
Week 6: Processes

CS211: Programming and Operating Systems

Thursday, 18 March 2021

CS211 — Week 6: Processes 1/21



Usual reminders...

Mon Tue Wed Thu Fri
09:00
10:00
11:00
12:00
13:00 Recorded
14:00
15:00 LAB Recorded
16:00 LAB

1 This week, we have just one recorded classes: Thursday at 13:00.

2 The lab next Monday (22 March) will be a continuation of the one that
started this week.

3 An introduction to the lab wa srecorded, and is now available.

CS211 — Week 6: Processes 2/21



Feedback on Feedback

Thank you to the 8 of you that completed the feedback form
circulated by Noelle Gannon.

On average, it took 6 minutes, 33 seconds to complete.

Mostly very positive.

Several people are “unsure” or “disagree somewhat” with the
statement that “The feedback I have received is helping me to
improve my learning”. Which is fair! (Will do better!).

The “live-but-recorded” lectures seem to be popular (which I was
unsure of, since the quality is not very high).
Some good suggestions for improvement:

“Exam style questions with some worked solutions near the end
of the module” . [Response: will post last year’s exam, and solutions.]
“... it would be great if the lecturer did more examples step by
step”. “ more time explaining and repeating the basics and the
syntax at the beginning would help”. “Would be really helpful is if
we could see the program being written and run during the
lecture!” [Response: very helpful – will try to do this]

CS211 — Week 6: Processes 3/21



Feedback on Feedback
“Getting worked examples of the assignments after they’ve been
submitted would be really helpful too” . [Response: Yes! Will do this
once I get the assignments graded].
“I think it would be better to have the homework posted a few
days before the live lab session” . [Response: Good suggestion,
and I hope the new approach of having an assignment running over
two weeks will help. But I can’t promise more, since I’m already
stretched getting it posted the night before the 3pm lab.]

CS211 — Week 6: Processes 4/21



This week in CS211:
1 Part 1: The Process

Process API
Process State

2 Part 2: Process Creation
Example 1: fork()
Example 2: 02Fork2.c
Example 3: getppid()

3 Exercises

This week of “Programming
and Operating Systems”, we
segue from Programming to
Operating Systems,
starting with the concept of a
process (OS). But we will
write C programs that
manipulate processes
(Programming + OS).

CS211 — Week 6: Processes 5/21



Part 1: The Process

CS211
Week 6: Processes

Start of ...

PART 1: The Process

CS211 — Week 6: Processes 6/21



Part 1: The Process
As we now move towards the “Operating System” part of the course, the
need to learn some classical OS Theory. The presentation given here is
quite standard, and you should find equivalent descriptions in any OS
text-book.

Material from this point one relates to Chapters 4 and 5 of Operating
Systems: Three Easy Pieces by Remzi H. Arpaci-Dusseau and Andrea
C. Arpaci-Dusseau:

Processes: http:

//pages.cs.wisc.edu/~remzi/OSTEP/cpu-intro.pdf

Process API: http:

//pages.cs.wisc.edu/~remzi/OSTEP/cpu-api.pdf

CS211 — Week 6: Processes 7/21

http://pages.cs.wisc.edu/~remzi/OSTEP/
http://pages.cs.wisc.edu/~remzi/OSTEP/
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-intro.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-intro.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-api.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-api.pdf


Part 1: The Process Concept

“A Process... is a running programme” (OSTEP, p25)

Most OS will give the impression that many programmes are running at
one time. The user/programmer does not know or care of the CPU is
currently busy: the OS gives them the impression that it is available for
their (exclusive) use.

This is made possible by abstracting the concept of a running program as
a process.

“The OS creates this illusion by virtualizing the CPU”: we will study, later,
how this scheduling achieved. For now, we will take it that we need the
concept of the process to do this.

CS211 — Week 6: Processes 8/21



Part 1: The Process Concept

Every process consists of:

the Process Text - the code of the program

the program counter – the address of the next instruction to be
executed.

the process stack (temporary data, e.g., local variables, return
addresses, etc)

the data section – global variables.

A process is not (just) a program: if two users run the same program at
the same time they create different processes.
A program is a passive entity, whereas a process is active/dynamic.

Often, the terms process and job can be used interchangeably.

CS211 — Week 6: Processes 9/21



Part 1: The Process Process API

Here is a minimal set of operations that an OS must be able to apply to a
process.

Create a new process, e.g., when you click on an icon.

Destroy (or terminate) a process,

Wait that is pause the process until some other event occurs.

Suspend and resume: like wait, but invoked more explicitly.

Status report: information about a process, such as how long it
has run for, how much memory has been allocated to it,
etc.

CS211 — Week 6: Processes 10/21



Part 1: The Process Process State

The state of a process is defined (in part) by the current activity of that
process:

new: The process is being created

running: Instructions are being executed

blocked: (also called “waiting”). The process is waiting for some
event to occur

ready: The process is waiting to be assigned to a processor

terminated: The process has finished execution.

CS211 — Week 6: Processes 11/21



Part 1: The Process Process State

Here is a diagram of the process life-cycle, featuring

new • running • blocked • ready • terminated

CS211 — Week 6: Processes 12/21



Part 2: Process Creation

CS211
Week 6: Processes

Start of ...

