
Week 4: Functions and Pointers and Characters

CS211: Programming and Operating Systems

Wednesday and Thursday, 03+04 March 2021

CS211 — Week 4: Functions and Pointers and Characters 1/46

Annotated slides

New class times

Mon Tue Wed Thu Fri
9 – 10
10 – 11
11 – 12
12 – 1
1 – 2 Zoom
2 – 3
3 – 4 LAB Blackboard
4 – 5 LAB

1 The recorded classes on Wednesdays and Thursdays are unchanged.

2 New lab times: Monday 15:00-17:00. You aim to attend for an hour. Drop
in an out as needed.

3 Little, if any, of the “lab” times will be recorded.

4 Thursday, 4 March: Will try Zoom: https://nuigalway-ie.zoom.us/j/
92560272971?pwd=UFlGcHZwN2JkQXdocG1ZOG5HUFYrdz09 (Meeting ID:
925 6027 2971; Passcode: 465580)

CS211 — Week 4: Functions and Pointers and Characters 2/46

This week, in CS211:

1 Part 1: Functions
Examples
void

2 Part 2: Call-by-value, and pointers
Pointers

3 Part 3: Characters
03ASCII.c

Important functions

4 Part 4: Strings in C
string.h

5 Part 5: Input and output of strings
Output
Input

6 Exercises

CS211 — Week 4: Functions and Pointers and Characters 3/46

Part 1: Functions

CS211
Week 4: Functions and Pointers and Characters

Start of ...

PART 1: Functions

CS211 — Week 4: Functions and Pointers and Characters 4/46

Part 1: Functions
A good understanding of functions, and their uses, is of prime
importance.

Some functions return/compute a single value.

However, many important functions return more than one value, or
modify one of its own arguments. In these cases we need to know how to
use pointers.

CS211 — Week 4: Functions and Pointers and Characters 5/46

Part 1: Functions
Every C program has at least one function: main()

Example
#include <stdio.h>

int main(void)

{

/* Stuff goes here */

return(0);

}

CS211 — Week 4: Functions and Pointers and Characters 6/46

Part 1: Functions
Each function consists of two parts:

Function “header” or prototype which gives the function’s
return value data type, or void if there is none, and
parameter list data types; or void if there are none.
The parameter list can, optionally, include variable names, but these
are treated like comments, and ignored.

The prototype is often given near the start of the file, before the
main() section.

Function definition:
Begins with the function name, parameter list and return type,
followed by the body of the function contained within curly brackets.
Unless the return type is void, it ends with a return.

CS211 — Week 4: Functions and Pointers and Characters 7/46

Part 1: Functions Examples

We will now look at three examples:

computing the mean of two floats,

compute the factorial of an int.

compute the greatest common divisor of two (positive) integers.

CS211 — Week 4: Functions and Pointers and Characters 8/46

Part 1: Functions Examples

00mean.c

8 #include <stdio.h>

#include <stdlib.h>

float mean(float , float); // Prototype

int main(void)

14 {

float a, b;

16 printf("Enter (floating -point) numbers a and b: ");

scanf("%f", &a);

18 scanf("%f", &b);

printf("mean(a,b)=%f\n", mean(a,b));

20 return (0);

}

float mean(float a, float b)

24 {

return((a+b)/2.0);

26 }

CS211 — Week 4: Functions and Pointers and Characters 9/46

Part 1: Functions Examples

01factorial.c

int factorial(int n); // Prototype

int main(void)

14 {

int x;

16 printf("Enter a positive integer: ");

scanf("%d", &x); // Warning: should do input check
18 printf("factorial (%d)=%d\n",

x, factorial(x));

20 return (0);

}

int factorial(int n) /* Def ina t i on */
24 {

int i, fac =1;

26 for (i=1; i<=n; i++)

fac = fac*i;

28 return(fac);

}

CS211 — Week 4: Functions and Pointers and Characters 10/46

Part 1: Functions Examples

02gcd.c

#include <stdio.h>

8 #include <stdlib.h>

10 int gcd(int a, int b);

12 int main(void)

{

14 int a, b;

printf("Enter a and b: ");

16 scanf("%d", &a);

scanf("%d", &b);

18 printf("gcd(a,b)=%d\n", gcd(a,b));

return(EXIT_SUCCESS);

20 }

CS211 — Week 4: Functions and Pointers and Characters 11/46

Part 1: Functions Examples

02gcd.c

22 int gcd(int a, int b)

{

24 int x=a, y=b, r;

26 while(y != 0)

{

28 r = x%y;

x=y;

30 y=r;

}

32 return(x);

}

CS211 — Week 4: Functions and Pointers and Characters 12/46

Part 1: Functions void

In three previous examples, the functions all took one or more
arguments, and returned some value.

