
Week 9: Scheduling and Concurrency

CS211: Programming and Operating Systems
Niall Madden (Niall.Madden@NUIGalway.ie)

Wednesday and Thursday, 14+15 April 2021

CS211 — Week 9: Scheduling and Concurrency 1/57

Annotated Slides

CS211 Assessment
Grades for CS211 will be based on

1 Four programming assignments: 40%. The final component, Lab 6,
is due [??DISCUSS??]

2 Homework assignment 20%. Details are on Blackboard. Deadline is
5pm, Friday 30 April. [??DISCUSS??]

3 Online exam: 40%.

This will be confirmed in the next few weeks.
End of Week 1, Part 1

CS211 — Week 9: Scheduling and Concurrency 2/57

CS211, this week, will be all about . . .
1 Part 1: Scheduling - examples

Algorithms
Round Robin (RR)
Example

2 Part 2: Concurrency
Race condition

3 Part 3: Critical sections
Atomic Operations
Locks

4 Part 4: Semaphores
Previewing Lab 6
Coding a semaphore

5 Part 5: Deadlock and Starvation
6 Part 6: Resource Allocation Graphs

Example 1
Example 2

7 Part 7: The Dining Philosophers
Deadlock handling

8 Exercises

CS211 — Week 9: Scheduling and Concurrency 3/57

Part 1: Scheduling - examples

CS211
Week 9: Scheduling and Concurrency

Start of ...

PART 1: Part 1: Scheduling
Processes - examples

CS211 — Week 9: Scheduling and Concurrency 4/57

Part 1: Scheduling - examples

For more, see Chapter 7 of the Textbook .

Last week we started studying SCHEDULING: algorithms by which the
Operating System decides which of the available processes will be given
access to the CPU, i.e., set running.

First: recall the states of a process and how they relate to each other.

CS211 — Week 9: Scheduling and Concurrency 5/57

Part 1: Scheduling - examples Algorithms

We studied four Scheduling Algorithms:

1 First-Come-First-Served (FSFS)

2 Shortest-Job-First (SJF)

3 Shortest Time-to-Completion First (STCF)

4 Round-Robin (RR)

For each of these, we consider a few examples of process mix; for each
example we’ll assumed that processes have a single CPU burst,
measured in seconds (though this unit is not important).

CS211 — Week 9: Scheduling and Concurrency 6/57

Part 1: Scheduling - examples Scheduling metrics

We compared algorithms according to the following METRICS:

1 Turnaround time – the time that elapses between when process
arrives in the system, and when it finally completes.

2 Wait time – the amount of time between when a process arrives, and
when it completes, that it spends doing nothing.

3 Response time – the time that elapses between when process
arrives in the system, and when it executes for the first time.

CS211 — Week 9: Scheduling and Concurrency 7/57

Part 1: Scheduling - examples Round Robin (RR)

Each process gets a small unit of CPU time called a time quantum or
time slice –usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.

If there are n processes in the ready queue and the time quantum is q,
then each process gets 1/n of the CPU time in chunks of at most q time
units at once. No process waits more than (n − 1)q time units. (Why?)

The size of the quantum is of central importance to the RR algorithm. If it
is too large, then its is just the FCFS model. If it is too low, them too
much time is spent on context switching.

CS211 — Week 9: Scheduling and Concurrency 8/57

Part 1: Scheduling - examples Example

Suppose the following arrive in the following order:

Proc Arrive Time Burst Time
P1 0 20
P2 2 15
P3 4 10
P4 6 5

Calculate the

(a) Average Turnaround Time,
(b) Average Wait Time, and
(c) Average Response Time for

1 FCFS
2 SJF
3 STCF
4 RR with q = 10

CS211 — Week 9: Scheduling and Concurrency 9/57

Part 1: Scheduling - examples Example

FCFS
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

P1 Running

P2 running

P3 running

P4 running

CS211 — Week 9: Scheduling and Concurrency 10/57

Part 1: Scheduling - examples Example

Shortest Job First (SJF)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

P1 Running

P4 running

P3 running

P2 running

CS211 — Week 9: Scheduling and Concurrency 11/57

Part 1: Scheduling - examples Example

Shortest Time to Completion First (STCF)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

P1 runs P1 runs

P2 runs P2 runs

P3 runs P3 runs

P4 runs

CS211 — Week 9: Scheduling and Concurrency 12/57

Part 1: Scheduling - examples Example

Round Robin with q = 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

P1 runs P1 runs

P2 runs P2 runs

P3 runs

P4 runs

CS211 — Week 9: Scheduling and Concurrency 13/57

Part 1: Scheduling - examples Example

CS211
Week 9: Scheduling and Concurrency

END OF PART 1

CS211 — Week 9: Scheduling and Concurrency 14/57

Part 2: Concurrency

CS211
Week 9: Scheduling and Concurrency

Start of ...

