
CS319: Scientific Computing (with C++)

http://www.maths.nuigalway.ie/~niall/CS319/

ints and float; input & output; flow; loops;
functions

Week 2: 9am and 4pm, 17 Feb 2021

Source: xkcd (292)

CS319 — ints and float; input & output; flow; loops; functions 1/29

http://www.maths.nuigalway.ie/~niall/CS319/
http://xkcd.com/292/

Course materials, lectures, etc

This module will run “remotely” in its entirety. As this is the first (and,
hopefully, last) time that will happen, we will adapt...
For now, the plan is

We won’t distinguish between “lectures” and “labs”; and will call
them all “classes”.

There will be two classes per week, (probably) increasing to three
from Week 3.

For the first two weeks, classes will be similar to traditional lectures,
but from Week 3, there will be more interactive lab-type sessions.

All non-interactive parts will be recorded, and recordings will
be made available the day after classes.

Recordings will be broken into chunks of 10-15 minutes, and
published in “Videos” section.

Slides will be made available separately.

This will be reviewed regularly; expect numerous short surveys!

CS319 — ints and float; input & output; flow; loops; functions 2/29

Reminder... Organisation

This module will run “remotely” in its entirety. As this is the first (and,
hopefully, last) time that will happen, we will adapt...
For now, the plan is

We won’t distinguish between “lectures” and “labs”; and will call
them all “classes”.

There will be two classes per week, (probably) increasing to three
from Week 3.

For the first two weeks, classes will be similar to traditional lectures,
but from Week 3, there will be more interactive lab-type sessions.

All non-interactive parts will be recorded, and recordings will
be made available the day after classes.

Recordings will be broken into chunks of 10-15 minutes, and
published in “Videos” section.

Slides will be made available separately.

This will be reviewed regularly; expect numerous short surveys!

CS319 — ints and float; input & output; flow; loops; functions 3/29

Reminder... Schedule

The schedule is problematic, involving various clashes.
To help resolve this ...

Exercise (Your time-table)

TODAY, send Niall you time-table (in any format).
In addition, identify times that you cannot participate in classes.

Exercise (Bitbucket)

You should have access to the CS319 git repository at
https: // bitbucket. org/ niallmadden/ 2021-cs319/ src If not,
check your email for an invitation. If still not working, send Niall an
email.

CS319 — ints and float; input & output; flow; loops; functions 4/29

https://bitbucket.org/niallmadden/2021-cs319/src

Reminder... Another exercise

From last week:

Exercise
Using https: // xkcd-excuse. com make your own version of:

Source: https: // xkcd. com/ 303

and send it to me. If possible, make it relate to something we cover this
week or last week.

Recording will start now...

CS319 — ints and float; input & output; flow; loops; functions 5/29

https://xkcd-excuse.com
https://xkcd.com/303

Today:

Another exercise

1 Part 1: C++ fundamentals
Recap on last week
Strings
Header files and Namespaces

2 Part 2: a closer look at int

3 Part 3: a closer look at float
double

4 Part 4: Output Manipulators
endl
setw

5 Part 5: Input

6 Part 6: Flow of control – if-blocks

CS319 — ints and float; input & output; flow; loops; functions 6/29

Part 1: C++ fundamentals Recap on last week

A “header file” is used to provide an interface to standard libraries.
Every program that we write has the line:
#include <iostream>

The heart of the program is the main() function – every program
needs one. void is the default argument list and can be omitted.

The C++ language is case-sensitive.

“Curly brackets” are used to delimit a program block.

Every (logical) line is terminated by a semicolon;

Two forward-slashes // indicate a comment – everything after them
is ignored until an end-of-line is reached.

CS319 — ints and float; input & output; flow; loops; functions 7/29

Part 1: C++ fundamentals Recap on last week

To send output to the console, use std::cout, along with the <<

(“put to”) operator E.g.
std::cout << "Howya World." << "\n";

Variables are used to temporarily store values (numerical, text, etc,
....). All s must be defined before they can be used.

Every variable has a type

int stores (positive or negative) whole numbers
floats: stores non-integer numbers. So does the double type

(more on this later).
char: stores alphabetic or numeric symbols.

