
Introductory Lecture
CS319: Scientific Computing (with C++)

Lecturer: Niall Madden

Week 1: 10 February, 2021

http://www.maths.nuigalway.ie/~niall/CS319/

CS319 — Introductory Lecture 1/38

http://www.maths.nuigalway.ie/~niall/CS319/

Outline

1 Overview of CS319
2 CS319: what and why

Programming Platform
Assessment

3 Scientific Computing
4 Object oriented programming in C++
5 What is Object-Oriented Programming?

Encapsulation
Polymorphism
Inheritance

6 Introduction to C++
Fundamental features of all programmes

7 Basic Output
8 Variables

Strings
Header files and Namespaces

9 int: a closer look
10 float: a closer look

double
CS319 — Introductory Lecture 2/38

Overview of CS319 Who we are

Lecturer details:

Who: Dr Niall Madden (he/him), School Mathematics, Statistics
and Applied Mathematics.

Where: Working from home, obviously

Contact: Email: Niall.Madden@NUIGalway.ie

Students:

Who: 3rd year Computing (3BS9) and Mathematical Science
(3BMS2), and 4th Year Maths/Applied Maths.

Why: As a core subject in your CS degree, or as a compliment to
your studies in pure and applied mathematics.

CS319 — Introductory Lecture 3/38

mailto:Niall.Madden@NUIGalway.ie

Overview of CS319 Course materials, lectures, etc

This module will run “remotely” in its entirety. As this is the first (and,
hopefully, last) time that will happen, we will adapt...
For now, the plan is

We won’t distinguish between “lectures” and “labs”; and will call
them all “classes”.

There will be two classes per week, (probably) increasing to three
from Week 3.

For the first two weeks, classes will be similar to traditional lectures,
but from Week 3, there will be more interactive lab-type sessions.

All non-interactive parts will be recorded, and recordings will
be made available the day after classes.

Recordings will be broken into chunks of 10-15 minutes, and
published in “Videos” section.

Slides will be made available separately.

This will be reviewed regularly; expect numerous short surveys!

CS319 — Introductory Lecture 4/38

Overview of CS319 Course materials, lectures, etc

And speaking of surveys...

1 So far, all respondents have reported that Blackboard Collaborate
works OK for them. So, we’ll stick with it for now.

2 Most have reasonably good network connection. For those that
don’t, email support will be available. But let me know if anything
else would help.

3 So far, all have computer access.

4 The 9am class time clashes with Networks (problem for 4BS). So
that may have to change.

5 Two students report clashes with 4pm...

6 Some students report having taken C and/or Java (great), Python
(good), R (help), MATLAB (depends...), Maple (not so useful...).
Therefore, some can expect a steep learning curve, but we are
starting C++ from scratch, and you will receive lots of helps.

End of Part 1

CS319 — Introductory Lecture 5/38

Overview of CS319 Class times

Mon Tue Wed Thu Fri

9 – 10 3

10 – 11

11 – 12

12 – 1

1 – 2

2 – 3

3 – 4

4 – 5 3

CS319 — Introductory Lecture 6/38

CS319: what and why

Start of Part 2
(Officially) In CS319 we are primarily concerned with two issues:

1. How to use a computer to solve a scientific problem. That is:

how to determine the best algorithm to apply in a given situation.
how to understand the potentials and limitations of the algorithm.

2. Implementing that algorithm: How to write the code in C++.

. .
(In reality): this is a course on object oriented programming and
problem-solving in C++.
The primary learning outcome is that, by the end of the semester, you
will be a reasonably proficient C++ programmer, and can honestly list
“object-oriented programming in C++” as one of your skills in your CV.

Note: in the TIOBE Index for February 2021, C++ is ranked as the 4th
most popular language, behind (in order) C, Java, and Python.

CS319 — Introductory Lecture 7/38

https://www.tiobe.com/tiobe-index/

CS319: what and why

But to give the course context, we’ll motivate our studies with examples
based on Scientific Computing. This could involve

Understanding how computers represent numbers;

Learning how to store and manipulate dense and sparse matrices;

Study examples in, e.g., data fitting, image processing, network
analysis, computational biology, encryption, ...

CS319 — Introductory Lecture 8/38

CS319: what and why Any questions so far?

This is not being recorded. Any questions?
Turn on your mic, or type into the chat box.

