0);

}

CS211 — Loops, Input and Output 10/57

Part 1: Keywords and Operators Logic Operators

Relational operators can be combined into more complex operators, as
follows.

C Symbol Maths Symb Definition

!

&&

||

CS211 — Loops, Input and Output 11/57

Part 1: Keywords and Operators Exercise

Exercise (2.1)
Suppose x = 2, y = 3 and z = −5. Write a C programme that check if
the following statements are true or false.

1 (x > y)∨ (x < y).

2
�
x = (y − 1)

�
∧
�
(y � x)∨ (y � z)

�
.

3 ¬(y � x − z)∨ (y � x + 1).

CS211 — Loops, Input and Output 12/57

Part 1: Keywords and Operators Exercise

CS319 – Week 3
Loops, Input and Output

END OF PART 1

CS211 — Loops, Input and Output 13/57

Part 2: Selection statements

CS211 – Week 3
Loops, Input and Output

Start of ...

PART 2: Selection statements

CS211 — Loops, Input and Output 14/57

Part 2: Selection statements
To control the flow of a program, one uses

Selection Statements: select a particular execution path. The most
important is if/if else/else statements. See also, switch and,
especially, ?:

Iteration statements: for, while and do

jump statements: break, continue and goto

CS211 — Loops, Input and Output 15/57

Part 2: Selection statements if statements

if statements are used to conditionally execute part of your code.

Structure:
if(exprn)

{

perform statements if exprn evaluates as

non-zero

}

else

{

statements if exprn evaluates as 0

}

CS211 — Loops, Input and Output 16/57

Part 2: Selection statements else if

Also, if blocks can take the form:

Structure:
if(A)

{

perform statements if expression A evaluates

non-zero

}

else if(B)

{

statements if A is false, but B evaluates as true

}

else

{

statements if both A and B evaluate as false

}

CS211 — Loops, Input and Output 17/57

Part 2: Selection statements Examples

A trivial example
#include <stdio.h>

int main(void)

{

if (10)

{

printf("Non-zero is always true\n");

}

if (0)

{ /* dummy line */ }

else

printf("But 0 is never true\n");

return(0);

}

CS211 — Loops, Input and Output 18/57

Part 2: Selection statements Examples

Typically, however, the expressions that if() depends on are logical
expressions, based on relational operators, that must be evaluated.

a == 10

c == ’n’

x != 10

z < y

y >= z

CS211 — Loops, Input and Output 19/57

Part 2: Selection statements Examples

Logical operators, AND, and OR, allow more complex if-statements:

if(((i%3) == 0) && ((i%5)==0))

printf("%d divisible by 15\n", i);

if(((i%3) == 0) || ((i%5)==0))

printf("%d divisible by 3 or by 5\n", i);

CS211 — Loops, Input and Output 20/57

Part 2: Selection statements Examples

03EvenOdd.c ←− link!

18 // Check Even or Odd
int a=rand ()%10; // a is a random number between 0 and 9.

20 printf("a=%d\n", a);

if ((a % 2) == 0)

22 printf("a is even\n");

else

24 printf("a is odd\n");

26 // Check positive, negative or zero
a=rand ()%7 -3; // a is a random number between -3 and 3.

28 printf("a=%d\n", a);

if (a>0)

30 printf("a is (strictly) positive\n");

else if (a<0)

32 printf("a is (strictly) negative\n");

else

34 printf("a is zero\n");

CS211 — Loops, Input and Output 21/57

Part 2: Selection statements Examples

CS319 – Week 3
Loops, Input and Output

END OF PART 2

CS211 — Loops, Input and Output 22/57

Part 3: Loops for()

CS211 – Week 3
Loops, Input and Output

Start of ...

PART 3: Loops

CS211 — Loops, Input and Output 23/57

Part 3: Loops for()

for(initial val; continuation cond; increment)

for() is an expression used to execute “loops”: groups of similar tasks
to be repeated a certain number of times. It takes three arguments,

an initial value for the increment variable.

a condition for continuing the loop.

instructions on how to modify the increment variable at each
iteration.