PART 2: Process Creation

In this section, we’ll see how to create a process in C using the fork()

function. Unfortunate, this won’t work under Windows/codeblocks. So
use one of the online compilers, such as https: // repl. it or

onlinegdb. com

CS211 — Week 6: Processes 13/21

https://repl.it
onlinegdb.com


Part 2: Process Creation
A parent process creates children processes, which, in turn create other
processes, forming a tree of processes.

After a parent creates a subprocess it may:

execute1 concurrently with the child
or

wait until child terminates before it continues.

The parent may share all, some or none of its resources with the child
(resources include memory space, open files, the terminal, etc.)

It is usually the case that the child will share the parent’s memory only in
the sense that it receives a copy.
The child can then mimic the parents execution, or it might over-write (or
“over-lay”) its memory space with other instructions.

1“Execute” in this context means “run” or “preform operations”, as in “to execute a plan”

CS211 — Week 6: Processes 14/21



Part 2: Process Creation Example 1: fork()

All processes have a unique Process Identification Number – PID for
short. If we create a subprocess in a C program using the fork()

function, a new process is created:

The new process run concurrently with its parent, unless we instruct
the parent to wait().

The subproc is given a copy of the parents memory space.

At the time of creation, the two processes are almost identical,
except that the fork() returns the child’s PID to the parent and 0 to
the child.

In order to use this function, we must include the unistd.h header file.
This provides various functions including

fork()

getpid()

getppid()

CS211 — Week 6: Processes 15/21



Part 2: Process Creation Example 1: fork()

04Fork.c

1 // An example of forking a process

3 #include <unistd.h>

#include <stdio.h>

5 #include <stdlib.h>

int main(void )

9 {

int pid1 , mypid;

pid1 = fork ();

13 mypid = getpid ();

15 printf("I am %d\t", mypid);

printf("Fork returned %d\n", pid1);

17 return (0);

}

CS211 — Week 6: Processes 16/21



Part 2: Process Creation Example 1: fork()

When I compile and run this (e.g., on https://www.onlinegdb.com/) I
get something like

I am 7791. Fork returned 0

I am 7790. Fork returned 7791

IMPORTANT: unistd.h is not included in the installation of code::blocks on
campus. Try

https://www.onlinegdb.com/online_c_compiler

https://www.jdoodle.com/c-online-compiler

https://paiza.io/projects/

https://rextester.com/l/c_online_compiler_gcc

But not https://www.tutorialspoint.com/compile_c_online.php or
http://www.compileonline.com/ or https://www.codechef.com/.
Also problematic: https://ideone.co

CS211 — Week 6: Processes 17/21

https://www.onlinegdb.com/
https://www.onlinegdb.com/online_c_compiler
https://www.jdoodle.com/c-online-compiler
https://paiza.io/projects/
https://rextester.com/l/c_online_compiler_gcc
https://www.tutorialspoint.com/compile_c_online.php
http://www.compileonline.com/
https://www.codechef.com/
https://ideone.co


Part 2: Process Creation Example 1: fork()

02Fork2.c

// An example of forking two processes
2 #include <unistd.h>

#include <stdio.h>

4 #include <stdlib.h>

6 int main(void )

{

8 int pid1 , pid2 , mypid;

10 pid1 = fork ();

pid2 = fork ();

12 mypid = getpid ();

14 printf("I am %d\t", mypid);

printf("1st fork returned %d\t", pid1);

16 printf("2nd fork returned %d\n", pid2);

return (0);

18 }

CS211 — Week 6: Processes 18/21



Part 2: Process Creation Example 1: fork()

Running that we might get:

I am 7802. 1st Fork returned 7803. 2nd Fork returned 7805

I am 7803. 1st Fork returned 0. 2nd Fork returned 7804

I am 7804. 1st Fork returned 0. 2nd Fork returned 0

I am 7805. 1st Fork returned 7803. 2nd Fork returned 0

Discuss: Why do we get this output?

CS211 — Week 6: Processes 19/21



Part 2: Process Creation Example 3: getppid()

The parent knows the child’s PID because it is returned by fork(). The
child can find out its parent’s PID, by using the getppid() function:

06ParentsPID.c

6 int main(void )

{

8 int pid1;

pid1 = fork ();

10 printf("I am %d\t", getpid ());

printf("fork returned %5d\t", pid1);

12 printf("My parent is %d\n", getppid ());

return (0);

14 }

OUTPUT:

I’m proc 7825. fork() returned 0. My partent is 7824

I’m proc 7824. fork() returned 7825. My partent is 5394

CS211 — Week 6: Processes 20/21



Exercises

Exercise (Exer 6.1)
In the 04CountLinesWithfgetc.c from Week 5, we used rewind() to
move the file position indicator to the start of the file, before counting the
number of lines, and then rewind it when we are done. This means that,
after any call to file length() the file position indicator is set to the
start of the file; that is, we lose the current position.
Improve the code so that in the file length() function

first stores the current file position;

then rewinds the file;

counts the the number of lines;

resets the file position indicator.

CS211 — Week 6: Processes 21/21


	Usual reminders...
	Feedback on Feedback
	This week in CS211:
	Part 1: The Process
	Concept
	Process API
	Process State

	Part 2: Process Creation
	Example 1: fork()
	Example 2: 02Fork2.c
	Example 3: getppid()

	Exercises