CS319 — Introductory Lecture 9/38

CS319: what and why Programming Platform

If you have don’t have a C/C++ compiler installed on your computer, I
suggest using Code::Blocks, which is freely available to install on your
own PC (Linux/Windows/Mac)

Source: http://wiki.codeblocks.org/

For Windows, I suggest installing codeblocks-20.03mingw-setup.exe,
since this includes compilers as well as the IDE.
For Mac, unfortunately, the version is a little old. Maybe you have a
better solution?
Also (slightly) useful, at least at first: online compilers such as
https://www.onlinegdb.com or http://cpp.sh

CS319 — Introductory Lecture 10/38

http://www.codeblocks.org
http://wiki.codeblocks.org/
https://www.onlinegdb.com
http://cpp.sh

CS319: what and why Assessment

The final grade for CS319 will be based on

Four programming assignments (40%)

a mid-semester open-book test (20%) (Week 7, approx).

a project (40%)

This module does not have an end-of-semester exam.

CS319 — Introductory Lecture 11/38

CS319: what and why Web site

www.maths.nuigalway.ie/ niall/CS319 } Basic info
nuigalway.blackboard.com } Notes, Videos, Collaborate

bitbucket.org/niallmadden/2021-cs319 } C++ Examples

I use BitBucket for all C++ examples done in class. This is because it
allows me to push fixes easily. More importantly, you get to honestly
state that you’ve used git.

To get access, you’ll need to create a bitbucket account (ideally with
your NUIG email address), and then send me a message.

CS319 — Introductory Lecture 12/38

http://www.maths.nuigalway.ie/~niall/CS319
http://nuigalway.blackboard.com
http://bitbucket.org/niallmadden/2021-cs319

CS319: what and why Text books

The notes for CS319 are largely self-contained. So you don’t require
access to library books. But reading is always good!
I suggest

Practical C++ programming , S. Oualline, ISBN: 0596004192 (005.133
C++.0)

I would like to recommend some others, specifically with Scientific
Computing. But at present, we don’t have electronic access...

End of Part 2
Please ask questions once recording has ended...

CS319 — Introductory Lecture 13/38

Scientific Computing

Start of Part 3
Dianne O’Leary1 describes a computational scientist
as someone whose focus is the intelligent use of
mathematical software to analyse mathematical models.
These models arise from problems formulated by
scientists and engineering. Solutions/models can then be
constructed using statistics and mathematics. Numerical
methods are then employed to design algorithms for
extracting useful information from the models.

In scientific computing, we are interested in the correct,
reliable and efficient implementation of these algorithms.
This requires knowledge of how computers work, and
particularly how numbers are represented and stored.
History has shown that mistakes can be very, very costly.

Source: Wikipedia
1Scientific Computing with Case Studies, p7

CS319 — Introductory Lecture 14/38

Object oriented programming in C++

In order to be able to write the code to implement a nontrivial algorithm,
one needs to a good grasp of a programming language. Efficiency
(usually) requires a high-level complied language. We’ll use C++.2

1 From Python to C++: input and output, data types and variable
declarations, arithmetic, loops, Flow of control (if statements),
conditionals, and functions.

2 File management and data streams.

3 Arrays, pointers, strings, and dynamic memory allocation.

4 Abstract data types: objects and classes.

5 Programming utilities such as git, make, gdb,

2This is still a go-to language for scientific computing in industry, though often
mixed with C. Fortran is still hanging in there. Python is taking over as the the
primary interface language.

CS319 — Introductory Lecture 15/38

What is Object-Oriented Programming?

Programing languages may be divided into three groups:
(i) Procedural
(ii) Structured, and
(iii)Object-Oriented.

Languages, such as very early versions of Fortran containing, the heavily
relied on goto instructions are considered procedural.
Further evolution led to languages such as C and Pascal which allow
structured programming:

Modular programming style – each task is divided and subdivided
into functions and programming blocks.
Recursion, and global & local variables are allowed.
Goto is not used. (Why not? See http://xkcd.com/292/)

CS319 — Introductory Lecture 16/38

http://xkcd.com/292/

What is Object-Oriented Programming?

Object-Oriented

OO languages approach problem solving by constructing objects – pieces
of data and the functions that manipulate them. The programmer can
capitalise on the relationship between various objects in order to simplify
his/her tasks.

Most modern languages are classified, not by whether they are
procedural, structured or object-oriented – but by which of these
paradigms is promoted most strongly by the language. For example, one
could write a C++ program that is entirely procedural or structured.