The tasks to be completed within the loop are contained within curly
brackets.

If { } are omitted, then the loop consists only of the line immediately
after the for() command.

CS211 — Loops, Input and Output 24/57

Part 3: Loops for()

Example (Print a line)
Sometimes we just want a simple operation repeated a fixed number of
time. This example just prints a “line” across the screen

printf("\n");

for (i=1; i<=60; i++)

printf("-");

printf("\n");

CS211 — Loops, Input and Output 25/57

Part 3: Loops for()

More often, in the body of the loop we use the “increment variable” (==
“the loop index”), as in the following example.
Recall that the Fibonacci sequence is defined as

f0 = 1, f1 = 1, and for k = 2, 3, . . . , fk = fk−1 + fk−2.

CS211 — Loops, Input and Output 26/57

Part 3: Loops for()

04Fibonacci.c

#include <stdio.h>

12 int main(void)

{

14 int i, Fib [10];

Fib [0]=1;

16 printf("Fib[0] = %d\n", Fib [0]);

Fib [1]=1;

18 printf("Fib[1] = %d\n", Fib [1]);

20 for (i=2; i<=9; i++)

{

22 Fib[i] = Fib[i-1] + Fib[i-2];

printf("Fib[%d] = %d\n", i, Fib[i]);

24 }

return (0);

26 }

CS211 — Loops, Input and Output 27/57

Part 3: Loops for()

Example (Print the odd numbers from 1 to 19)
for(i=1; i<= 19; i+=2)

printf("%d ",i);

CS211 — Loops, Input and Output 28/57

Part 3: Loops for()

Example (Count down from 10 to 0)
for(i=10; i >=0; i--)

printf("%d ",i);

CS211 — Loops, Input and Output 29/57

Part 3: Loops for-loop arguments

The three arguments to for are optional, but the second one is the most
important and it is bad practice to omit it.

Example (A bad example)
int i=2;

for (; i<10;)

{

i++;

}

CS211 — Loops, Input and Output 30/57

Part 3: Loops Algorithms

Definition
An Algorithm is a finite set of precise instructions for performing a
computation or for solving a problem.

Here is an algorithm for finding the maximal element in a finite sequence
a1, a2, . . . , an

Linear Search
m ←− a1

FOR k = 2 to n
IF m < ak

THEN m ←− ak

END

END

RETURN m

CS211 — Loops, Input and Output 31/57

Part 3: Loops Algorithms

Example
Write a short C program that creates a list of 8 randomly chosen integers
between 0 and 20, and then finds the largest one.

To solve the problem, we need to do several things:

Create a random number. This is done using the rand function,
which requires the stdlib header file.

rand produces a number between 0 and 2147483647. Use modulus
operator to get one between 0 and 20.

Use a for loop to implement the linear search algorithm.

CS211 — Loops, Input and Output 32/57

Part 3: Loops Algorithms

05Largest.c

#include <stdio.h>

8 #include <stdlib.h>

10 int main(void)

{

12 int k, m, a[8];

14 printf("\nThe list is: ");

for (k=0; k<8; k++) {

16 a[k] = rand ()%21;

printf("\t%d", a[k]);

18 }

m = a[0];

20 for (k=1; k<8; k++)

if (m < a[k])

22 m = a[k];

24 printf("\nThe largest element is: %d\n", m);

return (0);

26 }

CS211 — Loops, Input and Output 33/57

Part 3: Loops while

The while loop is probably the simplest loop in C, though not quite as
useful as the for loop.

while(expression) statement

Example
while(i < n)

i*=2;

Example
i = rand()%100;

while(i < n)

{

printf("i=%d. Guessing again...\n", i);

i = rand()%100;

}

CS211 — Loops, Input and Output 34/57

Part 3: Loops while

These two are equivalent:

for (i=0; i<=10; i++)

sum+=f[i];

i=0;

while (i<=10)

{

sum+=f[i];

i++;

}

CS211 — Loops, Input and Output 35/57

Part 3: Loops while

This is a trivial loop — it’s statements are never executed:

while (0)

{

// this stuff is ignored

}

Whereas the following as an infinite loop:

while(1)

{

printf("We are going to be here a while...");

}

. .