PART 2: Concurrency

CS211 — Week 9: Scheduling and Concurrency 15/57

Part 2: Concurrency

Please read Chapter 26 (Concurrency) of the textbook for much more
detail on threads.

A cooperating process is one that can affect or be affected by another
process that is executing on the system.

Threads are prime examples of this: we can think of them as a single
process with multiple points of execution. They share program code and,
crucially, data.

In this section, we consider the problems that occue then one or more
threads try to access the same data, and we look at potential solutions.

A classic data inconsistency problem is the so-called

“Race Condition”,

which we’ll study in Lab 6 (a more complicated version is discussed in
Sections 26.3-26.4).

CS211 — Week 9: Scheduling and Concurrency 16/57

Part 2: Concurrency Race condition

A Race Condition (also called a data race) is one where the result
depends on the order in which instructions are executed.

For a single-thread process, this is predetermined.

But for multi-threaded processes, we do not have control over the order in
which individual threads execute their instructions.

CS211 — Week 9: Scheduling and Concurrency 17/57

Part 2: Concurrency Race condition

Consider the following example: two cooperating process called P1 and
P2 share the variable count. At various times during execution either
may increment or decrement count.

The machine usually implements an increment as follows:

1 load the value of count into a register: REG1 = count

2 add 1 to the contents of the register: REG1 = REG1 + 1

3 overwrite the contents of count with the contents of the register:
count = REG1.

A decrement would be implemented as

1 load the value of count into a register: REG2 = count

2 subtract 1 from the contents of the reg: REG2 = REG2 - 1

3 save the contents of the register as count: count = REG2

CS211 — Week 9: Scheduling and Concurrency 18/57

Part 2: Concurrency Race condition

Suppose the value of count is 5. If P1 executes an increment and P2

executes a decrement, then the value of count should still be 5. Unless
the individual operations happen in the following order...

P1 executes REG1 = count REG1 = 5
P1 executes REG1 = REG1 + 1 REG1 = 6
P2 executes REG2 = count REG2 = 5
P2 executes REG2 = REG2 − 1 REG2 = 4
P1 executes count = REG1 count = 6
P2 executes count = REG2 count = 4

We arrive at the wrong state because we allowed both threads to
manipulate the variable count at the same time.

Since the outcome depends on the order in which each operation takes
place, we have a race condition.

CS211 — Week 9: Scheduling and Concurrency 19/57

Part 2: Concurrency Race condition

CS211
Week 9: Scheduling and Concurrency

END OF PART 2

CS211 — Week 9: Scheduling and Concurrency 20/57

Part 3: Critical sections

CS211
Week 9: Scheduling and Concurrency

Start of ...

PART 3: Critical sections

CS211 — Week 9: Scheduling and Concurrency 21/57

Part 3: Critical sections

Critical Section
(From Section 26.4 of the text-book). A critical section is a piece of code
that accesses a shared variable (or more generally, a shared resource)
and must not be concurrently executed by more than one thread.

The example given on Slides 18 and 19 shows that multiple threads
executing the same code can result in a race condition, that is an
example of a critical section.

To resolve this, we would like to enforce mutual exclusion: This property
guarantees that if one thread is executing within the critical section, the
others will be prevented from doing so.

CS211 — Week 9: Scheduling and Concurrency 22/57

Part 3: Critical sections Atomic Operations

One possible solution is to make the operation “atomic” (or indivisible.
This is, the critical section is executed as though it were a single
operation, and so impossible to interrupt.

In a realistic setting, that is not possible for all race conditions. But, as we
will see, the use of some atomic operations can help us solve the larger
problem, by creating locks.

CS211 — Week 9: Scheduling and Concurrency 23/57

Part 3: Critical sections Locks

See Section 28.1 of the textbook

So now we know we would like to execute a series of instructions
atomically. But, in general, on a multiprocessor system, we can’t.

But what we can do is create a lock which we put around critical
sections, and thus ensure that any such critical section executes as if it
were a single atomic instruction.

CS211 — Week 9: Scheduling and Concurrency 24/57

Part 3: Critical sections Locks

For the lock approach to work, the following 3 conditions must be
satisfied:

Mutual Exclusion: If process Ti is executing in its critical section,
then no other processes can be executing in their critical sections.

