
Week 5: Strings and files

CS211: Programming and Operating Systems

Wednesday and Thursday, 10+11 March 2021

CS211 — Week 5: Strings and files 1/56

Annotated slides

Usual reminders...

Mon Tue Wed Thu Fri
09:00
10:00
11:00
12:00
13:00 Recorded
14:00
15:00 LAB Recorded
16:00 LAB

1 The recorded classes take place Wednesdays at 15:00, and Thursdays at
13:00.

2 Lab times: Monday 15:00-17:00. Aim to attend for an hour. Drop in an out
as needed.

3 Introduction to Lab 2 was be recorded, and is now available.

4 Using Blackboard all this week. Might switch to Zoom in the future...

5 There will be no class, and no recordings, next Wednesday (St. Patrick’s
Day).

CS211 — Week 5: Strings and files 2/56

In Week 5 of CS211:
1 Part 1: Recap on strings

2 Part 2: Multidimensional Arrays
Arrays of Strings

3 Part 3: Files
Getting started
Opening a file
Closing a file
An example

4 Part 4: Reading from a file
Using fgets

Using fgetc

5 Part 5: Navigating a file
Eg: Random Lines

6 Part 6: Writing data to a file
Further points

7 Exercises

CS211 — Week 5: Strings and files 3/56

Part 1: Recap on strings

CS211
Week 5: Strings and files

Start of ...

PART 1: Recapping on strings

CS211 — Week 5: Strings and files 4/56

Part 1: Recap on strings

A char is a one symbol, such as a letter, digit, or one of !, %, $, *, +,
=, etc. Can be declared as
char SomeLetter=’Q’;

Note the use of single quotes.

A string is a sequence of zero or more char’s, such as "CS211",
"NUI Galway", or "How the #$% is it only Wednesday?".
Note the use of double quotes. Also, strings can have spaces, or
indeed, any symbol (i.e., char).

In C, a string is stored in a char array.

A \0 in the array designates the end of the string, irrespective of size
of the declared array.
E.g.,

char AWord[20]="supercilious";

printf("0: AWord=%s\n", AWord);

AWord[5]=’\0’;

printf("1: AWord=\%s\n", AWord);

CS211 — Week 5: Strings and files 5/56

Part 1: Recap on strings

A char is a one symbol, such as a letter, digit, or one of !, %, $, *, +,
=, etc. Can be declared as
char SomeLetter=’Q’;

Note the use of single quotes.

A string is a sequence of zero or more char’s, such as "CS211",
"NUI Galway", or "How the #$% is it only Wednesday?".
Note the use of double quotes. Also, strings can have spaces, or
indeed, any symbol (i.e., char).

In C, a string is stored in a char array.

A \0 in the array designates the end of the string, irrespective of size
of the declared array.
E.g.,

char AWord[20]="supercilious";

printf("0: AWord=%s\n", AWord);

AWord[5]=’\0’;

printf("1: AWord=\%s\n", AWord);

CS211 — Week 5: Strings and files 5/56

Part 1: Recap on strings

Other than in declarations, use the strcpy() (“string copy”)
function, from string.h to set a whole string:
strcpy(AWord, "acting superior");

Other functions in string.h are strlen(), strcat(), strcmp(),
strchr(), strstr(), strfry(),...

To output a string using printf():
printf("%s", AWord);

In input a string using scanf():
scanf("%s", AnotherWord);

CS211 — Week 5: Strings and files 6/56

Part 1: Recap on strings

CS211
Week 5: Strings and files

END OF PART 1

CS211 — Week 5: Strings and files 7/56

Part 2: Multidimensional Arrays

CS211
Week 5: Strings and files

Start of ...

PART 2: Multidimensional Arrays

CS211 — Week 5: Strings and files 8/56

Part 2: Multidimensional Arrays

If an array (particularly of integers or floats) is like a mathematical vector,
then how do we define a matrix?

A matrix is a two-dimensional array. For example, to declare a 3 × 4
matrix of floats, we would use the syntax:
float A[3][4];

So

A =

A[0][0] A[0][1] A[0][2] A[0][3]
A[1][0] A[1][1] A[1][2] A[1][3]
A[2][0] A[2][1] A[2][2] A[2][3]

In general an n × m array is declared as
float A[n][m];

CS211 — Week 5: Strings and files 9/56

Part 2: Multidimensional Arrays

If a program has the line:
int A[3][4];

What really happens is that the system creates three arrays, each of
length four. More precisely, it

declares 3 pointers to type int: A[0], A[1], and A[2],
space for storing an integer is allocated to each of the addresses
A[0], A[0]+1, A[0]+2, A[0]+3, A[1], A[1]+1, . . . , and A[2]+3.

