
Week 7: Processes Communication

CS211: Programming and Operating Systems

Wednesday and Thursday, 24+25 March 2021

CS211 — Week 7: Processes Communication 1/42

Annotated slides

Usual reminders...

Mon Tue Wed Thu Fri
09:00
10:00
11:00
12:00
13:00 Recorded
14:00
15:00 LAB Recorded
16:00 LAB

1 This week, we have live-but-recorded classes on Wednesday at 3, and Thursday at 1.

CS211 — Week 7: Processes Communication 2/42

In Week 7 of CS211, we’ll study
1 Part 1: Recap on Week 6

... The Process (again)
fork()

2 Part 2: More Process Programming
wait()

Overlaying a process
Process Termination

3 Part 3: Signals
kill()

signal()

4 Part 4: Interprocess communication
producer-consumer model
IPC

5 Part 5: pipe()
6 Exercises

In this week of “Programming
and Operating Systems”, we
continue our study of the theory
and programming of processes.

CS211 — Week 7: Processes Communication 3/42

Part 1: Recap on Week 6

CS211
Week 7: Processes Communication

Start of ...

PART 1: Recap on Week 6

CS211 — Week 7: Processes Communication 4/42

Part 1: Recap on Week 6 ... The Process (again)

In Week 6, we started our move towards the “Operating System” part of the
course.

Material from that class, and this one, are based on Chapters 4 and 5 of
Operating Systems: Three Easy Pieces by Remzi H. Arpaci-Dusseau and
Andrea C. Arpaci-Dusseau:

Processes: http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-intro.pdf

Process API: http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-api.pdf

CS211 — Week 7: Processes Communication 5/42

Part 1: Recap on Week 6 fork()

In Week 6 we learned that

“A Process... is a running programme” (OSTEP, p25)

Perhaps the most important task that an operating system must complete is to
set a programming running. We learned last week what that meant in theory, but
also how we could write a program that makes a system call to the operating
system to create a process, using the fork() function.

This function is defined in the unistd.h header file.

All processes have a unique Process identification number : PID.

CS211 — Week 7: Processes Communication 6/42

Part 1: Recap on Week 6 fork()

We examine the creation of processes by calls (from a C program) to the fork()

function.

fork() is defined in the the unistd.h header file.

IMPORTANT: fork() is not included in the mingw compiler that comes with
code::blocks on Windows. Try

https://www.onlinegdb.com/online_c_compiler

https://www.programiz.com/c-programming/online-compiler

https://www.jdoodle.com/c-online-compiler

https://paiza.io/projects/

https://rextester.com/l/c_online_compiler_gcc

But not https://www.tutorialspoint.com/compile_c_online.php or
http://www.compileonline.com/ or https://www.codechef.com/.
Also problematic: https://repl.it/languages/c and https://ideone.co

CS211 — Week 7: Processes Communication 7/42

Part 1: Recap on Week 6 fork()

The process that calls fork is called the parent;

the process that is created is called the child;

The prototype for fork() is
pid t fork(void);

That is,

it takes no arguments;

the return type is really an int

the return value is −1 if the fork() failed

otherwise, it returns the PID of the newly made child to the parent.

the return value is 0 to the newly made child.

CS211 — Week 7: Processes Communication 8/42

Part 1: Recap on Week 6 fork()

the child is distinct from the parent: it gets its own copy of the parent’s
memory space;

both parent and child run concurrently;

starting from the fork(), the parent and child execute the same instruction
set: that is, from the point of the fork() onward, the two processes have the
same tasks to preform.

Two other important functions:

pid_t getpid(void);

pid_t getppid(void);

getpid() returns the value of the processes’ own PID

getppid() returns the value of the processes’ parent’s PID

Since the parent and child have copies of the same memory space and
instruction set, getpid() and getppid() are very useful for working out which is
which.