Arrays: of any type, are indexed from zero, with index in
square brackets.

CS319 — ints and float; input & output; flow; loops; functions 8/29

Part 1: C++ fundamentals Strings

As noted above, a char is a fundamental data type used to store as
single character. To store a word, or line of text, we can use either an
array of chars, or a string.

If we’ve included the string header file, then we can declare one as in:
string message="Well, hello again."

This declares a variable called message which can contain a string of
characters. Later we’ll see that string is an example of an object.

02stringhello.cpp

#i n c l u d e <i o s t r eam>
#i n c l u d e <s t r i n g>
i n t main ()
{

s t d : : s t r i n g message=”Well , h e l l o aga in . ” ;

s t d : : cout << message << ”\n” ;
r e t u r n (0) ;

}

CS319 — ints and float; input & output; flow; loops; functions 9/29

Part 1: C++ fundamentalsHeader files and Namespaces

In previous examples, our programmes included the line
#include <iostream>

Furthermore, the objects it defined were global in scope, and not
exclusively belonging to the std namespace...

A namespace is a declarative region that localises the names of
identifiers, etc., to avoid name collision. In traditional C++, names of
library functions are placed in the global namespace.

With ANSI/ISO (Standardised) C++ they are placed within a namespace
called std.

One could include the following line to make them visible:
using namespace std;

and then one can use cout rather than std::cout.

CS319 — ints and float; input & output; flow; loops; functions 10/29

Part 1: C++ fundamentalsHeader files and Namespaces

Hello with std namespace

#i n c l u d e <i o s t r eam>
#i n c l u d e <s t r i n g>
us ing namespace s t d ;

i n t main ()
{

s t r i n g message=”Well , h e l l o aga in . ” ;

cout << message << end l ;
r e t u r n (0) ;

}

Here we have used the identifier endl to end a line. This is referred to as
a “manipulator”.

Later, we’ll return to the concept of output manipulators to see, for
example, how to use them to format C++ output into tables.

CS319 — ints and float; input & output; flow; loops; functions 11/29

Part 2: a closer look at int

It is important for a course in Scientific Computing that we understand
how numbers are stored and represented on a computer.

Your computer stores numbers in binary, that is, in base 2. The easiest
examples to consider are integers.
Examples:

If we use a single byte to store an integer, then we can represent:

CS319 — ints and float; input & output; flow; loops; functions 12/29

Part 2: a closer look at int

In fact, 4 bytes are used to store each integer. One of these is used for
the sign. Therefore the largest integer we can store is 231 − 1 ...

. .

We’ll return to related types (unsigned int, short int, and long

int) later.

CS319 — ints and float; input & output; flow; loops; functions 13/29

Part 3: a closer look at float

C++ (and just about every language you can think of) uses IEEE
Standard Floating Point Arithmetic to approximate the real numbers.
This short outline, based on Chapter 1 of O’Leary “Scientific Computing
with Case Studies”.
The format of a float is x = (−1)Sign × (Significant)× 2Exponent where

Sign is a single bit that determines of the float is positive or
negative;

the Significant (also called the “mantissa”) is the “fractional” part,
and determines the precision;

the Exponent determines how large or small the number is, and has
an offset (See below).

CS319 — ints and float; input & output; flow; loops; functions 14/29

Part 3: a closer look at float

A float is a so-called “single-precision” number, and it is stored using 4
bytes (= 32 bits). These 32 bits are allocated as:

1 bit for the Sign;

23 bits for the Significant (as well as an leading implied bit); and

8 bits for the Exponent, which has an offset of e = −127.

So this means that we write x as

x = (−1)Sign︸ ︷︷ ︸
1 bit

×1. abcdefghijklmnopqrstuvw︸ ︷︷ ︸
23 bits

× 2−127+Exponent︸ ︷︷ ︸
8 bits

Since the Significant starts with the implied bit, which is always 1, it can
never be zero. We need a way to represent zero, so that is done by
setting all 32 bits to zero.

CS319 — ints and float; input & output; flow; loops; functions 15/29

Part 3: a closer look at float

The smallest the Significant can be is 1. 0000000000000000000000︸ ︷︷ ︸
22 zeros

1 ≈ 1.