. .

This means that if A[][] is declared as a two-dimensional 3 × 4 array,
then the following are equivalent:

A[1][2]

*(A[1] + 2)

*(*(A + 1) + 2)

*(&A[0][0] + 4 + 2)

CS211 — Week 5: Strings and files 10/56

Part 2: Multidimensional Arrays

01Matrix.c

#include <stdio.h>

6 int main(void)

{

8 int A[3][4]={{1 ,2 ,3 ,4} , {5,6,7,8}, {9 ,10 ,11 ,12}};

10 // Here are 4 different ways to access the ”7” in this array.
printf("A[1][2] = %d\n", A[1][2]);

12 printf("*(A[1]+2) = %d\n", *(A[1] + 2));

printf("*(*(A+1)+2) = %d\n", *(*(A + 1) + 2));

14 printf("*(&A[0][0] + 4 + 2) = %d\n",

*(&A[0][0] + 4 + 2));

return (0);

18 }

CS211 — Week 5: Strings and files 11/56

Part 2: Multidimensional Arrays

In another example , we’ll sum all the entries of a 3 × 4 array.

02Sum a matrix.c

6 #include <stdio.h>

8 int sum(int A[][4]);

10 int main(void)

{

12 int n;

int A[3][4]={1,2 ,3,4 ,5,6,7 ,8,9 ,10 ,11 ,12};

n = sum(A);

printf("Sum of the entries in A is %d \n",n);

18 return (0);

}

CS211 — Week 5: Strings and files 12/56

Part 2: Multidimensional Arrays

02Sum a matrix.c

int sum(int A[][4])

22 {

int i,j, ans=0;

24 for (i=0; i < 3; i++)

for (j=0; j< 4; j++)

26 ans += A[i][j];

28 return(ans);

}

Important: Notice that this function is defined only for arrays of size
3 × 4. Even if we passed n and m as arguments to the function, we
would still have to declare that A has 4 columns.

CS211 — Week 5: Strings and files 13/56

Part 2: Multidimensional Arrays Arrays of Strings

Multidimensional arrays often occur when dealing with arrays of strings.

Recall that in C, a string (collection of characters) is stored as a char

array.

char Name[20]="Ada Lovelace";

This means that we have declared Name to be an array of 20 characters:

’A’ is stored in Name[0]

’d’ is stored in Name[1]

’a’ is stored in Name[2]

...
’c’ is stored in Name[10]

’e’ is stored in Name[11]

and ’\0’ is stored in Name[12].

The remaining entries, Name[13], . . . , Name[19] are unused.

CS211 — Week 5: Strings and files 14/56

Part 2: Multidimensional Arrays Arrays of Strings

If a single string is stored as a character array, then an array of strings is
an Array of Arrays of chars, more often called a two dimensional
array .

Example

char Names[10][20];

strcpy(Names[0],"A. Lovelace");

strcpy(Names[1],"C. Babbage");

...

strcpy(Names[8],"D. Richie");

strcpy(Names[9],"K. McNulty"); a

aFor more about Donegal’s greatest computer scientist, see
https://en.wikipedia.org/wiki/Kathleen_Antonelli

CS211 — Week 5: Strings and files 15/56

Part 2: Multidimensional Arrays Arrays of Strings

We can think of this as a matrix, and visualise it as

0 1 2 3 4 5 6 7 8 9 10 11

Name[0] A . L o v e l a c e \0

Name[1] C . B a b b a g e \0 -
...

...
...

...

Name[8] D . R i c h i e \0 - -

Name[9] K . M c N u l t y \0 -

. .

Clearly there is some waste of memory space. On another day, we might
study the use of “ragged arrays” can avoid this.

CS211 — Week 5: Strings and files 16/56

Part 2: Multidimensional Arrays Arrays of Strings

CS211
Week 5: Strings and files

END OF PART 2

CS211 — Week 5: Strings and files 17/56

Part 3: Files

CS211
Week 5: Strings and files

Start of ...

PART 3: Files

CS211 — Week 5: Strings and files 18/56

Part 3: Files
Most useful programs obtain their input from a file, and store their output
to a file.

For example, in Lab 3 we’ll write a crossword helper that uses data
stored in a file.

Further details can be found in Chap. 22 of King’s “C Programming” or
Chap 11 of Kelley and Pohl’s “A Book on C”.