CS211 — Week 7: Processes Communication 9/42

Part 1: Recap on Week 6 fork()

02Fork.c from Week 6
1 // An example of forking a process

#include <unistd.h>

3 #include <stdio.h>

5 int main(void)

{

7 int pid1 , mypid;

9 pid1 = fork ();

mypid = getpid ();

printf("I am %d\t", mypid);

13 printf("Fork returned %d\n", pid1);

return (0);

15 }

Typical output:

I am 7791. Fork returned 0

I am 7790. Fork returned 7791

CS211 — Week 7: Processes Communication 10/42

Part 1: Recap on Week 6 fork()

01ParentsPID.c

int main(void)

6 {

int pid1;

8 pid1 = fork ();

printf("I am %d\t", getpid ());

10 printf("fork returned %5d\t", pid1);

printf("My parent is %d\n", getppid ());

12 return (0);

}

OUTPUT:

I’m proc 7825. fork() returned 0. My partent is 7824

I’m proc 7824. fork() returned 7825. My partent is 5394

CS211 — Week 7: Processes Communication 11/42

Part 1: Recap on Week 6 fork()

So, processes can use getpid() and getppid() to tell themselves apart. Of
course, they could also do this by checking the return value of fork().

02WhoAmI.c

int main(void) {

6 int pid1 , mypid;

pid1 = fork ();

8 mypid = getpid ();

if (pid1 != 0)

10 printf("I’m the parent. My PID’s %d, my child’s is %d\n",

mypid , pid1);

12 else

printf("I’m the child. My PID’s %d, my parent ’s is %d\n",

14 mypid , getppid ());

return (0);

Typical Output:

I am the parent. My PID is 10770, the child’s is 10771
I am the child. My PID is 10771, my parent’s is 10770

CS211 — Week 7: Processes Communication 12/42

Part 1: Recap on Week 6 fork()

CS211
Week 7: Processes Communication

END OF PART 1

CS211 — Week 7: Processes Communication 13/42

Since if we run two the same program twice,
we get two processes.

So, the code of the program is not enough to
distinguish the processes. We need their IDs too.

Part 2: More Process Programming

CS211
Week 7: Processes Communication

Start of ...

PART 2: More Process Programming

CS211 — Week 7: Processes Communication 14/42

Part 2: More Process Programming wait()

Often we don’t want the parent to continue running while the child process is
executing, particularly as the results may be non-deterministic: we can’t predict
with certainly what will happen in what order.

Here is an example of a program for which we cannot predict the order of the
output:

03CountTo10.c

int main(void) {

8 int i;

fork ();

10 printf("Watch me (%d) count to 10: ", getpid ());

for (i=1; i <=10; i++)

12 {

sleep (2* rand ()%2); // sleep for 0 or 2 seconds
14 printf("%3d...", i);

fflush(stdout);

16 }

printf("\n");

18 return (0);

}

Typical Output:
Watch me (11695) count to 10: 1... 2... 3...Watch me (11696) count
to 10: 1... 4... 2... 5... 6... 3... 7... 4... 8... 5...
9... 6... 10... 7... 8... 9... 10...

CS211 — Week 7: Processes Communication 15/42

Part 2: More Process Programming wait()

A call to the wait() function suspends the execution of the parent process until
such time as the child completes (or, at least, signals to the parent – more about
that later).

04WaitAndCount.c

6 #include <sys/wait.h>

int main(void)

8 {

int pid1 , i;

10 pid1=fork ();

srand(getpid ());

12 if (pid1 != 0) // Parent follows this path
wait(NULL);

printf("Watch me (%d) count to 10: ", getpid ());

16 for (i=1; i <=10; i++)

{

18 sleep(rand ()%2); // sleep for 0 or 1 seconds
printf("%3d...", i);

20 fflush(stdout);

}

22 printf("\n");

return (0);

24 }

CS211 — Week 7: Processes Communication 16/42

Part 2: More Process Programming Overlaying a process

Recall that usually a sub-proc will share the parent’s memory only in the sense
that it receives a copy:

1 The child can then mimic the parents execution, as in the Examples above
or

2 its memory space may be over-layed with another program/set of
instructions.

Often, when a subprocess is created, it is over-layed with another program. In C
this can be done with the execlp() function.

In the following example the sub-procs memory space is over-layed the program
text of the ls command.

Again we use the wait() function.