Some functions return no values, so the return type is void;

Some functions take no inputs, so the parameter list is void;

Example:
#include <stdio.h>

void Banner(void);

int main(void)

{

/* ... */

Banner();

/* ... */

}

void Banner(void)

{

printf("\nThis is intro.c\n’’);

printf("%s%s\n");

"It prints this message",

"when the program starts");

}

CS211 — Week 4: Functions and Pointers and Characters 13/46

Part 1: Functions void

CS211
Week 4: Functions and Pointers and Characters

END OF PART 1

CS211 — Week 4: Functions and Pointers and Characters 14/46

Part 2: Call-by-value, and pointers

CS211
Week 4: Functions and Pointers and Characters

Start of ...

PART 2: Call-by-value and
Pointers

CS211 — Week 4: Functions and Pointers and Characters 15/46

Part 2: Call-by-value, and pointers

In C, it is very important to distinguish between

a variable

the value stored in it.

A good example is as follows: write a C function as follows:

the function is called Swap()

takes two integer inputs a and b

after calling the function, the values of a and b are swapped.

CS211 — Week 4: Functions and Pointers and Characters 16/46

Part 2: Call-by-value, and pointers
Call-By-Value.c

void Swap(int i, int j);

int main(void)

{

int i, j;

printf("Enter an integer: "); scanf("%d", &i);

printf("Enter an integer: "); scanf("%d", &j);

printf("i=%2d and j=%2d\n",i,j);

printf("Swapping...\n");

Swap(i,j);

printf("i=%2d and j=%2d\n",i,j);

CS211 — Week 4: Functions and Pointers and Characters 17/46

Part 2: Call-by-value, and pointers

void Swap(int a, int b)

{

int tmp;

tmp=a;

a=b;

b=tmp;

}

This won’t work! We will only have passed the values stored in the
variables i and j . even if these are swapped in the function, they
remained unchanged in the calling function.

What we really wanted to do here was to use Call-By-Reference where
we modify the contents of the memory space referred to by i and j.

CS211 — Week 4: Functions and Pointers and Characters 18/46

Part 2: Call-by-value, and pointers Pointers

A variable has a location in memory. The value of the variable is stored at
that location. Example:

int i=10;

tells the system to allocate a location in memory for storing integers can
be referred to as i. Furthermore, the value 10 should be stored there.

One of the distinguishing features of C is that we can manipulate the
address of the variable almost as easily as changing its value.

CS211 — Week 4: Functions and Pointers and Characters 19/46

Part 2: Call-by-value, and pointers Pointers

The important concepts are

if i is a variable, then &i is its location in memory.

The declaration int *p creates a variable called p that can store the
memory address of an integer.

If a memory address is stored in the variable p, then *p is the value
at that address.

The correct version of the Swap function and program is now:

CS211 — Week 4: Functions and Pointers and Characters 20/46

Part 2: Call-by-value, and pointers Pointers

Swap by Reference

void Swap_by_Reference(int *p, int *q)

{

int tmp;

tmp=*p; *p=*q; *q=tmp;

}

This is called as follows

From main

printf("i=%2d and j=%2d\n",i,j);

printf("Swapping...\n");

Swap_by_Reference(&i,&j);

printf("i=%2d and j=%2d\n",i,j);

CS211 — Week 4: Functions and Pointers and Characters 21/46

Part 2: Call-by-value, and pointers Pointers

CS211
Week 4: Functions and Pointers and Characters

END OF PART 2

CS211 — Week 4: Functions and Pointers and Characters 22/46

Part 3: Characters

CS211
Week 4: Functions and Pointers and Characters

Start of ...

PART 3: Characters

CS211 — Week 4: Functions and Pointers and Characters 23/46

Part 3: Characters
In C, a charatacer is just an unsigned integer; it is how you use it that
matters. Each character corresponds to an integer between 0 and 127.

What’s so special about 127?