CS211 — Week 5: Strings and files 19/56

Part 3: Files Getting started

Taking input from a file is not much different that taking input from the
keyboard. All we do is:

1 Declare an identifier for the file, (FILE *)

2 open the file, (fopen)

3 read from it,

4 close the file. (fclose)

Declaring a File Identifier is easy:
FILE *datafile;

So datafile is now a pointer that we can associate with a file or, more
generally, a stream.

CS211 — Week 5: Strings and files 20/56

Part 3: Files Opening a file

fileptr = fopen(char *FileName, char *Mode);

The fopen() function is used for file opening. It takes two arguments:
the name of the file to open and the mode it will operate in. A file pointer
is returned.

The most important modes for file operation are reading and writing, but
there is also appending.

CS211 — Week 5: Strings and files 21/56

Part 3: Files Opening a file

fileptr = fopen(char *FileName, char *Mode);

Read mode: "r"
Use fopen(FileName, "r") to open a file that we want to read from. It
is assumed that the file already exists. If it doesn’t, NULL is returned.

Example
FILE *infile;

infile = fopen("OldFile.txt", "r");

CS211 — Week 5: Strings and files 22/56

Part 3: Files Opening a file

Write mode: "w"
Use fopen(FileName, "w") to open a file we want to write to. If the file
does not already exist, it is created. If it is already in the file system, the
contents are deleted.

Example
FILE *outfile;

outfile = fopen("NewFile.txt", "w");

There is also append mode: "a", used to to append data to end of the
file. The file is opened in write mode, but new data is added to the end,
i.e., its existing contents are not overwritten.

CS211 — Week 5: Strings and files 23/56

Part 3: Files Opening a file

In our examples, we assume that

The we only want to read from the file.

That we know its name in advance.

So our code includes

FILE *fileptr;

fileptr=fopen("list.txt", "r");

If the file can’t be opened, NULL is returned.

CS211 — Week 5: Strings and files 24/56

Part 3: Files Closing a file

When we are done, we should close the file

fclose(fileptr);

CS211 — Week 5: Strings and files 25/56

Part 3: Files An example

Example
Give a segment of code that prompts the user for name of an input file,
and opens it in read mode. If a file cannot be opened, an error should be
returned.

CS211 — Week 5: Strings and files 26/56

Part 3: Files An example

int main(void)

{

char infilename[20];

FILE *infile;

printf("Enter file to read from: ");

scanf("%s", infilename);

infile=fopen(infilename, "r");

if (infile == NULL)

{

printf("Error: couldn’t open for reading");

return (EXIT_FAILURE);

}

else

printf("Opened %s for reading\n", infilename);

CS211 — Week 5: Strings and files 27/56

Part 3: Files An example

Apart from fopen and fclose, the important functions for manipulating
files are

Reading: fgetc and fgets (also: fscanf)

Writing: fputc, fputs and fprintf

Check and change file counter: rewind, but also ftell and
fseek.

CS211 — Week 5: Strings and files 28/56

Part 3: Files An example

CS211
Week 5: Strings and files

END OF PART 3

CS211 — Week 5: Strings and files 29/56

Part 4: Reading from a file

CS211
Week 5: Strings and files

Start of ...

PART 4: Reading from a file

CS211 — Week 5: Strings and files 30/56

Part 4: Reading from a file

There are quite a number of functions for reading data from a file. We’ll
look at two functions: fgetc() and fgets()

fgets : reads a string from a file
fgets(string, n, fileptr)

reads in a line of text from the fileptr stream and stores at most n
characters in array sting. The new line character is stored.
If the string can’t be read, because we have reached the end of the file,
then NULL is returned.

fgets : reads a character from a file
c = fgetc(fileptr)

reads the next character in the file and stores it in the char variable c. If
the end of the file has been reached, EOF is returned.

CS211 — Week 5: Strings and files 31/56

Part 4: Reading from a file

Also: fscanf(fileptr, "%s", CharArray);

works rather like scanf() except that the input stream is fileptr rather
than stdin .

(But I prefer not to use it, since fgets and, especially, fgetc are more
predictable and easier to debug).

CS211 — Week 5: Strings and files 32/56

Part 4: Reading from a file Using fgets

Example 1: Write a function that counts the number of lines in a file
using fgets()

03CountLinesWithfgets.c

#include <string.h>

int file_length(FILE *);

int main(void)

12 {

char FileName [30];

14 FILE *file;

16 strcpy(FileName , "03 CountLinesWithfgets.c");

file=fopen(FileName , "r");

printf("%s has %d lines\n", FileName ,

20 file_length(file));

return(EXIT_SUCCESS);

22 }

CS211 — Week 5: Strings and files 33/56

Part 4: Reading from a file Using fgets

03CountLinesWithfgets.c

int file_length(FILE *file)

36 {

int lines;

38 char dummy [100];

40 rewind(file);

42 lines =0;

while(fgets(dummy , 100, file) != NULL)

44 lines ++;

46 rewind(file);

48 return(lines);

}

CS211 — Week 5: Strings and files 34/56

Part 4: Reading from a file Using fgetc

We’ll redo this example but using fgetc. It reads one character at a time
so we’ll just count the number of times a newline is read.