Fairness/Progress: If there are some procs that wish to enter the
critical section, then the selection of the process that will enter the
critical section next cannot be postponed indefinitely.

Performance/Bounded Waiting: after a process has made a
request to enter its critical section and before that request is
granted, then must be a bound (i.e., a limit) on the number of times
other processes are allowed to enter their critical sections.

CS211 — Week 9: Scheduling and Concurrency 25/57

Part 3: Critical sections Synchronization Hardware

We consider two basic approaches to this:

1 Interrupt suspension

2 Automatic test-and-set() and swap() instructions.

1. Interrupt suspension (Section 28.5)
Suppose a process is in its critical section. If it cannot be preempted then
data consistency should be maintained. On a single processor system,
the problem could be solved by disabling interrupts while a shared
variable is begin modified. However, such a method is not feasible on a
multiproc system: large over-heads would be incurred informing all procs
that interrupts are dis-allowed.

CS211 — Week 9: Scheduling and Concurrency 26/57

Part 3: Critical sections Synchronization Hardware

2 Automatic instructions
The processor has facilities to swap the contents of two words (in
memory), or test and change the contents of a word automatically – i.e.,
as a single instruction.

There are other hardware and software solutions to synchronization
problems. The most important, perhaps, is a tool known as a
semaphore (Chapter 31).

CS211 — Week 9: Scheduling and Concurrency 27/57

Part 3: Critical sections Synchronization Hardware

CS211
Week 9: Scheduling and Concurrency

END OF PART 3

CS211 — Week 9: Scheduling and Concurrency 28/57

Part 4: Semaphores

CS211
Week 9: Scheduling and Concurrency

Start of ...

PART 4: Semaphores

CS211 — Week 9: Scheduling and Concurrency 29/57

Part 4: Semaphores

A Semaphore S is an integer variable that can only be accessed via one
of two operations:

. .

(Test/sem wait) P(S): while (S � 0)

{ wait(); }
S--;

. .

(Increment/sem post) V (S): S++;

. .

(Historically, these functions were called Probern (Dutch for “test”) and
Verhogen (increment)).

These operations must be indivisible (or “atomic”). This is, when one
process (or thread) modifies a semaphore value, no other process can
modify it at the same time.

CS211 — Week 9: Scheduling and Concurrency 30/57

Part 4: Semaphores

There are two types of semaphore:

1 Binary semaphores (locks): These are used to control access to a
single resource, such as a memory location. If the resources is
available then S = 1. Otherwise S = 0. When a process wants to
access it,

(i) it calls the function P(S)
(ii) enters it critical section
(iii) calls V (S) when it exits the critical section.

2 General (or counting) semaphores: These are used to control
access to a pool consisting of a finite number of identical resources.
Say there are 5 units available. The S is initialised to 5. Whenever a
process requests the resource, it calls P(S) and decrements the
value of S. If S reaches 0 then the next proc that requests that
resource must wait until another frees it by running V (S).

CS211 — Week 9: Scheduling and Concurrency 31/57

Part 4: Semaphores Previewing Lab 6

Lab 6 will be all about coding a senario when a race condition can
occur, and then solving it.

For consider the example in adder.c.

a (parent) process creates a subprocess (i.e., “child process”).

Then the subprocess tries to calculate the sum of 4 numbers by
placing them in a pipe, from where the parent will read them.

The parent sums the four numbers, and places the result in another
pipe for the child to read.

The child reads this solution and prints it.

Since there are no competing processes, nothing should go wrong (not
does it).

CS211 — Week 9: Scheduling and Concurrency 32/57

Part 4: Semaphores Version 1: no problem

adder.c (main)

int main(void)

30 {

int ParentsPID , ans;

32 pipe(inpipe);

pipe(outpipe);

34 ParentsPID = getpid (); // now I’ll always know who I am
fork (); // Now have 2 procs. Subprocess will have differnt pid

36 if (getpid () == ParentsPID)

Adder (); // The parent will be the adder
38 else

{

40 ans = SubProc (1,2,3,4);

printf("SubProc (%d): 1+2+3+4= %d\n", getpid(), ans);

42 }

return (0);

44 }

CS211 — Week 9: Scheduling and Concurrency 33/57

Part 4: Semaphores Version 1: no problem

adder.c: adder(), run by parent
46 void Adder(void) // run by parent

{

48 int i, number , sum =0;

50 for (i=0; i<4; i++)

{

52 read(inpipe [0], &number , sizeof(int));

sum += number;

54 }

write(outpipe [1], &sum , sizeof(int));

