
CS319: Scientific Computing (with C++)

Week 3: More on functions
9am 23 Feb and 4pm 24 Feb, 2021

Source: http://xkcdsw.com/1105

1 Part 1: Flow of control –
if-blocks

2 Part 2: Loops
3 Part 3: Functions

void functions
4 Part 4: Pass-by-value
5 Part 5: Function

overloading
6 Part 6: A detailed

example

CS319 — Week 3: More on functions 1/45

http://xkcdsw.com/1105

New class times

Mon Tue Wed Thu Fri
9 – 10 LECTURE 7

10 – 11 LAB
11 – 12
12 – 1
1 – 2 LAB
2 – 3
3 – 4
4 – 5 LECTURE

1. The recorded class on Wednesdays at 9.00 moves to Tuesday at
9.00.

2. The recorded class on Thursdays at 16.00 stays.

3. New lab times: Tuesday 10.00-10:50, and 13.00-13.50. You
should try to attend at least one of these.

4. Little, if any, of the “lab” times will be recorded.

5. This may all change again towards the end of the semester.

6. Might switch to Zoom for some classes. Any objections?

CS319 — Week 3: More on functions 2/45

Part 1: Flow of control – if-blocks

CS319 – Week 3
Week 3: More on functions

Start of ...

PART 1
Flow of control – if-blocks

CS319 — Week 3: More on functions 3/45

Part 1: Flow of control – if-blocks

if statements are used to conditionally execute part of your code.

Structure (i):

if (exprn)

{

statements to execute if exprn evaluates as

non-zero

}

else

{

statements if exprn evaluates as 0

}

CS319 — Week 3: More on functions 4/45

Part 1: Flow of control – if-blocks

The argument to if() is a logical expression.

Example
I x == 8

I m == ’5’

I y <= 1

I y != x

I y > 0

More complicated examples can be constructed using

I AND &&

and

I OR ||.

CS319 — Week 3: More on functions 5/45

Part 1: Flow of control – if-blocks

01EvenOdd.cpp

#include <iostream >

int main(void)

12 {

int Number;

std::cout << "Please enter an integrer: ";

16 std::cin >> Number;

18 if ((Number %2) == 0)

std::cout << "That is an even number." << std::endl;

20 else

std::cout << "That number is odd." << std::endl;

return (0);

24 }

CS319 — Week 3: More on functions 6/45

Part 1: Flow of control – if-blocks

More complicated examples are possible:

Structure (ii):

if (exp1)

{
statements to execute if exp1 is “true”

}
else if (exp2)

{
statements run if exp1 is “false” but exp2 is “true”

}
else

{
“catch all” statements if neither exp1 or exp2 true.

}

CS319 — Week 3: More on functions 7/45

Part 1: Flow of control – if-blocks

02Grades.cpp

10 int main(void)

{

12 int NumberGrade;

char LetterGrade;

std::cout << "Please enter the grade (percentage): ";

16 std::cin >> NumberGrade;

18 if (NumberGrade >= 70)

LetterGrade = ’A’;

20 else if (NumberGrade >= 60)

LetterGrade = ’B’;

22 else if (NumberGrade >= 50)

LetterGrade = ’C’;

24 else if (NumberGrade >= 40)

LetterGrade = ’D’;

26 else

LetterGrade = ’E’;

std::cout << "A score of " << NumberGrade << "% cooresponds to a "

30 << LetterGrade << "." << std::endl;

}
CS319 — Week 3: More on functions 8/45

Part 1: Flow of control – if-blocks

The other main flow-of-control structures are the ?: operator, and
switch ... case structures.

Example (1.)

How to use ?:

CS319 — Week 3: More on functions 9/45

Part 1: Flow of control – if-blocks

Example (2.)

How to use ?: with std::cout.

CS319 — Week 3: More on functions 10/45

Part 1: Flow of control – if-blocks

Exercise 2.1
Find out how switch... case construct works, and write a program
that uses it.

CS319 — Week 3: More on functions 11/45

Part 1: Flow of control – if-blocks

CS319 – Week 3
Week 3: More on functions

END OF PART 1

CS319 — Week 3: More on functions 12/45

Part 2: Loops

CS319 – Week 3
Week 3: More on functions

Start of ...