CS211 — Week 7: Processes Communication 17/42

Part 2: More Process Programming Overlaying a process

05Overlay.c

int pid1 = fork ();

if (pid1 == 0) // this is the child
12 {

printf("This is process %d\t", getpid ());

14 printf("Here is a directory listing :\n");

execlp("ls", "ls", NULL);

16 }

else // parent
18 {

wait(NULL);

20 printf("This is process %d\t", getpid ());

printf("Subprocess %5d has completed\n", pid1);

22 }

return (0);

CS211 — Week 7: Processes Communication 18/42

Part 2: More Process Programming Process Termination

The OS is responsible for de-allocating the resources of a process. It may also be
responsible for killing the proc.

Process Termination may occur when:

1 the proc executes its last instruction and asks the operating system to delete
it (exit()). At that time it will usually:

Output data from child to parent (via wait()).
Have its resources de-allocated by operating system.

2 Parent terminates execution of children processes (kill()) because
the child/sub-proc has exceeded allocated resources.
the task assigned to child is no longer required.

3 the parent is exiting and OS does not allow child to continue if its parent
terminates.

On Unix systems, when a process terminates, its children are “re-parented”
(adopted) by the init process.

CS211 — Week 7: Processes Communication 19/42

Part 2: More Process Programming Process Termination

CS211
Week 7: Processes Communication

END OF PART 2

CS211 — Week 7: Processes Communication 20/42

Part 3: Signals

CS211
Week 7: Processes Communication

Start of ...

PART 3: Signals

A first look at communicating between processes

CS211 — Week 7: Processes Communication 21/42

Part 3: Signals kill()

The kill() system call mentioned above is an example of a signal – a form a
communication from one process to another. These provide a facility for
asynchronous event handling (more of this later)

You may have used a kill() system call from the task-manager of an OS you
use. To use kill function from within a C program:

1 #include <sys/types.h>
#include <signal.h>

3 .
.

5 // more standard stuff goes here
.

7 .
int kill(pid_t pid , int sig);

CS211 — Week 7: Processes Communication 22/42

Part 3: Signals kill()

06ChildKillsParent.c

8 #include <signal.h>

10 int main(void)

{

12 printf("Parent process has pid=%d\n", getpid ());

int child_pid = fork ();

14 if (child_pid == 0) // child path
{

16 sleep (3);

printf("%d telling parent process (%d) to terminate\n",

18 getpid(), getppid ());

kill(getppid(), SIGKILL);

20 }

else // parent path
22 {

sleep (20); // sleep for 20 seconds
24 printf("**%d: never gets to this line , do we?\n",

getpid ());

26 }

Note - when the child sends the kill signal to the child, the child process also
terminates.

CS211 — Week 7: Processes Communication 23/42

Part 3: Signals kill()

The kill() function can send other signals, but most (such as SIGABRT,
SIGILL, SIGQUIT, SIGTERM) are just variants on SIGKILL).

However, there are signals that preform other tasks:

SIGSTOP: stop (temporarily; i.e., pause);

STGCONT resume (if stopped).

SIGUSR1 a user-defined signal; (see next section)

SIGUSR2 another user-defined signal;

Exercise (7.1: SIGSTOP, SIGCONT)
Write a C program that works as follows:

The parent process forks a child;

The child process outputs 1, 2, ..., 9, 10, but sleeps for 1 second
between each number.
The parent

sleeps for 3 seconds, then outputs a message, sends SIGSTOP to the child.
sleeps for 3 seconds, then outputs another message, sends SIGCONT
sleeps for 4 seconds, then outputs a final message,

CS211 — Week 7: Processes Communication 24/42

Part 3: Signals signal()

With the signal() function, we can send a signal that tells the process to
preform a specific action when it receives a SIGUSR1 or SIGUSR2 signal.

07SIGUSR1.c

6 #include <stdio.h>
#include <unistd.h> // need this for fork

8 #include <signal.h> // defines signalo()

10 void signal_handler1(int sig);

12 int main(void)
{

14 int child_pid=fork (); // New process will send signal to parent

16 if (child_pid != 0) // I’m the parent
{

18 signal(SIGUSR1 , signal_handler1); // What to do if I get signaled
sleep (100); // Wait potentially a long time

20 printf("%d got woken \n", getpid ());
kill(child_pid , SIGKILL); // tell watcher to terminate.