Exercise (do ... while)
There is also a variant called a do ... while loop. Read up on it.
Review the example in 06DoWhile.c and work out what it does.

CS211 — Loops, Input and Output 36/57

Part 3: Loops Exiting a loop

There are (rare) occasions where we might want to

jump out of a while, for or do loop. This is achieved using break.

skip to the next iteration of the loop, using continue.

See the example in 07BreakContinue.c

jump to another part of a program entirely, using goto.

goto

There is never a good reason to use goto. Never (well, hardly ever)

CS211 — Loops, Input and Output 37/57

Part 3: Loops Why not to use goto

CS211 — Loops, Input and Output 38/57

Part 3: Loops Why not to use goto

CS319 – Week 3
Loops, Input and Output

END OF PART 3

CS211 — Loops, Input and Output 39/57

Part 4: Output with printf()

CS211 – Week 3
Loops, Input and Output

Start of ...

PART 4: Output with printf()

CS211 — Loops, Input and Output 40/57

Part 4: Output with printf()

Part of the standard input/output library, the printf() function is
the most commonly used mechanism for sending formatted output to
the screen.

It is unusual because it many actually take an arbitrary number of
arguments:

a format string,

followed by zero or more variables,

The format string may include

plain text, to be sent to stdout

escape characters,

conversion characters, to tell the system how variables whose
values will be displayed. These are actually a bit complicated, and
so we won’t be able to describe them in full detail.

CS211 — Loops, Input and Output 41/57

Part 4: Output with printf() plain text

To print a simple message, pass you text as the first argument ,
encapsulated in double quotes:

printf("This is not a very interesting example");

However, usually this first string argument includes escape characters
and conversion characters

CS211 — Loops, Input and Output 42/57

Part 4: Output with printf() Escape Characters

The format string in C may contain a number of “escape characters”.
These are represented with a backslash, followed by a single letter, and
allow printf to “display” commonly used characters, but that don’t have
easy keyboard representations.
The most important ones are:

\a Produces a beep or flash (useful when debugging)

\b Moves the cursor to the last column of the previous line. (Not
that useful).

\f Moves the cursor to start of next page. (not very useful)

\n New line. The most used
\r Carriage Return

\t Horizontal Tab (quite useful when displaying tables of data).

\v Vertical Tab (not very useful)

\\ Prints single \

\” quotation

%% Prints %.

CS211 — Loops, Input and Output 43/57

Part 4: Output with printf() Conversion characters

A Conversion character is a letter that follows a % (percent symbol)
and tells printf to display the value stored in the variable that is next in
its argument list. The most common ones are

%c Single character (i.e., variable of type char,

%d decimal integer (int)

%e floating-point value in E (“scientific”) notation

%f floating-point value (float)

%g Same as %e or %f format, whichever is shorter

%o octal (base 8) integer

%s String of text (char array)

%u Unsigned int

%x hexadecimal (base 16) integer

These can also take flags that modify their behaviour.

CS211 — Loops, Input and Output 44/57

Part 4: Output with printf() Conversion characters

flags

1 Width specifiers

2 Precision specifiers

3 Input-size modifiers

Examples:

CS211 — Loops, Input and Output 45/57

Part 4: Output with printf() Other output functions

Although printf is the most versatile function, there are others for
displaying output:

putchar

putc

puts

CS211 — Loops, Input and Output 46/57

Part 4: Output with printf() Other output functions

CS319 – Week 3
Loops, Input and Output

END OF PART 4

CS211 — Loops, Input and Output 47/57

Part 5: Input with scanf()

CS211 – Week 3
Loops, Input and Output

Start of ...