At the core of OOP are the three concepts of

1 Encapsulation 2. Polymorphism 3. Inheritance.

CS319 — Introductory Lecture 17/38

What is Object-Oriented Programming? Encapsulation

With encapsulation data and the program code to manipulate it are
bound together to form an object.
A datum or function belonging to an object is called a member.
Within an object, code and data may be either

Private: accessible only to another part of that object, or

Public: other parts of the program can access it even though it
belongs to a particular object.
Public parts of an object provide a interface to the object for other
parts of the program.

An object should be thought of as an Abstract Data Type (ADT): a
specialised type of variable that the user can define.

CS319 — Introductory Lecture 18/38

What is Object-Oriented Programming? Polymorphism

Polymorphism means “many forms”. The idea is that we can use one
function name or operator to describe a set of distinct but related tasks.
The compiler then chooses the appropriate definition depending on the
context in which it is used.

For example, the C language provides three functions: abs(), labs(),
and fabs() to calculate the absolute value of integers, long integers and
floats respectively. In C++ we only require abs() – its exact definition
(and in particular, its return value) will be chosen depending on the type
the data passed to it.
This is Function Overloading, an example of polymorphism.

Also important is Operator Overloading. This is where a symbol can
take its meaning from the context in which it is used. E.g, + could be
used to add integers, floats, vectors, matrices, strings, etc.

CS319 — Introductory Lecture 19/38

What is Object-Oriented Programming? Inheritance

Inheritance is the process whereby one object can acquire the properties
of another. More specifically, an object can inherit a general set of
properties to which it can add features that are specific only to itself.
Suppose we are working with a university database. We might have

a student object containing name, address and ID number, and
methods of querying and setting these values.

a science type which has all the properties of student but also
information on whether that student is majoring in CS, Maths,
Applied Physics, etc.

a CS319 type which as properties of student, and science but also
information such as lab schedules, homework marks, etc.

As a more pertinent example, we might consider a base Matrix type that
could be extended ...

CS319 — Introductory Lecture 20/38

What is Object-Oriented Programming? Inheritance

Source: Abstruse Goose.

Fortunately, we have 84 days to teach ourselves C++.

CS319 — Introductory Lecture 21/38

What is Object-Oriented Programming? End of Part 3

This is where we break for the morning. But first, another cartoon (don’t
worry - this will be funny by May).

Source: https://xkcd.com/303

This one has spawned many memes. You can make your own at
https://xkcd-excuse.com

Send me your favourites!

CS319 — Introductory Lecture 22/38

https://xkcd.com/303
https://xkcd-excuse.com

Introduction to C++

C++ is a programming language developed as an extension to C. It is a
superset of C, so C programs can be compiled on a C++ compiler.

The convention is the give C++ programs the suffix .cpp , e.g.,
hello.cpp . Other valid extensions are .C , .cc , .cxx , and .c++ .

. .

We’ll use Code::Blocks for developing our C++ code. It is available for
Mac, Linux, and Windows.

If you really want, you can just install gcc, and use it with your favourite
text editor, e.g., gedit, kedit, kwrite, pico, emacs, WordPad, ...

The GNU projects C/C++ compiler is used. The invocation is
$ g++ hello.cpp

If there is no error in the code, an executable file called a.out is created.

If the present working directory is contained in your PATH variable, just
type its name to run it. Otherwise, indicate that it is in your PWD:
./a.out

CS319 — Introductory Lecture 23/38

http://www.codeblocks.org

Introduction to C++Fundamental features of all programmes

A “header file” is used to provide an interface to standard libraries.
For example, the iostream header introduces I/O facilities. Every
program that we will write will include the line:
#include <iostream>

All variables must be declared before begin used. However the
definitions do not have to be grouped together at the start of a
function – they can occur at any point in the function. Their scope
is from the point they are declared to the end of the function.

The heart of the program is the main() function – every program
needs one. void is the default argument list and can be omitted.

The C++ language is case-sensitive. E.g., the functions main() and
Main() are not the same.

CS319 — Introductory Lecture 24/38

Introduction to C++Fundamental features of all programmes

“Curly brackets” are used to delimit a program block.

Every (logical) line is terminated by a semicolon;
Lines of code not terminated by a semicolon

are assumed to be continued on the next line;

The backslash escape character is used for output. For example, \n
is used to output a new line.

Two forward-slashes // indicate a comment – everything after them
is ignored until an end-of-line is reached.

CS319 — Introductory Lecture 25/38

Basic Output

To output a line of text in C++:

#include <iostream>

int main()

{

std::cout << "Howya World.\n";

return(0);

}

the identifier cout is the name of the Standard Output Stream –
usually the terminal window. In the programme above, it is prefixed
by std:: because it belongs to the standard namespace...