PART 2: Loops

CS319 — Week 3: More on functions 13/45

Part 2: Loops for loops

We meet a for-loop briefly in the Fibonacci example. The most
commonly used loop structure is for

for(initial value; test condition; step)

{
// code to execute inside loop

}

Example: 03CountDown.cpp

10 int main(void)

{

12 int i;

14 for (i=10; i>=1; i--)

std::cout << i << "... ";

std::cout << "Zero!\n";

return (0);

20 }

CS319 — Week 3: More on functions 14/45

Part 2: Loops for loops

1. The syntax of for is a little unusual, particularly the use of
semicolons to separate the “arguments”.

2. All three arguments are optional, and can be left blank. Example:

3. But it is not good practice to omit any of them, and very bad
practice to leave out the middle one (test condition).

CS319 — Week 3: More on functions 15/45

Part 2: Loops for loops

4. It is very common to define the increment variable within the for
statement, in which case it is “local” to the loop. Example:

5. If the body of the loop has only one line, you can omit the { and }.

6. There is no semicolon at the end of the for line.

CS319 — Week 3: More on functions 16/45

Part 2: Loops for loops

The other two common forms of loop in C++ are

I while loops

I do ... while loops

Exercise 2.2
Rewrite the count down example above using a

1. while loop.

2. do ... while loop.

CS319 — Week 3: More on functions 17/45

Part 2: Loops for loops

CS319 – Week 3
Week 3: More on functions

END OF PART 2

CS319 — Week 3: More on functions 18/45

Part 3: Functions

CS319 – Week 3
Week 3: More on functions

Start of ...

PART 3: FUNCTIONS

CS319 — Week 3: More on functions 19/45

Part 3: Functions

A good understanding of functions, and their uses, is of prime
importance.
Some functions return/compute a single value. However, many important
functions return more than one value, or modify one of its own
arguments.
For that reason, we need to understand the difference between
call-by-value and call-by-reference (←− later).
. .

Every C++ program has at least one function: main()

Example
#include <iostream>

int main(void)

{

/* Stuff goes here */

return(0);

}

CS319 — Week 3: More on functions 20/45

Part 3: Functions

Each function consists of two main parts:

I Function “header” or prototype which gives the function’s
I return value data type, or void if there is none, and
I parameter list data types or void if there are none.

The prototype is often given near the start of the file, before the
main() section.
Important: The prototype should be written before the
function—perhaps when the program is begin specified.

I Function definition. Begins with the function names, parameter list
and return type, followed by the body of the function contained
within curly brackets.

CS319 — Week 3: More on functions 21/45

Part 3: Functions

Syntax:

ReturnType FnName (param1, param2, ...)

{
statements

}

I ReturnType is the data type of the data returned by the function.

I FnName the identifier by which the function is called.

I Param1, ... consists of
I the data type of the parameter
I the name of the parameter will have in the function. It acts within

the function as a local variable.

I the statements that form the function’s body, contained with braces
{...}.

CS319 — Week 3: More on functions 22/45

Part 3: Functions E.g, Prime?

04IsComposite.cpp

bool IsComposite(int i)

30 {

int k;

32 for (k=2; k<i; k++)

if ((i%k) == 0)

34 return(true);

36 // If we get to here, then i has no divisors between 2 and i-1

return(false);

38 }

CS319 — Week 3: More on functions 23/45

Part 3: Functions E.g, Prime?

Calling the IsComposite function:

04IsComposite.cpp

12 int main(void)

{

14 int i;

16 std::cout << "Enter a natural number: ";

std::cin >> i;

std::cout << i << " is a " <<

20 (IsComposite(i) ? "composite":"prime") << " number."

<< std::endl;

return (0);

24 }

CS319 — Week 3: More on functions 24/45

Part 3: Functions void functions

Most functions will return some value. In rare situations, they don’t, and
so have a void argument list.