PART 5: Input with scanf()

CS211 — Loops, Input and Output 48/57

Part 5: Input with scanf()

The scanf() function is analogous to printf(): it will

read input from standard input,

format it, as directed by a conversion character and

store it in a specified address.

int i;

char s;

printf("Enter an integer and a char: ");

scanf("%d %c", &i, &s);

printf("The int is %d, char is %c\n",i,s);

CS211 — Loops, Input and Output 49/57

Part 5: Input with scanf()

Example
Write a short C programme that reads a single integer from the keyboard,
and checks that it’s an even number between 1 and 49 (inclusive).

int i;

printf("Enter a positive, even integer less than 50: ");

scanf("%d", &i);

printf("You entered %d", i);

if ((i<=0) || (i>=50))

printf(", which is *not* between 1 and 49.\n");

else if ((i%2) != 0)

printf(", which is in [1, 49], but is *not* even.\n");

else

printf(". Thank you.\n ");

CS211 — Loops, Input and Output 50/57

Part 5: Input with scanf() Some details

Some other things about scanf:

We usually call the scanf function as if its return value is void, but it
actually returns an integer equal to the number of successful
conversions made.

It has friends fscanf that we’ll use for reading from files (in fact
scanf is really just fscanf in disguise but with the keyboard as the
input “file”), and sscanf used for extracting from strings.

There are other very useful functions for reading from the standard
input stream: getchar, gets

CS211 — Loops, Input and Output 51/57

Part 5: Input with scanf() Input Checking

In the last example, we checked that the user inputted that data that was
asked for. If we don’t include such checks...

NoInputCheck.c
int n, i, list[30];

printf("Enter a number between 1 and 30: ");

scanf("%d", &n);

for (i=0; i<n; i++)

list[i] = rand()%40;

While this is OK, it can lead to strange results if the user enters a number
less than 1 or greater than 30.
So we should check that the user inputs the data correctly...

CS211 — Loops, Input and Output 52/57

Part 5: Input with scanf() Input Checking

We could use an if statement to improve this:

IfInputCheck.c
printf("Enter a number between 1 and 30: ");

scanf("%d", &n);

if ((n<1) || (n>30))

{

printf("\aError: number not between 1 and 30\n");

return(1);

}

although it would be better if the user had a chance to enter the data
correctly...

CS211 — Loops, Input and Output 53/57

Part 5: Input with scanf() Input Checking

So we could ask the user the try entering the data again:

IfInputCheckAgain.c
printf("Enter a number between 1 and 30: ");

scanf("%d", &n);

if ((n<1) || (n>30))

{

printf("\aError: number not between 1 and 30\n");

printf("Enter a number between 1 and 30: ");

scanf("%d", &n);

}

but this only allows the user to make one mistake. Where we have a
persistently dumb user, we need to let them try again, and again, and
again...

CS211 — Loops, Input and Output 54/57

Part 5: Input with scanf() Input Checking

That is easily achieved by using a while loop instead of if:

WhileInputCheck.c
printf("Enter a number between 1 and 30: ");

scanf("%d", &n);

while ((n<1) || (n>30)) {

printf("\aError: number not between 1 and 30\n");

printf("Enter a number between 1 and 30: ");

scanf("%d", &n);

}

Now the programme will keep asking the user to enter the number until
they get it right.

Exercise (do ... while again)
This is a situation where a do ... while would be useful.

1 Why?

2 Write a version using do... while.

CS211 — Loops, Input and Output 55/57

Exercises

Exercise (Exer 3.1)
Write a short C programme that prompts the user to input an integer, and
then uses scanf to read that integer.
The program should output the value that the user entered and that
scanf returns.
Run the program to check what scanf will return when

(i) the user enters an integer;

(ii) the user enters a float (with decimal part);

(iii) the user enters non-digit character.

CS211 — Loops, Input and Output 56/57

Exercises
Exercise (Exer 3.2)
Write a short C programme that prompts the user to input an integer, i ,
such that 10 � i � 30.
Use a while (or do... while) loop so they are repeatedly prompted
for this integer until they enter one that is in this range.
Then the program should output an alternating string of zeros and ones
of length i.

CS211 — Loops, Input and Output 57/57