The operator << is the put to operator and sends the text to the
Standard Output Stream.

As we will see << can be used on several times on one lines. E.g.
std::cout << "Howya World." << "\n";

CS319 — Introductory Lecture 26/38

Variables

Variables are used to temporarily store values (numerical, text, etc,)
and refer to them by name, rather than value.

More formally, the variable’s name is called the identifier. It must start
with a letter or an underscore, and may contain only letters, digits and
underscores. Examples:

All variables must be defined before they can be used. That means,
we need to tell the compiler before we use them. This can be done at
any stage in the code, up to when the variable is first used.

Every variable should have a type; this tells use what sort of value will be
stored in it.

The variables/data types we can define include

Integers (positive or negative whole numbers), e.g.,

i n t i ; i =−1
i n t j =122;
i n t k = j+i ;

CS319 — Introductory Lecture 27/38

Variables

Floats These are not whole numbers. They usually have a
decimal places. E.g,

float pi=3.1415;

Note that one can initialize (i.e., assign a value to the
variable for the first time) at the time of definition. We’ll
return to the exact definition of a float later.

Characters Single alphabetic or numeric symbols, are defined using
the char keyword:
char c; or char s=’7’;

Note that again we can choose to initialize the character
at time of definition. Also, the character should be
enclosed by single quotes.

Arrays We can declare arrays or vectors as follows:
int Fib[10];

This declares a integer array called Fib. To access the
first element, we refer to Fib[0], to access the second:
Fib[1], and to refer to the last entry: Fib[9].
As in Python, all vectors in C++ are indexed from 0.

CS319 — Introductory Lecture 28/38

Variables

Here is a list of common data types. Size is measured in bytes.

Type Description (min) Size

char character 1
int integer 4
float floating point number 4
double 16 digit (approx) float 8
bool true or false 1

See also: 02variables.cpp

. .

In C++ there is a distinction between declaration and assignment, but
they can be combined. (Later we’ll see how to use the const modifier so
that a variables value can’t be changed later).

CS319 — Introductory Lecture 29/38

Variables Strings

As noted above, a char is a fundamental data type used to store as
single character. To store a word, or line of text, we can use either an
array of chars, or a string.

If we’ve included the string header file, then we can declare one as in:
string message="Well, hello again."

This declares a variable called message which can contain a string of
characters. Later we’ll see that string is an example of an object.

03stringhello.cpp

#i n c l u d e <i o s t r eam>
#i n c l u d e <s t r i n g>
i n t main ()
{

s t d : : s t r i n g message=”Well , h e l l o aga in . ” ;

s t d : : cout << message << ”\n” ;
r e t u r n (0) ;

}

CS319 — Introductory Lecture 30/38

Variables Header files and Namespaces

In previous examples, our programmes included the line
#include <iostream>

Further more, the objects it defined were global in scope, and not
exclusively belonging to the std namespace...

A namespace is a declarative region that localises the names of
identifiers, etc., to avoid name collision. In traditional C++, names of
library functions are placed in the global namespace, as in C. With
ANSI/ISO (Standardised) C++ they are placed within a namespace
called std. Correctly, one should include the following line to make them
visible:
using namespace std;

CS319 — Introductory Lecture 31/38

Variables Header files and Namespaces

Hello with std namespace

#i n c l u d e <i o s t r eam>
#i n c l u d e <s t r i n g>
us ing namespace s t d ;

i n t main ()
{

s t r i n g message=”Well , h e l l o aga in . ” ;

cout << message << end l ;
r e t u r n (0) ;

}

Here we have used the identifier endl to end a line. This is referred to as
a “manipulator”.

Later, we’ll return to the concept of output manipulators to see, for
example, how to use them to format C++ output into tables.

CS319 — Introductory Lecture 32/38

int: a closer look

It is important for a course in scientific computing that we understand
how numbers are stored and represented on a computer.

Your computer stores numbers in binary, that is, in base 2. The easiest
examples to consider are integers.
Examples:

If we use a single byte to store an integer, then we can represent:

In reality, 4 bytes are used to store each integer. One of these is used for
the sign. Therefore the largest integer we can store is 231 − 1 ...

. .

We’ll return to related types (unsigned int, short int, and long

int) later.

