
Week 6: Processes

CS211: Programming and Operating Systems

Thursday, 18 March 2021

CS211 — Week 6: Processes 1/20

Annotated slides from class (but not many, since tablet wasn't
working): PART 2

Part 2: Process Creation

CS211
Week 6: Processes

Start of ...

PART 2: Process Creation

In this section, we’ll see how to create a process in C using the fork()

function. Unfortunate, this won’t work under Windows/codeblocks. So
use one of the online compilers, such as https: // repl. it or

onlinegdb. com

CS211 — Week 6: Processes 13/20

Part 2: Process Creation
A parent process creates children processes, which, in turn create other
processes, forming a tree of processes.

After a parent creates a subprocess it may:

execute1 concurrently with the child
or

wait until child terminates before it continues.

The parent may share all, some or none of its resources with the child
(resources include memory space, open files, the terminal, etc.)

It is usually the case that the child will share the parent’s memory only in
the sense that it receives a copy.
The child can then mimic the parents execution, or it might over-write (or
“over-lay”) its memory space with other instructions.

1“Execute” in this context means “run” or “preform operations”, as in “to execute a plan”

CS211 — Week 6: Processes 14/20

Memory = "variables"

Part 2: Process Creation Example 1: fork()

All processes have a unique Process Identification Number – PID for
short. If we create a subprocess in a C program using the fork()

function, a new process is created:

The new process run concurrently with its parent, unless we instruct
the parent to wait().

The subproc is given a copy of the parents memory space.

At the time of creation, the two processes are almost identical,
except that the fork() returns the child’s PID to the parent and 0 to
the child.

In order to use this function, we must include the unistd.h header file.
This provides various functions including

fork()

getpid()

getppid()

CS211 — Week 6: Processes 15/20

[Creating new child procs]

[Returns my PID]
[Returns my parent's PID]

Part 2: Process Creation Example 1: fork()

04Fork.c

1 // An example of forking a process

3 #include <unistd.h>

#include <stdio.h>

5 #include <stdlib.h>

int main(void)

9 {

int pid1 , mypid;

pid1 = fork ();

13 mypid = getpid ();

15 printf("I am %d\t", mypid);

printf("Fork returned %d\n", pid1);

17 return (0);

}

CS211 — Week 6: Processes 16/20

01Fork.c

[As of now, two procs are running]

Part 2: Process Creation Example 1: fork()

When I compile and run this (e.g., on https://www.onlinegdb.com/) I
get something like

I am 7791. Fork returned 0

I am 7790. Fork returned 7791

IMPORTANT: unistd.h is not included in the installation of code::blocks on
Windows. Try

https://www.onlinegdb.com/online_c_compiler

https://www.jdoodle.com/c-online-compiler

https://paiza.io/projects/

https://rextester.com/l/c_online_compiler_gcc

But not https://www.tutorialspoint.com/compile_c_online.php or
http://www.compileonline.com/ or https://www.codechef.com/.
Also problematic: https://ideone.co

CS211 — Week 6: Processes 17/20

[Output from the child]
[Output from parent]

Part 2: Process Creation Example 1: fork()

02Fork2.c

// An example of forking two processes
2 #include <unistd.h>

#include <stdio.h>

4 #include <stdlib.h>

6 int main(void)

{

8 int pid1 , pid2 , mypid;

10 pid1 = fork ();

pid2 = fork ();

12 mypid = getpid ();

14 printf("I am %d\t", mypid);

printf("1st fork returned %d\t", pid1);

16 printf("2nd fork returned %d\n", pid2);

return (0);

18 }

CS211 — Week 6: Processes 18/20

Part 2: Process Creation Example 1: fork()

Running that we might get:

I am 7802. 1st Fork returned 7803. 2nd Fork returned 7805

I am 7803. 1st Fork returned 0. 2nd Fork returned 7804

I am 7804. 1st Fork returned 0. 2nd Fork returned 0

I am 7805. 1st Fork returned 7803. 2nd Fork returned 0

Discuss: Why do we get this output?

CS211 — Week 6: Processes 19/20

We get 4 lines of output because
1. First just the parent is running.
2. It calls pid1=fork(), so now there are two
3. Each of those calls "pid2 = fork()", so now there are
 4.

Part 2: Process Creation Example 3: getppid()

The parent knows the child’s PID because it is returned by fork(). The
child can find out its parent’s PID, by using the getppid() function:

06ParentsPID.c

6 int main(void)

{

8 int pid1;

pid1 = fork ();

10 printf("I am %d\t", getpid ());

printf("fork returned %5d\t", pid1);

12 printf("My parent is %d\n", getppid ());

return (0);

14 }

OUTPUT:

I’m proc 7825. fork() returned 0. My partent is 7824

I’m proc 7824. fork() returned 7825. My partent is 5394

CS211 — Week 6: Processes 20/20

[Parent]

[Child]