For example, the line
printf("%c == %c \n", ’a’, 97);

will yield the output: a == a

Some ASCII codes are given below

32 48 57 65 90 97 122
space 0 9 A Z a z

For more codes: see 03ASCII.c

CS211 — Week 4: Functions and Pointers and Characters 24/46

Part 3: Characters 03ASCII.c

03ASCII.c

#include <stdio.h>

int main(void) {

10 int i, start , step =16;

12 for (start =32; start < 127; start +=step)

{

14 printf("\n%12s", "Code:");

for (i=start; i < start+step; i++)

16 printf("%4i", i);

18 printf("\n%12s", "Character:");

for (i=start; i < start+step; i++)

20 printf("%4c", i);

printf("\n");

22 }

printf("\n");

24 return (0);

}

CS211 — Week 4: Functions and Pointers and Characters 25/46

Part 3: Characters Important functions

printf("%c", c); will send the character stored in c to the
screen.

putchar(c); same as above.

scanf("%c", &c); will take a character form the keyboard input
and stored it in c.

c = getchar(); ditto.

Example: Write a function that takes an character as input and, if that
character is lower case, return the corresponding upper case character.

CS211 — Week 4: Functions and Pointers and Characters 26/46

Part 3: Characters Important functions

03uppitty.c

10 #include <stdio.h>

12 char upify(char c);

14 int main(void) {

char c;

16 while((c=getchar ()) != ’\n’)

printf("upify(%c) = %c \n", c, upify(c));

18 return (0);

}

char upify(char a)

22 {

if ((a >= ’a’) && (a <= ’z’))

24 return(a - ’a’ + ’A’);

else

26 return(a);

}

CS211 — Week 4: Functions and Pointers and Characters 27/46

Part 3: Characters Important functions

CS211
Week 4: Functions and Pointers and Characters

END OF PART 3

CS211 — Week 4: Functions and Pointers and Characters 28/46

Part 4: Strings in C

CS211
Week 4: Functions and Pointers and Characters

Start of ...

PART 4: Strings in C

CS211 — Week 4: Functions and Pointers and Characters 29/46

Part 4: Strings in C

Now we will look at strings. Usually, these are thought of a collection of
letters/characters that make up a word or a line of text.

The C language does not actually have a string data type. Instead, it
uses arrays of type char.

If you make a declaration like:
char greeting[20]="Hello. How are you?";

the system stores each character as an element of the array
greeting[].

CS211 — Week 4: Functions and Pointers and Characters 30/46

Part 4: Strings in C

Some Important Points:

1. In the above example we declared the array to be of length 20. Even
though the string contains 19 characters, an extra string
termination character \0 (backslash zero) is added to show where
the end of the string is.

2. Spaces or even new-line characters do not terminate a string. They
are treated just like other characters.

3. Declarations are the only time we can use an “equals” to assign a
value to a string. At all other times, we can modify the string one
character at a time:
greeting[0]=’H’; greeting[1]=’e’; ...

4. Better still use strcpy() – the “string copy” function:
strcpy(greeting, "Not too bad");

CS211 — Week 4: Functions and Pointers and Characters 31/46

Part 4: Strings in C

The strcpy() is one of a collection of functions for dealing with strings.
Its definition is to be found in the string.h header file. More of this
later...

Example: Write a function that determines the length of a string.

CS211 — Week 4: Functions and Pointers and Characters 32/46

Part 4: Strings in C
05StringLength.c

#include <string.h> // Needed for strcpy

int length(char *);

int main(void)

12 {

char greeting [20];

14 strcpy(greeting , "Hello. How are you?");

printf("%s\n", greeting);

16 printf("That message was %d chars long.\n", length(greeting));

return (0);

18 }

20 int length(char *str)

{

22 int i, len =0;

24 for (i=0; str[i] != ’\0’; i++)

len ++;

return(len);

28 }

CS211 — Week 4: Functions and Pointers and Characters 33/46

Part 4: Strings in C string.h

Useful functions defined in string.h include:

strncpy
char *strncpy(char *dest, const char *source, int n);

Copies at most n character from the string in source to dest. The
advantage is that we won’t copy more characters to dest than is allowed

Example

char Code[6], Name[20]="Operating Systems";

strcpy(Code, Name); // Bad! Unexpected Results

strncpy(Code, Name, 6); // OK.

CS211 — Week 4: Functions and Pointers and Characters 34/46

Part 4: Strings in C string.h

strcat
strcat(): Concatenate two strings, i.e., append one string onto the end
of another. E.g,

char message1[30]="Hello.";

char message2[30]=" How are you?";

strcat(message1, message2);

Now message1 contains ”Hello. How are you?”;

CS211 — Week 4: Functions and Pointers and Characters 35/46

Part 4: Strings in C string.h

strcmp
strcmp(char *s1, char *s2): Compares two stings. It returns an
integer:

0 if they are the same,

negative if s1 is the first alphabetically

positive if s2 comes first

Example

char Name0[20], Name1[20], First[20];

strncpy(Name0, "Richie", 20);\\

strncpy(Name1, "Dennis", 20);\\

if (strcmp(Name0, Name1) > 0)

strncpy(First, Name1, 20);

CS211 — Week 4: Functions and Pointers and Characters 36/46

Part 4: Strings in C string.h

strlen
strlen Takes a single (pointer to) a string as its argument and returns an
integer equal to its length minus 1. (Why -1?).