CS319 — Introductory Lecture 33/38

float: a closer look

C++ (and just about every language you can think of) uses IEEE
Standard Floating Point Arithmetic to approximate the real numbers.
This short outline, based on Chapter 1 of O’Leary “Scientific Computing
with Case Studies”.
The format of a float is x = (−1)Sign × (Significant)× 2Exponent where

Sign is a single bit that determines of the float is positive or
negative;

the Significant (also called the “mantissa”) is the “fractional” part,
and determines the precision;

the Exponent determines how large or small the number is, and
usually involves an offset (See below).

A float is a so-called “single-precision” number, and it is stored using 4
bytes (= 32 bits). These 32 bits are allocated as:

1 bit for the Sign;

23 bits for the Significant (as well as an leading implied bit); and

CS319 — Introductory Lecture 34/38

float: a closer look

8 bits for the Exponent, which has an offset of e = −127.

So this means that we write x as

x = (−1)Sign︸ ︷︷ ︸
1 bit

×1. abcdefghijklmnopqrstuvw︸ ︷︷ ︸
23 bits

× 2−127+Exponent︸ ︷︷ ︸
8 bits

Since the Significant starts with the implied bit, which is always 1, it can
never be zero. We need a way to represent zero, so that is done by
setting all 32 bits to zero.
Thus, the smallest the Significant can be is
1. 0000000000000000000000︸ ︷︷ ︸

22 zeros

1 ≈ 1. The largest it can be is

1. 11111111111111111111111︸ ︷︷ ︸
23 ones

= 2− 223 ≈ 2.

Here it helps to remember that the binary faction 1.1 means (in decimal)
1 + 1

2 , 1.11 means 1 + 1
2 + 1

4 , etc.

CS319 — Introductory Lecture 35/38

float: a closer look

The Exponent has 8 bits, but since they can’t all be zero (as mentioned
above), the smallest it can be is −127 + 1 = −126. That means the
smallest positive float one can represent is
x = (−1)0 × 1.000 · · · 1× 2−126 ≈ 2−126 ≈ 1.1755e − 38.

We also need a way to represent ∞ or “Not a number” (NaN). That is
done by setting all 32 bits to 1. So the largest Exponent can be is
−127 + 254 = 127. That means the largest positive float one can
represent is
x = (−1)0 × 1.111 · · · 1× 2127 ≈ 2× 2127 ≈ 2128 ≈ 3.4028e + 38.

As well as working out how small or large a float can be, one should
also consider how precise it can be. That often referred to as the
machine epsilon, can be thought of as eps, where 1− eps is the largest
number that is less than 1 (i.e., 1− eps/2 would get rounded to 1. The
value of eps is determined by the Significant For a float, this is
x = 2−23 ≈ 1.192× 10−7.

CS319 — Introductory Lecture 36/38

float: a closer look double

For a double in C++, 64 bits are used to store numbers. These are
allocated as

1 bit for the Sign;

52 bits for the Significant (as well as an leading implied bit); and

11 bits for the Exponent, which has an offset of e = −1023.

The smallest positive double that can stored is 2−1022 ≈ 2.2251e − 308,
and the largest is

1.111111 · · · 111× 2−1023 =
(
1 +

1

2
+

1

4
+

1

8
+

1

16
+ . . .)× 2−1023

≈ 2−1024 ≈ 1.5730e + 308.

For a double, machine epsilon is 2−53 ≈ 1.1102× 10−16.

CS319 — Introductory Lecture 37/38

float: a closer look double

An important example:

Week01/04Rounding.cpp ←− link!

int i, max;

float x, increment;

cout << "Enter a (natural) number , n: ";

cin >> max;

x=0.0;

increment = 1/((float) max);

for (i=0; i<max; i++)

x+= increment;

std::cout << "Difference between x and 1 is " << x-1 << "\n";

If we input n = 8, we get:

If we input n = 10, we get:

CS319 — Introductory Lecture 38/38

http://www.maths.nuigalway.ie/~niall/CS319/Week01/04Rounding.cpp

	Overview of CS319
	Who we are
	Course materials, lectures, etc
	Class times

	CS319: what and why
	Any questions so far?
	Programming Platform
	Assessment
	Web site
	Text books

	Scientific Computing
	Object oriented programming in C++
	What is Object-Oriented Programming?
	Encapsulation
	Polymorphism
	Inheritance
	End of Part 3

	Introduction to C++
	Fundamental features of all programmes

	Basic Output
	Variables
	Strings
	Header files and Namespaces

	int: a closer look
	float: a closer look
	double