56 }

CS211 — Week 9: Scheduling and Concurrency 34/57

Part 4: Semaphores Version 1: no problem

adder.c: SubProc(), run by subprocess (“child”)
58 int SubProc(int a, int b, int c, int d)

{

60 int ans;

printf("SubProc (%d) writes four numbers to the pipe ()\n",

62 getpid ());

write(inpipe [1], &a, sizeof(int));

64 write(inpipe [1], &b, sizeof(int));

sleep (1); // Pause for a second to encourage race condition
66 write(inpipe [1], &c, sizeof(int));

write(inpipe [1], &d, sizeof(int));

printf("SubProc (%d) reads the answer from a pipe ()\n",

70 getpid ());

read(outpipe [0], &ans , sizeof(int));

72 return(ans);

}

CS211 — Week 9: Scheduling and Concurrency 35/57

Part 4: Semaphores Version 1: no problem

The output I get when I run this is:

SubProc (4285) writes four numbers to the pipe()

SubProc (4285) reads the answer from a pipe()

SubProc (4285): 1+2+3+4= 10

So - no problem!

CS211 — Week 9: Scheduling and Concurrency 36/57

Part 4: Semaphores Version 2: problem!

But in the next version, the parent has two children both doing the same
thing. See adder race condition.c

Now the output is

SubProc (4485) writes four numbers to the pipe()

SubProc (4486) writes four numbers to the pipe()

SubProc (4485) reads the answer from a pipe()

SubProc (4485): 1+2+3+4= 6

SubProc (4486) reads the answer from a pipe()

SubProc (4486): 1+2+3+4= 14

In Lab 6 we’ll design a semaphore solution to this problem

CS211 — Week 9: Scheduling and Concurrency 37/57

Part 4: Semaphores Coding a semaphore

Recall that a Semaphore S is an integer variable that can only be
accessed via one of two operations: Test/sem wait P(S), and
Increment/sem post V (S).

A more detailed explanation of semaphores

CS211 — Week 9: Scheduling and Concurrency 38/57

Part 4: Semaphores Coding a semaphore

Implementing semaphores with pipe() in C.

CS211 — Week 9: Scheduling and Concurrency 39/57

Part 4: Semaphores Coding a semaphore

CS211
Week 9: Scheduling and Concurrency

END OF PART 4

CS211 — Week 9: Scheduling and Concurrency 40/57

Part 5: Deadlock and Starvation

CS211
Week 9: Scheduling and Concurrency

Start of ...

PART 5: Deadlock and
Starvation

CS211 — Week 9: Scheduling and Concurrency 41/57

Part 5: Deadlock and Starvation

Deadlock is when
two or more procs are
waiting indefinitely
for an event that can
only be caused by
one of the waiting
processes. E.g.,
all are stuck in the
wait() loop of the
P() function.

CS211 — Week 9: Scheduling and Concurrency 42/57

Part 5: Deadlock and Starvation
Deadlock can arise if four conditions hold simultaneously

1 Mutual exclusion: only one process can have access to a particular
resource at any given time.

2 Hold and wait : a process holding at least one resource is waiting to
acquire additional resources held by other processes.

3 No preemption: a resource can only be released voluntarily by the
process holding it, after that process has completed its task.

4 Circular wait : there exists a set {P0,P1, ...,Pn,P0} of waiting
processes such that

P0 is waiting for a resource that is held by P1,
P1 is waiting for a resource that is held by P2, ...,
Pn−1, is waiting for a resource that is held by Pn which in turn is waiting
for P0.

CS211 — Week 9: Scheduling and Concurrency 43/57

Part 5: Deadlock and Starvation

CS211
Week 9: Scheduling and Concurrency

END OF PART 5

CS211 — Week 9: Scheduling and Concurrency 44/57

Part 6: Resource Allocation Graphs

CS211
Week 9: Scheduling and Concurrency

Start of ...

PART 6: Resource Allocation
Graphs

CS211 — Week 9: Scheduling and Concurrency 45/57

Part 6: Resource Allocation Graphs

Deadlocks may be described in using a directed graph called a resource
allocation graph.

This graph has two sets of vertices:

Processes: P0, P1, . . . , Pn and

Resources: R0, R1, . . . , Rm

and Edges

from Pj to Rk if process j as requested resource k but not yet been
allocated it,

from Rk to Pk ig process j as been allocated resource k and not yet
released it.

CS211 — Week 9: Scheduling and Concurrency 46/57

Part 6: Resource Allocation Graphs Example 1

Example (Example 1)
A system has m = 2 resources, R1 and R2,
and n = 2 processes, P1 and P2.