CS211 — Week 4: Functions and Pointers and Characters 37/46

Part 4: Strings in C string.h

strstr
char *strstr(char *haystack, char *needle);

Searches for the first occurrence of the string needle in haystack. It
returns a pointer to the start of the matching substring.
Moreover, if needle is not found in haystack it returns NULL.

Example:
if (strstr(Code, "CS") != NULL)

printf("%s is a CS course\n", Code);

CS211 — Week 4: Functions and Pointers and Characters 38/46

Part 4: Strings in C string.h

CS211
Week 4: Functions and Pointers and Characters

END OF PART 4

CS211 — Week 4: Functions and Pointers and Characters 39/46

Part 5: Input and output of strings

CS211
Week 4: Functions and Pointers and Characters

Start of ...

PART 5: Input and output of
strings

CS211 — Week 4: Functions and Pointers and Characters 40/46

Part 5: Input and output of strings Output

You all know how to use printf() with strings:
printf("%s%s\n", "Good morning ", name);

or
printf("%s%8s\n", "Good morning ", name);

In the second example the field width specifier is given. This causes the
second string to be “padded” so that it takes up a total of 8 spaces. This
is useful for tabulated output.

One could also use puts(): this prints the contents of a string followed
by a new-line character.

CS211 — Week 4: Functions and Pointers and Characters 41/46

Part 5: Input and output of strings Input

Input is a more complicated issue, but there are three basic methods:

scanf("%s", name); reads a the next “word” from the input buffer
(usually the key board) and stores it in the array name[]. A word is a
sequence of characters that does not include a space, tab or
newline character.

to get more control of the input, you could use getchar() within a
loop:

printf("What is your name? ");

for (i=0;

(myname[i] = getchar()) != ’\n’;

i++);

myname[i]=’\0’;

CS211 — Week 4: Functions and Pointers and Characters 42/46

Part 5: Input and output of strings Input

gets(string): this reads a line a input and stores it all (except the
’\n’) in the array pointed to by string. This would be very useful,
except that gets() is known to be buggy and is best avoided.

From the Linux manual page from gets():

BUGS

Never use gets(). Because it is impossible to tell

without knowing the data in advance how many chars gets()

will read, and because gets() will continue to store

characters past the end of the buffer, it is extremely

dangerous to use. It has been used to break computer

security. Use fgets() instead.

CS211 — Week 4: Functions and Pointers and Characters 43/46

Part 5: Input and output of strings Input

fgets(string, n, stdin): reads in a line of text from the
keyboard (standard input) and stores at most n characters in array
sting. The new line charater is stored.

Which ever you use is a matter of choise. My preference is always to
write functions that use getchar() and related functions, particularly if
reading from a file.

CS211 — Week 4: Functions and Pointers and Characters 44/46

Exercises
Exercise (Exer 4.1)
Write a short C programme that prompts the user to input an integer, and
then uses scanf to read that integer.
The program should output the value that the user entered and that
scanf returns.
Run the program to check what scanf will return when

(i) the user enters an integer;

(ii) the user enters a float (with decimal part);

(iii) the user enters non-digit character.

CS211 — Week 4: Functions and Pointers and Characters 45/46

Exercises
Exercise (4.2)
The uppitty function in 02uppitty.c is a bit trivial, not least because
there is a C function, toupper, that already does this.
Write a variant as follows:

Its argument is a pointer to type character.

the function changes the character to lower case.

Write a similar function called downify() that converts an
upper-case character to lower case, but leave all other characters
unchanged.

CS211 — Week 4: Functions and Pointers and Characters 46/46

Exercises
Exercise (4.3)
On Twitter, the satirist John Bull (@garius) represents the words of
“Gove” using a (seemingly random) mixture of upper- and lower-case
text, as in this example from
https: // twitter. com/ garius/ status/ 1090260422836477952

ThE sNOw gLOwS WhITe oVeR WhitEHall toNIGht
nOT a sTAteSMan tO Be seEn UnITEd KinGDom ISolatED
a PM wHo THInks sHe’s a QUEen

Write a function that takes a char array as an argument and “GoVEifies”
it by changing letters to upper or lower case at random. You may use the
built-in tolower and toupper functions.

CS211 — Week 4: Functions and Pointers and Characters 47/46