05Kth.cpp

#include <iostream >

void Kth(int i);

int main(void)

14 {

int i;

std::cout << "Enter a natural number: ";

18 std::cin >> i;

20 std::cout << "That is the ";

Kth(i);

22 std::cout << " number." << std::endl;

24 return (0);

}

CS319 — Week 3: More on functions 25/45

Part 3: Functions void functions

05Kth.cpp (continued)

26 // FUNCTION KTH

// ARGUMENT: single integer

28 // RETURN VALUE: void (does not return a value)

// WHAT: if input is 1, displays 1st, if input is 2, displays 2nd,

30 // etc.

void Kth(int i)

32 {

std::cout << i;

34 i = i%100;

if (((i%10) == 1) && (i != 11))

36 std::cout << "st";

else if (((i%10) == 2) && (i != 12))

38 std::cout << "nd";

else if (((i%10) == 3) && (i != 13))

40 std::cout << "rd";

else

42 std::cout << "th";

}

CS319 — Week 3: More on functions 26/45

Part 3: Functions void functions

CS319 – Week 3
Week 3: More on functions

END OF PART 3

CS319 — Week 3: More on functions 27/45

Part 4: Pass-by-value

CS319 – Week 3
Week 3: More on functions

Start of ...

PART 4: Pass-by-value
arguments

CS319 — Week 3: More on functions 28/45

Part 4: Pass-by-value

In C++ we need to distinguish between

I a variable’s (unique) memory address

I a variable’s identifier (might not be unique) item the value stored in
the variable.

The classic example is function that

I takes two integer inputs, a and b;

I after calling the function, the values of a and b are swapped.

To understand this example, it is important to understand the difference
between a

1. local variable, which belongs only to the function (or block) in
which it is defined;

2. global variable, which belongs to the whole programme, and can be
accessed in any function (or block).

(Global variables are very uncommon, but we’ll have a look at them in
some lab exercises).

CS319 — Week 3: More on functions 29/45

Part 4: Pass-by-value

06SwapByValue.cpp

4 #include <iostream >

void Swap(int a, int b);

int main(void)

8 {

int a, b;

std::cout << "Enter two integers: ";

12 std::cin >> a >> b;

14 std::cout << "Before Swap: a=" << a << ", b=" << b

<< std::endl;

16 Swap(a,b);

std::cout << "After Swap: a=" << a << ", b=" << b

18 << std::endl;

return (0);

20 }

CS319 — Week 3: More on functions 30/45

Part 4: Pass-by-value

void Swap(int x, int y)

{

int tmp;

tmp=x;

x=y;

y=tmp;

}

This won’t work.
We have passed only the values stored
in the variables a and b. In the swap

function these values are copied to local
variables x and y . Although the local
variables are swapped, they remained
unchanged in the calling function.

What we really wanted to do here was to use Pass-By-Reference where
we modify the contents of the memory space referred to by a and b. This
is easily done...
...we just change the declaration and prototype from

void Swap(int x, int y) // Pass by value

to

void Swap(int &x, int &y) // Pass by Reference

the pass-by-reference is used.
CS319 — Week 3: More on functions 31/45

Part 4: Pass-by-value

CS319 – Week 3
Week 3: More on functions

END OF PART 4

CS319 — Week 3: More on functions 32/45

Part 5: Function overloading

CS319 – Week 3
Week 3: More on functions

Start of ...

PART 5: Function overloading

CS319 — Week 3: More on functions 33/45

Part 5: Function overloading

C++ has certain features of polymorphism – for example, where two
different functions can have the same name, so long as they have
different argument lists.
This is called function overloading.
As a simple example, we’ll write two functions with the same name: one
that swaps the values of a pair of ints, and that other that swaps a pair
of floats. (Later in the course, we’ll see how to do this with
templates.)

07Swaps.cpp

#include <iostream >

// We have two function prototypes!