Note that EOF — End of File — is returned when we try to read beyond
the end of the file.

CS211 — Week 5: Strings and files 35/56

Part 4: Reading from a file Using fgetc

04CountLinesWithfgetc.c

26 int file_length(FILE *file)

{

28 int lines;

char c;

rewind(file);

lines =0;

34 do {

c = fgetc(file);

36 if (c == ’\n’)

lines ++;

38 } while(c != EOF);

40 rewind(file);

return(lines);

42 }

CS211 — Week 5: Strings and files 36/56

Part 4: Reading from a file Using fgetc

CS211
Week 5: Strings and files

END OF PART 4

CS211 — Week 5: Strings and files 37/56

Part 5: Navigating a file

CS211
Week 5: Strings and files

Start of ...

PART 5: Navigating a file

CS211 — Week 5: Strings and files 38/56

Part 5: Navigating a file

Each time a character is read from the input stream, a counter
associated with the stream is incremented.

In 03CountLinesWithfgets.c we saw this when we used the rewind

function:

rewind
rewind(fileptr) sets the indicator to the start of the file. This was
used in our earlier examples.

There are some other useful function which can be used

To determine here in the file we are: ftell

To move to a particular location in the file: fseek.

CS211 — Week 5: Strings and files 39/56

Part 5: Navigating a file
ftell
To check the current value of the file position indicator, use:

long ftell(FILE *stream);

It will return the current value of the file position indicator, in the form of a
long int.

For example, if we are at the beginning of the file, then ftell(file)

should evaluate as 0 .

CS211 — Week 5: Strings and files 40/56

Part 5: Navigating a file
fseek
To modify the value of the indicator:
fseek(fileptr, offset, place)

The value of offset is the amount the indicator will be changed by, while
place is one of

SEEK SET (0), refers to the start of the stream,

SEEK CUR (1), refers to the current position of the indicator,

SEEK END (2), refers to the end of the stream,

For example,
fseek(file, 0, SEEK SET)

is equivalent to
rewind(file).

CS211 — Week 5: Strings and files 41/56

Part 5: Navigating a file
Example
Here is an easy way of counting the number of characters in a file:

fseek(file, 0, SEEK_END);

printf("There are %ld chars in the file\n",

ftell(file));

CS211 — Week 5: Strings and files 42/56

Part 5: Navigating a file
Example
Write a programme that will open a file and output its contents in reverse.

05Reverse.c

int main(void)

10 {

FILE *InFile;

12 char c;

14 InFile=fopen("01 Reverse.c", "r");

if (InFile == NULL)

16 {

printf("Error - could not open the file\n");

18 exit (1);

}

CS211 — Week 5: Strings and files 43/56

Part 5: Navigating a file

05Reverse.c (cont.)
// First go to the end of the file

22 fseek(InFile , 0, SEEK_END);

24 // Now read lines in reverse order
while (ftell(InFile) != 0)

26 {

c=fgetc(InFile);

28 putchar(c);

fseek(InFile , -2, SEEK_CUR);

30 }

32 fclose(InFile);

return (0);

34 }

See also the exercise on Slide 56.

CS211 — Week 5: Strings and files 44/56

Part 5: Navigating a file Eg: Random Lines

In our next example, we’ll write a program that reads a number of lines
from a file and then outputs them at random.

It contains the following

Some comments

Some #include directives

The beginning of the main function, followed by some variable
declarations.

Copies the string 06RandomLines.c to the array FileName; tries to
open the file for reading; if that fails, generate an error and exit.

Reads each line of the file into the two dimensional char array
lines[][]; for each line, increments the variable NumberOfLines ;
closes the file.

CS211 — Week 5: Strings and files 45/56

Part 5: Navigating a file Eg: Random Lines

Set the integer variable Deleted to 0.
Until all lines have been “deleted”,

- generate a random number between 0 and NumberOfLines
- If the corresponding line has not yet been deleted,

> display the line,
> “delete” the line by setting the first char to \0
> increment the Deleted variable.