22 }

CS211 — Week 7: Processes Communication 25/42

Part 3: Signals signal()

07SIGUSR1.c

else // I am the child
24 {

printf("I am the child (%d)\n", getpid ());
26 printf("Should %d signal parent (%d)? (’y ’/’n ’)\n",

getpid(), getppid ());
28 if (getchar () == ’y’)

{
30 printf("Sending siguser 1 to parent\n");

kill(getppid () , SIGUSR1);
32 }

}
34 return (0);

}

void signal_handler1(int sig) {
38 printf("Proc %d called signal_handler1 () with signal %d\n",

getpid(), sig);
40 }

CS211 — Week 7: Processes Communication 26/42

Part 3: Signals signal()

What the process does after it has finished calling the signal handler function
depends on the situation. In the above example, it stopped sleeping.

More typically, however, if it had been making a blocking call – such as taking
input from the keyboard, or reading from a pipe – it returns to doing that.

Exercise (7.2: SIGUSR1, SIGUSR2)
Write a C program like 07SIGUSR1 but that sets up signal handlers for both
SIGUSR1 and SIGUSR2. The child process should prompt the user to input 1 (for
SIGUSR1) or 2 (for SIGUSR2), and then send that signal to the parent.

CS211 — Week 7: Processes Communication 27/42

Part 3: Signals signal()

CS211
Week 7: Processes Communication

END OF PART 3

CS211 — Week 7: Processes Communication 28/42

Part 4: Interprocess communication

CS211
Week 7: Processes Communication

Start of ...

PART 4: Interprocess communication

(IPC)

CS211 — Week 7: Processes Communication 29/42

Part 4: Interprocess communication

The kill() system call can be considered as a form of communucation
between process (though not a very subtle one). Now we’ll consider more
general interprocess communication.

. .

Two processes that are executing on the same computer may be either

Independent: they cannot affect or be affected by the execution of the other.

Cooperating: they can affect or be affected by the execution of each other.

CS211 — Week 7: Processes Communication 30/42

Part 4: Interprocess communication

It can be advantageous to allow processes communication in order to facilitate

(i) Information sharing – e.g., two procs might require access to the same file.

(ii) Modularity – different procs might be dedicated to different system
functions.

(iii) Convenience – e.g., a user might be running an editor, spell-checker and
printer, all for the same file.

(iv) Computational Speed – on a multiprocessing system, tasks are
sub-divided and executed concurrently on different processors.

Basically, cooperating processes require communication in order to share data
and to synchronize their actions.

CS211 — Week 7: Processes Communication 31/42

Part 4: Interprocess communication producer-consumer model

Communication between cooperative processes may be described in terms of the
producer-consumer model . One process, e.g., an editor, has information it
wants to produce for consumption by another process, e.g., a printer-driver. This
may be done using a mutual buffer – the producer writes to the buffer and the
consumer reads from it.

The shared buffer may be un-bounded or bounded :

un-bounded : no size limit is placed on the buffer. The producer may
continue to produce and write to the buffer as long as it wants to,

bounded : There is a strict limit on the size of the buffer. If it is full the
producer must wait until the consumer removes some data.

CS211 — Week 7: Processes Communication 32/42

Part 4: Interprocess communication producer-consumer model

The buffer may be implemented either by

(i) Physically by a set a shared variables (i.e., shared memory addresses).
Implementation of this approach is the responsibility of the programmer.

(ii) Logically by Message Passing using an InterProcess Communication
Facility. Such a system is implemented by the OS.

CS211 — Week 7: Processes Communication 33/42

Part 4: Interprocess communication IPC

Interprocess Communication (IPC) provides a logical communication link via a
message passing facility with two fundamental operations:

send message and

receive message.