The largest it can be is 1. 11111111111111111111111︸ ︷︷ ︸
23 ones

= 2− 223 ≈ 2.

Here it helps to remember that the binary faction 1.1 means (in decimal)
1 + 1

2 , 1.11 means 1 + 1
2 + 1

4 , etc.

The Exponent has 8 bits, but since they can’t all be zero (as mentioned
above), the smallest it can be is −127 + 1 = −126. That means the
smallest positive float one can represent is
x = (−1)0 × 1.000 · · · 1× 2−126 ≈ 2−126 ≈ 1.1755× 10−38.

We also need a way to represent ∞ or “Not a number” (NaN). That is
done by setting all 32 bits to 1. So the largest Exponent can be is
−127 + 254 = 127. That means the largest positive float one can
represent is
x = (−1)0 × 1.111 · · · 1× 2127 ≈ 2× 2127 ≈ 2128 ≈ 3.4028× 1038.

CS319 — ints and float; input & output; flow; loops; functions 16/29

Part 3: a closer look at float

As well as working out how small or large a float can be, one should
also consider how precise it can be. That often referred to as the
machine epsilon, can be thought of as eps, where 1− eps is the largest
number that is less than 1 (i.e., 1− eps/2) would get rounded to 1.

The value of eps is determined by the Significant.

For a float, this is x = 2−23 ≈ 1.192× 10−7.

CS319 — ints and float; input & output; flow; loops; functions 17/29

Part 3: a closer look at float double

For a double in C++, 64 bits are used to store numbers:

1 bit for the Sign;

52 bits for the Significant (as well as an leading implied bit); and

11 bits for the Exponent, which has an offset of e = −1023.

The smallest positive double that can stored is 2−1022 ≈ 2.2251e − 308,
and the largest is

1.111111 · · · 111×22046−1023 =
(
1 +

1

2
+

1

4
+

1

8
+

1

16
+ . . .)×22046−1023

≈ 2× 21023 ≈ 1.7977e + 308.

(One might think that, since 11 bits are devoted to the exponent, the
largest would be 22048−1023. However, that would require all bits to be
set to 1, which is reserved for NaN).

For a double, machine epsilon is 2−53 ≈ 1.1102× 10−16.

CS319 — ints and float; input & output; flow; loops; functions 18/29

Part 3: a closer look at float double

An important example:

03Rounding.cpp

int i, max;

float x, increment;

std::cout << "Enter a (natural) number , n: ";

std::cin >> max;

x=0.0;

increment = 1/((float) max);

for (i=0; i<max; i++)

x+= increment;

std::cout << "Difference between x and 1 is " << x-1

<< std::endl;

If we input n = 8, we get:

If we input n = 10, we get:

CS319 — ints and float; input & output; flow; loops; functions 19/29

Part 4: Output Manipulators endl

As well as passing variable names and strings to the output stream, we
can also pass manipulators to change how variable values are displayed.
Some manipulators (e.g., setw) require that iomanip is included.

endl print a new line (and flush)

04Manipulators.cpp

#include <iomanip >

int main()

12 {

int i, fib [16];

14 fib [0]=1; fib [1]=1;

16 std::cout << "\n\nWithout the setw manipulator" << std::endl;

for (i=0; i <=12; i++)

18 {

if(i >= 2) fib[i] = fib[i-1] + fib[i-2];

20 std::cout << "The " << i << "th " <<

"Fibonacci Number is " << fib[i] << std::endl;

22 }

CS319 — ints and float; input & output; flow; loops; functions 20/29

Part 4: Output Manipulators setw

std::setw(n) will the width of a field to n. Useful for tabulating
data.

04Manipulators.cpp

std::cout << "\n\nWith the setw manipulator" << endl;

24 for (i=0; i <=12; i++)

{

26 if(i >= 2) fib[i] = fib[i-1] + fib[i-2];

std::cout << "The " << std::setw (2) << i << "th " <<

28 "Fibonacci Number is " << std::setw (3) << fib[i] << endl;

}

30 return (0);

}

. .

Other useful manipulators:

setfill

setprecision

fixed and scientific

dec, hex, oct

CS319 — ints and float; input & output; flow; loops; functions 21/29

Part 5: Input

In C++, the object cin is used to take input from the standard input
stream (usually, this is the keyboard). It is a name for the C onsole
IN put.