06RandomLines.c

4 #include <s t d i o . h>
#include <s t d l i b . h>

6 #include <s t r i n g . h>

8 i n t main (void)
{

10 i n t i , NumberOfLines=0 , Deleted , WhichLine ;
char l i n e s [1 0 0] [1 0 0] , FileName [3 0] ;

12 FILE * i n f i l e ;

CS211 — Week 5: Strings and files 46/56

Part 5: Navigating a file Eg: Random Lines

06RandomLines.c

14 strcpy(FileName , "06 RandomLines.c");

infile = fopen(FileName , "r");

16 if (infile == NULL)

{

18 printf("Error: can’t open %s for reading",

FileName);

20 exit(EXIT_FAILURE);

}

for (i=0; (fgets(lines[i], 99, infile)) != NULL; i++)

24 NumberOfLines ++;

26 fclose(infile);

CS211 — Week 5: Strings and files 47/56

Part 5: Navigating a file Eg: Random Lines

06RandomLines.c

28 // Now display non-empty lines in a random order
Deleted =0;

30 while(Deleted < NumberOfLines)

{

32 WhichLine = rand ()% NumberOfLines;

if (lines[WhichLine][0] != ’\0’)

34 {

printf("%s", lines[WhichLine]);

36 lines[WhichLine][0]= ’\0’;

Deleted ++;

38 }

}

40 return(EXIT_SUCCESS);

CS211 — Week 5: Strings and files 48/56

Part 5: Navigating a file Eg: Random Lines

CS211
Week 5: Strings and files

END OF PART 5

CS211 — Week 5: Strings and files 49/56

Part 6: Writing data to a file

CS211
Week 5: Strings and files

Start of ...

PART 6: Writing data to a file

CS211 — Week 5: Strings and files 50/56

Part 6: Writing data to a file

Finally, we will study how to create a new file and write data to it.

First, as usual, declare a file pointer:
FILE *outfile;

Then open a new file in write mode:
outfile=fopen("NewList.txt", "w");

To write to the file, use one of

fprintf(FILE *stream, ...): works just like printf() except
that its first argument is the output stream.

fputc(char c, FILE *stream): writes the character c to the
stream,

fputs(char *str, FILE *stream): writes the string str to the
stream, without its trailing ’\0’

CS211 — Week 5: Strings and files 51/56

Part 6: Writing data to a file
Example
Write a program that copies every fifth line from an input file into an
output file.

07DeleteLines.c

int main(void)

12 {

FILE *infile , *outfile;

14 char InFileName [99], OutFileName [99], Line [99];

int i;

printf("Enter the name of the input file: ");

18 scanf("%s", InFileName);

printf("Enter the name of the output file: ");

20 scanf("%s", OutFileName);

CS211 — Week 5: Strings and files 52/56

Part 6: Writing data to a file

07DeleteLines.c

22 infile = fopen(InFileName , "r");

if (infile == NULL)

24 {

printf("Can’t open %s in read mode\n",

26 InFileName);

exit(EXIT_FAILURE);

28 }

outfile = fopen(OutFileName , "w");

30 if (outfile == NULL)

{

32 printf("Can’t open %s in write mode\n",

OutFileName);

34 exit(EXIT_FAILURE);

}

CS211 — Week 5: Strings and files 53/56

Part 6: Writing data to a file

07DeleteLines.c

i=0;

38 while (fgets(Line , 99, infile) != NULL)

{

40 i++;

if (i%5 == 0)

42 fputs(Line , outfile);

}

fclose(infile);

46 fclose(outfile);

48 return(EXIT_SUCCESS);

}

CS211 — Week 5: Strings and files 54/56

Part 6: Writing data to a file Further points

Issues concerning the use of files in C, but which we haven’t covered,
include

There are in fact 6 modes a file can have: r, w, a, r+, w+, a+.

To open a binary file, also include the letter b as part of the mode.

freopen() attaches a new file to an existing stream

tmpfile() opens a temporary file in binary read/write (w+b) mode.
The file is automatically deleted when it is closed or the program
terminates.

fflush() flushes a buffer

remove() and rename() can be used to manipulate files in a
directory.

int feof(FILE *stream) returns a nonzero character if the file
position indicator is at the end of the file.

CS211 — Week 5: Strings and files 55/56

Exercises
Exercise (Exer 6.1)
In the 04CountLinesWithfgetc.c we used rewind() to move the file
position indicator to the start of the file, before counting the number of
lines, and then rewind it when we are done. This means that, after any
call to file length() the file position indicator is set to the start of the
file; that is, we lose the current position.
Improve the code so that in the file length() function

first stores the current file position;

then rewinds the file;

counts the the number of lines;

resets the file position indicator.

CS211 — Week 5: Strings and files 56/56