Two standard forms of IPC are: Direct and Indirect .
Furthermore, IPC may be: Symmetric or Asymmetric

CS211 — Week 7: Processes Communication 34/42

Part 4: Interprocess communication IPC

Direct Communication:

Each process must nominate explicitly the process with which they want to
communicate.

Pairs of communicating procs must know each others ID’s in order to establish a
link

With this system: a link is established by the two processes automatically, there
are exactly two procs associated with a link, and there can be at most one link
between two procs.

This is an example of Symmetric addressing.

In the Asymmetric version, only the sender needs to know the recipient’s
address – the recipient listens out for any messages addressed to it (this is like
making a phone call to someone).

Disadvantage: procs must have details of each other before they start to
communicate. Only one link between proc. Only 2 procs can communicate at one
time.

CS211 — Week 7: Processes Communication 35/42

Part 4: Interprocess communication IPC

Indirect Communication:

The alternative is to have a number of ports (Mailboxes) in the system. Each has
a unique ID.

For procs to communicate they just need to know the name of the shared
mailbox.
More that two procs can share a mailbox.
Two procs may share more than one mailbox.

Disadvantage: If one proc writes some data to a mailbox, and two others try to
read from it, which get the data? Possible solutions:

The Mailbox is “owned” by only one proc. Then several procs can write to it,
but only one can read.

Mailboxes are owned only by Operating System. Permissions then granted
to process to create and delete mailboxes, and to send or receive messages

CS211 — Week 7: Processes Communication 36/42

Part 4: Interprocess communication IPC

CS211
Week 7: Processes Communication

END OF PART 4

CS211 — Week 7: Processes Communication 37/42

Part 5: pipe()

CS211
Week 7: Processes Communication

Start of ...

PART 5: pipe()

CS211 — Week 7: Processes Communication 38/42

Part 5: pipe()

A pipe is a means of communication, based around the pipe(), write(),
read() and functions that allows one process to send data to another. Typically,
the data can be anything, but we will use examples of sending integers. It is a
form of symmetric direct communication.

Using the pipe(name) function, one process creates a pipe. Here name is a
int array with two elements.

To put a message into the pipe, write to name[1]

To read a message from the pipe, read from name[0]

In this example a process will create a pipe, then fork a subprocess, and send its
PID to this new subprocess.

CS211 — Week 7: Processes Communication 39/42

Part 5: pipe()

08Pipes.c

/* Which: 08Pipes . c
2 What: a parent and child communicate via a pipe

Who: Niall Madden (Niall .Madden@NUIGalway. ie)
4 When: Week 7 , 2021−CS211

Why: an example of using (unix) pipes */
6 #include <unistd.h>

#include <stdio.h>

int main(void)

10 {

int child_pid , parent_pid , pipename [2];

12 pipe(pipename); // make the pipe
child_pid = fork ();

CS211 — Week 7: Processes Communication 40/42

Part 5: pipe()

The parent will now send a message (its own pid) to the child.

08Pipes.c

if (child_pid != 0) // This is the parent
16 {

parent_pid = getpid ();
18 printf("I am the parent (%d); My child is %d\n",

getpid(), child_pid);
20 write(pipename [1], &parent_pid , 4);

}

And the child will read it from the pipe.

08Pipes.c

22 else // The child
{

24 read(pipename [0], &parent_pid , 4);
printf("I’m the child (%d); what I read from pipe: %d\n",

26 getpid(), parent_pid);
}

CS211 — Week 7: Processes Communication 41/42

Exercises

Exercise (7.3)
According to the manual, a call to fflush(stdio) “forces a write of all user-space buffered
data for the given output or update stream via the stream’s underlying write function”.
Explain what this means. Compare the output of 03CountTo10.c with and without that call.
What is the difference? How can it be explained?

Exercise (7.4)
In the example in 06ChildKillsParent.c, the child process sends a kill signal to the
parent. Write a version of this when the parent sends the kill signal to the child. How does
the output change?

Exercise (7.5)
In the example in 06ChildKillsParent.c, the child process sends a kill signal to the
parent, the child should be “re-parented”, but this depends on the Operating System. Check
what happens on the system you use by checking if getppid() changes.

CS211 — Week 7: Processes Communication 42/42