In conjunction with the operator >> (called the get from or extraction
operator), it assigns data from input stream to the named variable.

(Later we will see that cin is an object, with more sophisticated
uses/methods than is going to be shown here. However, we will defer
this discussion until we have studied something of objects and classes).

CS319 — ints and float; input & output; flow; loops; functions 22/29

Part 5: Input

05Input.cpp

6 #include <iostream >

#include <iomanip > // needed for setprecision

int main()

10 {

const double StirlingToEuro =1.17703; // Correct 22/01/2020

12 double Stirling;

std::cout << "Input amount in Stirling: ";

14 std::cin >> Stirling;

std::cout << "That is worth " << Stirling*StirlingToEuro

16 << " Euros\n";

std::cout << "That is worth " << std::fixed <<

18 std:: setprecision (2) <<

"\u20AC" << Stirling*StirlingToEuro << std::endl;

20 return (0);

}

CS319 — ints and float; input & output; flow; loops; functions 23/29

Part 6: Flow of control – if-blocks

if statements are used to conditionally execute part of your code.

Structure (i):

if(exprn)

{

statements to execute if exprn evaluates as

non-zero

}

else

{

statements if exprn evaluates as 0

}

CS319 — ints and float; input & output; flow; loops; functions 24/29

Part 6: Flow of control – if-blocks

The argument to if() is a logical expression.

Example
x == 8

m == ’5’

y <= 1

y != x

y > 0

More complicated examples can be constructed using AND && and OR
||.

CS319 — ints and float; input & output; flow; loops; functions 25/29

Part 6: Flow of control – if-blocks

06EvenOdd.cpp

#include <iostream >

int main(void)

12 {

int Number;

std::cout << "Please enter an integrer: ";

16 std::cin >> Number;

18 if ((Number %2) == 0)

std::cout << "That is an even number." << std::endl;

20 else

std::cout << "That number is odd." << std::endl;

return (0);

24 }

CS319 — ints and float; input & output; flow; loops; functions 26/29

Part 6: Flow of control – if-blocks

More complicated examples are possible:

Structure (ii):

if(exp1)

{
statements to execute if exp1 is “true”

}
else if (exp2)

{
statements run if exp1 is “false” but exp2 is “true”

}
else

{
“catch all” statements if neither exp1 or exp2 true.

}

CS319 — ints and float; input & output; flow; loops; functions 27/29

Part 6: Flow of control – if-blocks

07Grades.cpp

10 int main(void)

{

12 int NumberGrade;

char LetterGrade;

std::cout << "Please enter the grade (percentage): ";

16 std::cin >> NumberGrade;

18 if (NumberGrade >= 70)

LetterGrade = ’A’;

20 else if (NumberGrade >= 60)

LetterGrade = ’B’;

22 else if (NumberGrade >= 50)

LetterGrade = ’C’;

24 else if (NumberGrade >= 40)

LetterGrade = ’D’;

26 else

LetterGrade = ’E’;

std::cout << "A score of " << NumberGrade << "% cooresponds to a "

30 << LetterGrade << "." << std::endl;

}

CS319 — ints and float; input & output; flow; loops; functions 28/29

Part 6: Flow of control – if-blocks

The other main flow-of-control structures are the

switch ... case structures

the use of the ? and : operators.

Exercise 2.1

Find out how switch.. case works. Rewrite the Even/Odd
example above using switch ... case.

What errors/bugs/problems are there with the Grades example?
That is, how could you get it to break?

Read up on the switch / case construct. Can it be used to write
an improved version of the programme. (Hint: yes, but you need a
recent C++ compiler...).

CS319 — ints and float; input & output; flow; loops; functions 29/29

	Course materials, lectures, etc
	Reminder...
	Organisation
	Schedule
	Another exercise

	Today:
	

	Part 1: C++ fundamentals
	Recap on last week
	Strings
	Header files and Namespaces

	Part 2: a closer look at int
	Part 3: a closer look at float
	double

	Part 4: Output Manipulators
	endl
	setw

	Part 5: Input
	Part 6: Flow of control – if-blocks