P1 has been allocated R1, and is requesting R2.

P2 has been allocated R2, and is requesting R1.

Draw the resource allocation graph for the scenario.
Does the system reach deadlock?

CS211 — Week 9: Scheduling and Concurrency 47/57

Part 6: Resource Allocation Graphs Example 2

Example (Example 2)
A system has m = 2 resources, R1 and R2,
and n = 2 processes, P1 and P2.

P1 is requesting R2.

P2 has been allocated R2, and is requesting R1.

Draw the resource allocation graph for the scenario.
Does the system reach deadlock?

CS211 — Week 9: Scheduling and Concurrency 48/57

Part 6: Resource Allocation Graphs Summary

If there are no cycles, there is no deadlock,

If there is deadlock, there must be a cycle

If there is a cycle, there may be deadlock

If each resource has only one instance, and there is a cycle, then
there is deadlock

CS211 — Week 9: Scheduling and Concurrency 49/57

Part 6: Resource Allocation Graphs Summary

CS211
Week 9: Scheduling and Concurrency

END OF PART 6

CS211 — Week 9: Scheduling and Concurrency 50/57

Part 7: The Dining Philosophers

CS211
Week 9: Scheduling and Concurrency

Start of ...

PART 7: The Dining
Philosophers Problem

CS211 — Week 9: Scheduling and Concurrency 51/57

Part 7: The Dining Philosophers

(See also Section 31.6 of the textbook)

Starvation occurs when a particular process is always waiting for a
particular semaphore to become available.

The ideas of Deadlock and Starvation are exhibited in the classic
synchronization problem: The Dining Philosophers Problem.

There are five philosophers seated at a round table.

Each has a bowl of rice in front of them and a chopstick to their left
and right.

They spend their day alternating between eating and thinking.

However there are only five chopsticks...

CS211 — Week 9: Scheduling and Concurrency 52/57

Part 7: The Dining Philosophers

If a philosopher is hungry, she will try
to pick up the chopstick to the left and
then the chopstick to the right. If she
manages to do this they will eat for
a while before putting down both and
thinking for a while. However, if she
it picks up one, she will not let go of
it until she can picks up the second
and eat.

Suppose each of the picks up the fork to their left. No forks remain on the
table so we reach a state of deadlock.

The challenge is to find a solution so that

Deadlock does not occur.

neither does starvation where one philosopher never gets to eat.

CS211 — Week 9: Scheduling and Concurrency 53/57

Part 7: The Dining Philosophers

Example (Taken from 1718-CS211 Exam)
In the dining philosophers problem, each philosopher wants to pick up
the 2 forks beside him/her so that they can eat. Suppose we have 5 such
philosophers and

at time t = 0: nobody has picked up any fork

at time t = 1: Philosophers 1, 2 and 3 have picked up the forks to
their left, philosopher 4 has not picked up any fork and philosopher 5
has picked up two forks.

CS211 — Week 9: Scheduling and Concurrency 54/57

Part 7: The Dining Philosophers Deadlock handling

In general operating systems take one of three approaches to deal with
deadlock:

1 Ensure that the system will never enter a deadlock state.

2 Allow the system to enter a deadlock state and then recover.

In Case 1, there are two possibilities:

Prevention: we ensure at least one of the four necessary conditions
never hold.

Deadlock avoidance: where the OS uses a priori information
about the procs the devise an algorithm to circumvent deadlock.

In Case 2, the OS must have mechanisms for first detecting deadlock
and then dealing with it.

CS211 — Week 9: Scheduling and Concurrency 55/57

Exercises

Exercise (9.1)
(This is taken from the CS211 Semester 2 from 2017/2018)
Given the data (all time in seconds)

Process Arrival time Process duration
P1 3 5
P2 1 3
P3 0 8
P4 4 6

for four processes,

determine the scheduling result for the policies of

1 Round Robin (with time quantum 4)

2 First Come First Served

(c) Calculate the average turnaround time and average waiting time for
these examples.

Note: The “wait time” of a process is the length of time it spends doing
nothing.

CS211 — Week 9: Scheduling and Concurrency 56/57

Exercises
Exercise (9.2)
Draw the resource allocation graph for the scenario where all
philosophers pick up the fork/chopstick to their left.

Exercise (9.3)
A system has m = 4 identical resources, and n = 3 processes, P1, P2

and P3, which make a request for 1, 2, and 3 resources, respectively.
Draw the resource allocation graph for the scenario. Can the system
reach deadlock?

CS211 — Week 9: Scheduling and Concurrency 57/57