10 void Swap(int &a, int &b);

void Swap(float &a, float &b);

CS319 — Week 3: More on functions 34/45

Part 5: Function overloading

07Swaps.cpp (continued)

int main(void)

14 {

int a, b;

16 float c, d;

18 std::cout << "Enter two integers: ";

std::cin >> a >> b;

20 std::cout << "Enter two floats: ";

std::cin >> c >> d;

std::cout << "a=" << a << ", b=" << b <<

24 ", c=" << c << ", d=" << d << std::endl;

std::cout << "Swapping" << std::endl;

Swap(a,b);

28 Swap(c,d);

30 std::cout << "a=" << a << ", b=" << b <<

", c=" << c << ", d=" << d << std::endl;

return (0);

34 }
CS319 — Week 3: More on functions 35/45

Part 5: Function overloading

07Swaps.cpp (continued)

void Swap(int &a, int &b)

40 {

int tmp;

tmp=a;

44 a=b;

b=tmp;

46 }

48 void Swap(float &a, float &b)

{

50 float tmp;

52 tmp=a;

a=b;

54 b=tmp;

}

CS319 — Week 3: More on functions 36/45

Part 5: Function overloading

What does the compiler take into account to distinguish
between overloaded functions?

C++ takes the following into account:

I Type of arguments. So void Sort(int, int) is different from
void Sort(char, char).

I The number of arguments. So int Add(int a, int b) is
different from int Add(int a, int b, int c).

But not

I Return values. For example, we cannot have two functions
int Convert(int) and float Convert(int)

since they have the same argument list.

I user-defined types (using typedef) that are in fact the same. See,
for example, 10OverloadedConvert.cpp.

CS319 — Week 3: More on functions 37/45

Part 5: Function overloading

CS319 – Week 3
Week 3: More on functions

END OF PART 5

CS319 — Week 3: More on functions 38/45

Part 6: A detailed example

CS319 – Week 3
Week 3: More on functions

Start of ...

PART 6: A detailed example

CS319 — Week 3: More on functions 39/45

Part 6: A detailed example

In the following example, we combine two features of C++ functions:

I Pass-by-reference,

I Overloading,

We’ll write two functions, both called Sort:

I Sort(int &a, int &b) – sort two integers in ascending order.

I Sort(int list[], int n) – sort the elements of a list of length n.

The program will make a list of length 8 of random numbers between 0
and 39, and then sort them using bubble sort.
(See video for full description).

CS319 — Week 3: More on functions 40/45

Part 6: A detailed example

09Sort.cpp (i)

#include <iostream >

6 #include <stdlib.h>

8 const int N=8;

10 void Sort(int &a, int &b);

void Sort(int list[], int length);

12 void PrintList(int x[], int n);

CS319 — Week 3: More on functions 41/45

Part 6: A detailed example

09Sort.cpp (ii)

14 int main(void)

{

16 int i, x[N];

18 for (i=0; i<N; i++)

x[i]=rand ()%40;

std::cout << "The list is:\t\t";

22 PrintList(x, N);

std::cout << "Sorting ..." << std::endl;

Sort(x,N);

std::cout << "The sorted list is:\t";

28 PrintList(x, N);

return (0);

30 }

CS319 — Week 3: More on functions 42/45

Part 6: A detailed example

09Sort.cpp (iii)

32 // Arguments: two integers

// return value: void

34 // Does: Sorts a and b so that a<=b.

void Sort(int &a, int &b)

36 {

if (a>b)

38 {

int tmp;

40 tmp=a; a=b; b=tmp;

}

42 }

44 // Arguments: an integer array and its length

// return value: void

46 // Does: Sorts the 1st n elements of x

void Sort(int x[], int n)

48 {

int i, k;

50 for (i=n-1; i>1; i--)

for (k=0; k<i; k++)

52 Sort(x[k], x[k+1]);

}
CS319 — Week 3: More on functions 43/45

Part 6: A detailed example

62 void PrintList(int x[], int n)

{

64 for (int i=0; i<n; i++)

std::cout << x[i] << " ";

66 std::cout << std::endl;

}

CS319 — Week 3: More on functions 44/45

Part 6: A detailed example

CS319 – Week 3
Week 3: More on functions

END OF PART 5 (and of this week’s videos)

CS319 — Week 3: More on functions 45/45

	New class times
	Part 1: Flow of control – if-blocks
	Part 2: Loops
	for loops

	Part 3: Functions
	E.g, Prime?
	void functions

	Part 4: Pass-by-value
	Part 5: Function overloading
	Part 6: A detailed example

